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Abstract—Remote sensing image retrieval aims at searching re-
mote sensing images of interest among immense volumes of remote
sensing data, which is an enormous challenge. Direct use of voice
for human–computer interaction is more convenient and intelli-
gent. In this article, a deep image-voice hashing (DIVH) method
is proposed for remote sensing image-voice retrieval. First, the
whole framework is composed of the image and the voice feature
learning subnetwork. Then, the hash code learning procedure will
be leveraged in remote sensing image-voice retrieval to further
improve the retrieval efficiency and reduce memory footprint. Hash
code learning maps the deep features of images and voices into
a common Hamming space. Finally, image-voice pairwise loss is
proposed, which considers the similarity preservation and balance
of hash codes. The similarity preserving and the balance controlling
term of the loss function improve the similarity preservation from
original data space to the Hamming space and the discrimination
of binary code, respectively. This unified cross-modal feature and
hash code learning framework significantly reduce the semantic
gap between the two modal data. Experiments demonstrate that
the proposed DIVH method can achieve a superior retrieval per-
formance than other state-of-the-art remote sensing image-voice
retrieval methods.

Index Terms—Convolutional neural network (CNN), cross-
modal retrieval, deep hashing, hash code.

I. INTRODUCTION

R EMOTE sensing image retrieval [1] tries to search the
desired images with a specific query, which is a huge chal-

lenge. Remote sensing image retrieval can provide the original
data required or restrict the search space for a wide range of
application scenarios [2], such as resource investigating [3], [4],
surveying and mapping [5], [6], and disaster relief [7], [8].

The remote sensing image retrieval task is mainly divided
into single-modal retrieval task and cross-modal retrieval task.
Single-modal retrieval task tries to retrieve the desired re-
mote sensing image with semantic correlation in the immense
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database [9], [10]. However, the visual content in the images is
complicated, and which is challenging to express the content of
a remote sensing image. Cross-modal retrieval uses one modal
data to retrieve other modal data with semantic relevance in a
massive database. The image-text and image-voice retrieval are
widely used to give detailed retrieval requirements. Thereby,
the retrieved images are more in line with the operator’s vision.
How to model high-level semantics and associations between
different modal data is challenging in cross-modal retrieval.

With the rapid advancement of deep learning [11], [12], some
deep cross-modal retrieval methods have been proposed to learn
the correlation among different modal data [13], [14]. Abdullah
et al. [15] unified long short-term memory network (LSTM)
and pretrained convolutional neural network (CNN) to design
a deep bidirectional triplet network for remote sensing image-
text retrieval. Rahhal et al. [16] designed a novel unsupervised
loss for unsupervised remote sensing image-text retrieval. The
image-voice retrieval shows greater value in remote sensing ap-
plications than image-text retrieval. In practical application, the
operator provides the voice description, which is convenient for
the human–computer interaction [17]. However, it is difficult to
retrieve effective information between images and voices since
the feature representations of voices and images are inconsistent.

Recently, some methods are proposed to achieve image-voice
retrieval [18], [19], [20], [21]. Guo et al. [18] proposed deep
networks to obtain the cross-modal similarity between remote
sensing images and voices. Torfi et al. [19] proposed a deep
framework with coupled 3-D CNN to enhance the correlation
of image and voice features. Zhang et al. [20] explored the
canonical correlation of image and voice features in the feature
extraction procedure. However, these feature extraction proce-
dures use high-dimensional real-valued features, which causes
higher storage and computing costs.

In contrast, the hashing methods map different modal data
into compact binary codes, which are low memory and high ef-
ficiency [22], [23]. The hashing methods show their remarkable
performance in large-scale multimedia information retrieval.

To improve retrieval efficiency, a deep image-voice hashing
(DIVH) method is proposed to leverage the hash code learning
procedure in remote sensing image-voice retrieval. The pro-
posed method leverages two subnetworks to learn the remote
sensing image and voice features. Fig. 1 shows the compari-
son between the proposed DIVH method and the real-valued
retrieval method. Both remote sensing image and voice features
are mapped into a common space. Furthermore, an image-voice
pairwise loss is proposed to consider the similarity preserving
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Fig. 1. Comparison between the retrieval real-valued method and the proposed DIVH method. (a) Real-valued retrieval method. (b) Proposed DIVH method.
The real-valued method requires higher storage and computing costs.

and the balance of hash codes. The similarity preserving term
of the loss function is designed to make paired similar images
and voices as close as possible in the Hamming space. To
improve the quality of the hash code, the balance controlling
term is imposed on the value distribution of the binary code.
Experiments demonstrate that the proposed DIVH method can
achieve a superior retrieval performance than the state-of-the-art
methods on the remote sensing image-voice retrieval task.

The remainder of this article is organized as follows. Sec-
tion II briefly represents related work. Section III delves into
the proposed DIVH method in depth. Section IV shows the
experiments. Finally, Section V concludes this article.

II. RELATED WORK

In this section, related work is discussed. The remote sensing
image retrieval methods are discussed in Section II-A, while
some remote sensing cross-modal retrieval methods are intro-
duced in Section II-B.

A. Remote Sensing Image Retrieval

The remote sensing image retrieval tries to locate the desired
remote sensing image from large amounts of remote sensing
image data, which is divided into two categories: real-valued
method and hashing method.

1) Real-Valued Method: Real-valued methods search for
similar images by computing the similarity with real-valued
features. Bosilj et al. [24] proposed a remote sensing image
retrieval method, which used vector of aggregate locally de-
scriptor as the feature representation. Li et al. [25] proposed
a remote sensing image retrieval method with multiple feature
representation and collaborative affinity metric fusion. Xiong
et al. [26] proposed a deep framework with an attention module
to reduce the background interference. Fan et al. [27] proposed a
deep metric learning-based method to learn the image similarity
and designed a distribution consistency loss. Although the real-
value methods achieved acceptable results, they incurred high
storage and similarity computation cost.

2) Hashing Method: Hashing methods received much atten-
tion because of their compact binary representation and efficient
similarity computation. Lukač et al. [28] proposed a kernelized
supervised locality sensitive hashing method for remote sensing
image retrieval. Reato et al. [29] proposed a class-sensitive hash-
ing method to express remote sensing images with a multihash
code learning strategy. Li et al. [30] proposed a deep hashing
neural network to introduce the pair-wise similarity constraint in
an end-to-end strategy. Song et al. [31] proposed a deep hashing
convolutional neural network to learn the compact hash codes
with high-level feature.

B. Remote Sensing Cross-Modal Retrieval

Cross-modal retrieval can be divided into two categories:
image-text retrieval method and image-voice retrieval method.

1) Image-Text Retrieval Method: Image-text retrieval
method [15], [16] tries to search desired images (voices)
according to the corresponding text description (images).
Abdullah et al. [15] proposed a deep bidirectional triplet
network (DBTN) to fuse the multiple text description with
an average fusion strategy. Rahhal et al. [16] proposed a
visual big transfer (BiT) Models and a bidirectional LSTM
network to learn image and text features, respectively. Cheng
et al. [32] proposed a semantic alignment module (SAM) to
enhance the latent correlation between remote sensing images
and text features. Yuan et al. [33] proposed an asymmetric
multimodal feature matching network for image-text retrieval
to achieve multiscale feature learning and target redundancy
reduction. Although image-text retrieval methods can give
more detailed descriptions of the desired images than image
retrieval, text descriptions are still inconvenient and have too
much subjectivity.

2) Image-Voice Retrieval Method: Image-voice retrieval
methods [18], [34] search for desired images (voices) by using
semantically related voice description (images). Guo et al. [18]
integrated deep feature learning of different modal data into
a unified framework for remote sensing image-voice retrieval.
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Fig. 2. Framework of the proposed DIVH method. An integrated deep framework is made up of image and voice branches. The binary hash code learning is
used to increase the retrieval performance and minimize memory footprint. Hash code learning also can map the remote sensing images and voices into a common
space.

Chen et al. [34] proposed a deep triplet-based network to learn
the semantic similarity relationship between image and voice
modal data. Chaudhuri et al. [35] proposed a cross-modal infor-
mation retrieval network (CMIR-NET) to handle the multilabel
unpaired image-voice retrieval. Yang et al. [36] proposed a
cross-modal feature fusion retrieval method with intermodality
adversarial learning and intramodality semantic discrimination
to enhance the use of intramodal semantic information. Voice
input can be more direct in human–computer interaction with
remote sensing systems.

III. PROPOSED METHOD

The proposed Deep Image-Voice Hashing method is divided
into three parts: image and voice feature extraction; pairwise
similarity measurement; and hash code learning. The proposed
DIVH method is shown in Fig. 2. The proposed DIVH method
uses two subnetworks to learn the remote sensing image and
voice features and map two modal features into common space.
And image-voice pairwise loss is proposed to consider the
similarity preserving and the balance of hash codes.

A. Image and Voice Feature Extraction

Let I = {Ir}Nr=1 represent a set of N images, and V =
{Vq}Mq=1 is the corresponding set of M voice captions. Feature
extraction includes two branches: remote sensing image branch
and voice branch. The remote sensing image branch uses an
image subnetwork to obtain convolutional features for raw re-
mote sensing images. The voice branch first uses Mel-frequency
cepstral coefficients (MFCC) [37], and then, refines the voice
features for the subsequent hash code generation.

1) Image Feature Extraction: To express the image, the pro-
posed DIVH method adopts the commonly used Convolutional
Neural Networks (CNNs). The image features are gained from
the last fully connected layer of the deep network, where the
classification layer is obsoleted. The extracted feature of the

raw remote sensing image Ir can be represented as follows:

Hi = f (Ir;ωi) (1)

where Hi is the feature of remote sensing images, f(·) means
the image feature extraction network, and ωi represents deep
network parameters for image feature extraction. A 4096-D
feature vector is obtained by the image feature subnetwork.

2) Voice Feature Extraction: To express the voice, the pro-
posed DIVH method adopts MFCC [37] and a feature refinement
network. The raw voice data are mapped as a vector with the
MFCC [37], which can be expressed as the following formula:

Cq = M(Vq) (2)

where Vq represents the qth voice, Cq represents the feature
of the qth voice after MFCC procedure, and M(·) represents
the whole MFCC procedure. The input of the voice feature
refinement network is the intermediate feature Cq after the
MFCC procedure. The ultimate feature of voice modal data can
be written as the following formula:

Hv = g (Cq;ωv) (3)

where ωv is the parameters of the CNN for voice modal data,
Hv denotes the voice feature, and g(·) means the voice feature
refinement network.

B. Pairwise Similarity Measurement

Let B(i) = {br} ∈ {+1,−1}K×N denote a set of N bi-
nary hash codes of images with K bits, and B(v) = {bq} ∈
{+1,−1}K×M denotes a set of M hash codes of voices with K
bits. Two mappingsF : I → B(i) and G : V → B(v) are learned
by the hashing method. These two mappings correspond to
image modality and voice modality, respectively. Θrq is used
to denote the inner product between the hash code of the image
b
(i)
r and the hash code of the voice b

(v)
q :

Θrq = b(i)
r

T
b(v)
q . (4)
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The following formula denotes the Hamming distance of the
image hash code b

(i)
r and voice hash code b

(v)
q :

distH(b(i)
r ,b(v)

q ) =
1

2
(K −Θrq). (5)

The similarities of image and voice are expressed as: S =
{srq} ∈ {0, 1}n×n, where srq equals to 1 if the hash code of

the image b
(i)
r and hash code of voice b

(v)
q are corresponding

in semantics. If not, srq equals to 0. By using these pairwise
similarity measurements constructed, the maximum a posterior
estimation will be expressed as the following formula:

log p(B |S ) =

n∑
r,q=1

log p(srq

∣∣∣(b(i)
r ,b(v)

q )p(b(i)
r )p(b(v)

q ))

(6)
where p(B|S) denotes the likelihood function. p(srq|b(i)

r ,b
(v)
q )

is the conditional probability of the pairwise similarity measure-
ment siv given the corresponding hash codes. The cross-modal
pairwise similarity measurement between images and voices can
be expressed as follows:

p(srq

∣∣∣b(i)
r ,b(v)

q ) =

{
σ
(
1
2Θrq

)
, siv = 1

1− σ
(
1
2Θrq

)
, otherwise

(7)

where σ(x) denotes the sigmoid function. And σ(x) = 1
1+e−x .

From (7), it can be reasonably concluded that the larger inner
product between the hash code of image b

(i)
r and hash code

of voice b
(v)
q is, the larger p(srq|b(i)

r ,b
(v)
q ) will be, which

represents thatb(i)
r andb(v)

q would be regarded as corresponding
ones.

C. Hash Code Learning

According to the maximum a posterior estimation in (6), the
following formula can be leveraged to learn the hash code:

L1 = − log p(S |B ) = −
n∑

r,q=1

(
srqΘrq − log

(
1 + eΘrq

))
(8)

where L1 denotes the cross-entropy loss. The L1 is used to
make the Hamming distance of two similar samples as small as
possible, and that of two dissimilar samples as large as possible
simultaneously.

The H(i) and H(v) are extracted from the image subnetwork
and the voice subnetwork, respectively. The binary hash codes
B(i) and B(v) can be expected to preserve the cross-modal
similarity.

L2 = ‖B(i) −H(i)‖2I + ‖B(v) −H(v)‖2I (9)

where B(i) = sign(H(i)), B(v) = sign(H(v)), and B ∈
{−1,+1}N×K .

A good balance of +1 and -1 is crucial for the generation of
effective hash codes [38], [39], [40]. Let the appearance of +1
and that of −1 on hash codes to be almost the same, L3 can be
designed as the following formula:

L3 =

K∑
z=1

∣∣∣mean(b(z)r ) + mean(b(z)q )
∣∣∣ (10)

The overall loss function not only considers the preservation
of the similarity between the image and the voice, but also con-
siders the balance of the hash code. Finally, the aforementioned
three parts are incorporated into the overall loss function:

min
B,ωi,ωv

L = −
n∑

r,q=1

(
srqΘrq − log

(
1 + eΘrq

))

+ γ
(
‖B(i) −H(i)‖2I + ‖B(v) −H(v)‖2I

)

+ η

K∑
z=1

∣∣∣mean(b(z)r ) + mean(b(z)q )
∣∣∣

(11)

where γ and η are the weights of L2 and L3, respectively. Both
feature extraction and hash-code learning are integrated into a
unified deep framework. The proposed DIVH method learns bi-
nary hash codesB(i) andB(v) and parameters of two feature ex-
traction subnetworksωi andωv by minimizing the common loss.

IV. EXPERIMENTS

This section briefly discusses the experimental settings (see
Section IV-A), datasets (see Section IV-B), evaluation protocols
(see Section IV-C), and hyperparameter analysis (see Section IV-
D). Section IV-E shows the comparison results with state-of-the-
art methods on three benchmark datasets. The ablation exper-
iments and the complexity of the proposed DIVH method are
analyzed in Section IV-F.

A. Experimental Settings

The proposed DIVH method is conducted on a server with an
NVIDIA Quadro RTX 6000 GPU and 24 G of RAM. The loss
function introduced previously is optimized utilizing stochastic
gradient descent in the implementation process. A seven-layer
CNN-F is leveraged as the image subnetwork for the remote
sensing image branch. This CNN-F has been pretrained using
the ImageNet Dataset. The hash code length is set to 64. Further-
more, γ and η are both set to 1. The selection of hyperparameters
will be discussed in Section IV-D.

B. Datasets

To verify the effectiveness of the proposed DIVH method,
three image-voice benchmark datasets are introduced: Sydney
Image-Voice Dataset, UCM Image-Voice Dataset, and RSICD
Image-Voice Dataset. Table I shows some details of three image-
voice benchmark datasets. Some image-voice pair examples in
three benchmark datasets are shown in Fig. 3.

1) Sydney Image-Voice Dataset [18] is a cross-modal image-
voice dataset that was created by expanding the original
image dataset. The original dataset is a huge remote sens-
ing image dataset of Sydney obtained from Google Earth.
The size of the whole image is 18 000 × 14 000, with
a resolution of 0.5 m/pixel. The overall image was cut
into 1008 nonoverlapping subimages with a size of 500
× 500 containing 613 remote sensing images. The 613
images belong to seven categories, called industrial area,
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Fig. 3. Some image-voice pair examples in three benchmark datasets. (a) UCM Image-Voice Dataset. (b) RSICD Image-Voice Dataset. (c) Sydney Image-Voice
Dataset. Each remote sensing image corresponds to a voice description.

TABLE I
SOME DETAILS OF THREE IMAGE-VOICE BENCHMARK DATASETS

LEVERAGED IN EXPERIMENTS

ocean, lawn, river, airport, residential area, and railway.
The dataset contains 613 image-voice sample pairs, and
each image corresponds to a voice description. Similar to
the previous literature [18], we constructed 613 positive
sample pairs and 613 negative ones. Eighty percent of the
image-voice sample pairs are chosen for training, while
the remainder 20% is used for testing.

2) UCM Image-Voice Dataset [18] is a cross-modal
image-voice dataset expanded from a single-modal
remote sensing image dataset. It includes 2100 remote
sensing images. There are 21 scene classes of remote
sensing images (agricultural, airplane, beach, buildings,
chaparral, dense residential, forest, etc.) in the original
dataset, and each class contains 100 remote sensing
images. These images in the UCM dataset are 256 ×
256 pixels in size. Each remote sensing image is given a
voice description to compile this dataset.

3) RSICD Image-Voice Dataset [18] is an extension of the
remote sensing caption dataset [41]. The original dataset
contains 10 921 images belonging to 30 categories. The
expanded dataset has 10 921 positive and negative image-
voice sample pairs, and each remote sensing image cor-
responds to a voice. Like the experimental settings of
the other two datasets, eighty percent of the image-voice

sample pairs are chosen for training, with the remainder
used for testing.

C. Evaluation Protocols

Two representative metrics are leveraged as evaluation proto-
cols for the image retrieval performance.

1) Mean average precision (mAP) is the mean of average
precision (AP) for each query in query set. The following
formula is used to calculate the AP:

AP =
1

R

N∑
i

Ri

i
× reli (12)

where N denotes the number of the samples. The number
of relevant images in the dataset is denoted by R. The
number of relevant images in the top i results is denoted
by Ri. If the sample ranked ith place is relevant, reli will
be 1 and otherwise 0.

2) P@m is the precision of top m nearest images from
the same class or with semantic consistency in a certain
Hamming space.

P@m =

∑m
i=1 reli
m

. (13)

The greater the value of these indicators, the better the per-
formance is. In this article, the aforementioned two evaluation
protocols are used on three image-voice retrieval datasets.

D. Hyperparameter Analysis

Two hyperparameters in the loss function (11) utilized for
hash code learning. The hyperparameter γ determines the contri-
bution of cross-modal similarity L2 in (9). The hyperparameter
η determines the contribution of the hash code balance L3 in
(10). This experiment modifies one of the two hyperparameters
while leaving the other alone.

The value of η is fixed to 1, and the value of γ is set
to 0.001, 0.01, 0.1, 1, and 2, respectively. The image-voice
and voice-image retrieval experiments were carried out using
the settings described previously. As may be observed from
Fig. 4(a), whether it is image-voice or voice-image retrieval,
when the value of γ is set to 1, the algorithm performs best in
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Fig. 4. Hyperparameter experiments results. (a) mAP corresponding to the
different γ values on the Sydney Image-Voice Dataset (the η value is fixed to
1). (b) mAP corresponding to the different η values on the Sydney Image-Voice
Dataset (the γ value is fixed to 1).

both image-voice and voice-image retrieval. In the experiment
of image-voice retrieval, the value of γ is set to 1, which is nearly
6% higher than when the γ is 0.001. In the voice-image retrieval
experiment, the value of γ is set to 1, which is nearly 6% higher
than when the γ is 0.001. It is worth noting that when the γ value
is set to 2, the performance is reduced. This is mainly because
the γ value is too large, affecting the contribution of other loss
items.

The value of γ is fixed to 1, and the value of η is set to 0.001,
0.01, 0.1, 1, and 2, respectively. The image-voice and voice-
image retrieval experiments were carried out according to the
aforementioned settings, and the results are shown in Fig. 4(b).
In the experiment of image-voice retrieval, the value of η is set
to 1, which is about 3.5% higher than when η is 0.001. In the
voice-image retrieval experiment, the value of η set to 1 is about
3.2% higher than when η is 0.001. When the value of η is set to 2,
the performance is greatly reduced. When the η and γ values are
set to extremely small, γ has a greater impact on performance.
The aforementioned two phenomena show that the contribution
of L2 to the entire loss function is higher.

E. Comparison Results on Benchmark Datasets

In this subsection, nine current state-of-the-art cross-
modal retrieval methods are used, including: SIFT+M [42],
CMFH [43], DBLP [44], CNN [45], DVAN [18], CMIR-
NET [35], DIVR [46], SePHklr [47], and DTBH [34]. The ex-
periment was implemented on three benchmark datasets, which

Fig. 5. Precision results with the different numbers of retrieved points (image
to voice) on the Sydney Image-Voice Dataset.

are Sydney Image-Voice Dataset, UCM Image-Voice Dataset,
and RSICD Image-Voice Dataset.

1) Retrieval Results on Sydney Image-Voice Dataset: Ta-
ble II reports the image-to-voice retrieval results on the Sydney
Image-Voice Dataset, including mAP and P@m (P@1, P@5,
and P@10). The significance of bold entities is best experimental
result in each metric. It can be noted that the performance of
the proposed DIVH method is better than other methods in
the mAP, especially more than 60% higher than the SIFT+M
method, demonstrating the superiority that the DIVH method
leverages the end-to-end framework to learn both the features
and hash codes. The feature learning procedures of image and
voice are combined into a single framework capable of learning
more efficient hash codes. Furthermore, a robust semantic asso-
ciation is established for the hash codes of voices and images.
This significantly enhances the image-voice retrieval model’s
performance. Although the proposed DIVH method is slightly
lower than the DTBH model on the P@m indicator, there may
be the following two reasons:

1) the unpredictability of data division;
2) the DTBH method uses the triplet-wise training that is

more difficult to train.
Although the DTBH method improves the performance of

the model on the Sydney Image-Voice Dataset, it is not easy
to train. On the contrary, the proposed DIVH method does
not need to consider this problem, can be effectively trained,
and does not require too much fine-tuning and additional con-
struction of triplet datasets. Fig. 5 shows the precision curves
with the different numbers of samples retrieved on the Sydney
Image-Voice Dataset. It can be seen that the proposed DIVH
method is superior to other methods in all returned neighbors.
Fig. 5 further illustrates the effectiveness of the proposed DIVH
method. Fig. 8 shows some visual results of image-to-voice
retrieval. The first row is the result on the Sydney Image-Voice
Dataset. There are runways and lawns in the image, indicating
that the scene is a runway scene. The retrieved voice contains
this valid information. For example, different words with the
same concept were found, including “runway” and “lawn.” This
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TABLE II
IMAGE-VOICE RETRIEVAL RESULTS (MEAN AVERAGE PRECISION AND P@m) ON THE SYDNEY IMAGE-VOICE DATASET

Fig. 6. Precision results with the different numbers of retrieved points (voice
to image) on the Sydney Image-Voice Dataset.

shows that the proposed DIVH method can effectively identify
the effective information in the images and retrieve the relevant
voices.

Table II reports the results of the proposed DIVH method and
state-of-the-arts in the voice-to-image retrieval on the Sydney
Image-Voice dataset. The significance of bold entities is best
experimental result in each metric. As may be observed, the
proposed DIVH method is higher than other methods in all
indicators (mAP, P@1, P@5, and P@10). This is because of
the unified framework of DIVH that integrates both two modal
feature learning and hash code learning. Through end-to-end
training, efficient hash code can be learned, and a seman-
tic association is established simultaneously between the two
modalities, thereby improving the performance of cross-modal
retrieval. It is worth noting that even though the state-of-the-art
DTBH method uses a more difficult-to-train triplet-wise way to
improve the performance of the model, the proposed method
still has a certain improvement in various indicators. This shows
the simplicity and effectiveness of the proposed DIVH method.
Fig. 6 shows the precision results with different retrieved points
on the Sydney Image-Voice Dataset. As may be observed, the
proposed method is superior to other methods in all returned

Fig. 7. Some voice-image retrieval results of the DIVH method on three
image-voice datasets. The first row corresponds to Sydney dataset. The second
row corresponds to UCM dataset. And the third row corresponds to RSICD
Image-Vocie Datasets. The first row correspond to Sydney dataset. The red
boxes indicate incorrect retrieval results.

neighbors. This also shows the effectiveness of our method.
Fig. 7 shows some visual results of voice-to-image. The first row
is the result on the Sydney Image-Voice Dataset. These voices
contain words such as “white building,” “roads,” “industrial
area,” etc., indicating that it is describing an industrial scene.
It can be seen that the retrieved images also include concepts
such as “white buildings” and “roads.” This shows that the
proposed DIVH method can identify the effective information of
the voices and retrieve the relevant remote sensing scene images.

2) Retrieval Results on UCM Image-Voice Dataset: Table III
shows the image-to-voice retrieval results of our method and
some comparison methods on the UCM image-voice dataset,
including mAP and P@m (P@1, P@5, and P@10). The signifi-
cance of bold entities is best experimental result in each metric.
As may be observed, the performance of the proposed DIVH
method is better than other methods in all indicators, especially
almost 70% higher than the SIFT+M method and 8.84% higher
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TABLE III
IMAGE-VOICE RETRIEVAL RESULTS (MEAN AVERAGE PRECISION AND P@m) ON THE UCM IMAGE-VOICE DATASET

than the DTBH in P@10. The feature learning processes of
image and voice modal data are unified into a framework that
can learn more efficient hash codes. And a strong semantic
association is established for the hash codes of voices and im-
ages. This effectively improves the performance of the proposed
DIVH method. In comparison to the DTBH, the proposed DIVH
method does not need to consider this problem, can be simply
and effectively trained, and does not require too much fine-
tuning and additional construction of triplet-wise datasets. Fig. 9
shows the precision results with different numbers of retrieved
points on the UCM Image-Voice Dataset. The proposed method
outperforms the others in all returned neighbors. Fig. 9 further
illustrates the effectiveness of the proposed DIVH method. The
second row of Fig. 8 is the result on UCM Image-Voice Dataset.
There are buildings in the image, indicating that the scene is a
building scene. It is worth noting that although the third voice
retrieved is wrong, it contains the word “gray,” indicating that the
model can learn useful semantic information. This shows that the
proposed DIVH method can identify the effective information
in the images and retrieve the relevant voices.

Table III reports the results of the proposed DIVH method
and state-of-the-arts in the voice-to-image retrieval on the UCM
Image-Voice Dataset. The significance of bold entities is best
experimental result in each metric. As may be observed, the
proposed DIVH method is higher than other methods in all
indicators (mAP, P@1, P@5, and P@10). This is because of the
unified framework of DIVH that integrates two modal feature
learning and hash code learning. Through end-to-end training,
efficient hash code can be learned, and a semantic association
is established simultaneously between the two modal data,
thereby improving the performance of cross-modal retrieval. It is
worth noting that even though the current state-of-the-art DTBH
method uses a more difficult-to-train triplet-wise way to improve
the performance of the model, the proposed method still has a
certain improvement in all indicators. This shows the simplicity
and effectiveness of the proposed method. Fig. 10 shows the
precision results with different retrieved points on the UCM
Image-Voice Dataset. As may be observed, the proposed method
is superior to other methods in all returned neighbors. The
second row of Fig. 7 is the result on UCM Image-Voice Dataset.
The voices contain words such as “many,” “cars,” “park,” etc.,

Fig. 8. Some image-voice retrieval results of the DIVH method on three
image-voice datasets. The first row corresponds to Sydney dataset. The second
row corresponds to UCM dataset. And the third row corresponds to RSICD
Image-Voice Datasets. The first row correspond to Sydney dataset. The red
boxes indicate incorrect retrieval results.

indicating that it is describing a parking lot scene. It can be seen
that the retrieved images also include concepts such as “cars,”
“parking,” and “many.” The fifth image is a wrong retrieval
result, but it contains “park” and “many.” This shows that the
proposed method can identify the effective information of the
voices and retrieve the relevant scene images.

3) Retrieval Results on RSICD Image-Voice Dataset: The
image-to-voice retrieval results of our method and other methods
on the RSICD Image-Voice Dataset are shown in Table IV,



ZHANG et al.: REMOTE SENSING CROSS-MODAL RETRIEVAL BY DEEP IMAGE-VOICE HASHING 9335

TABLE IV
IMAGE-VOICE RETRIEVAL RESULTS (MEAN AVERAGE PRECISION AND P@m) ON THE RSICD IMAGE-VOICE DATASET

TABLE V
ABLATION EXPERIMENTS ABOUT SIMILARITY PRESERVING TERM AND BALANCE CONTROLLING TERM

Fig. 9. Precision results with the different numbers of retrieved points (image
to voice) on the UCM Image-Voice Dataset.

TABLE VI
RUNNING EFFICIENCY AND COMPLEXITY OF THE PROPOSED DIVH METHOD

Fig. 10. Precision results with the different numbers of retrieved points (voice
to image) on the UCM Image-Voice Dataset.

including mAP and P@m (P@1, P@5, and P@10). The sig-
nificance of bold entities is best experimental result in each
metric. As may be observed, the performance of our method
is better than other methods in all indicators, especially more
than 20% higher than the SIFT+M method and 3.96% higher
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Fig. 11. Precision results with the different numbers of retrieved points (image
to voice) on the RSICD Image-Voice Dataset.

than the DTBH in P@1, which shows the superiority that DIVH
method leverages the end-to-end framework to extract the image
and voice features and produce hash codes. The feature learning
processes of image modality and voice modality are unified into
a framework that can learn more efficient hash codes. And a
strong semantic association is established for the hash codes of
voices and images. This considerably improves the performance
of the image-voice retrieval model. In comparison to the DTBH,
our method does not need to consider this problem, can be
simply and effectively trained, and does not require too much
fine-tuning and additional construction of triplet-wise datasets.
Fig. 11 shows the precision results with the different numbers
of retrieved points on the RSICD Image-Voice Dataset. As
may be observed, the proposed method is superior to other
methods in all returned neighbors. Fig. 11 further illustrates
the effectiveness of our method. The third row of Fig. 8 is the
result on RSICD Image-Voice Dataset. There are buildings in the
image, indicating that the scene is a building scene. It is worth
noting that although the first voice retrieved is wrong, it contains
the word “water” and “green,” indicating that the algorithm can
learn useful semantic information. This shows that the proposed
method can identify the effective information in the images and
retrieve the relevant voices.

The results of the proposed DIVH method and comparison
methods in voice-to-image retrieval on the RSICD Image-Voice
dataset are reported in Table IV. The significance of bold en-
tities is best experimental result in each metric. The proposed
DIVH method outperforms all other methods in all evaluation
protocols (mAP, P@1, P@5, and P@10). This is because of the
unified framework of DIVH that integrates two modal feature
learning and hash code learning. End-to-end training allows
efficient hash code to be learned while concurrently establishing
a semantic association between the two modal data, boosting
the cross-modal retrieval performance. It is worth noting that
even though the state-of-the-art DTBH method uses a more
difficult-to-train triplet-wise way to improve the performance of
the model, the proposed method still has a certain improvement
in all indicators. This shows the simplicity and effectiveness of

Fig. 12. Precision results with the different numbers of retrieved points (voice
to image) on the RSICD Image-Voice Dataset.

our method. Fig. 12 shows the precision results with different
samples retrieved on the RSICD Image-Voice Dataset. It can
be seen that the proposed method is superior to other methods
in all returned neighbors. This also shows the effectiveness of
our method. The second row of Fig. 7 is the result on RSICD
Image-Voice Dataset. The voices contain words such as “many,”
“car,” “park,” etc., indicating that it is describing a parking lot
scene. As may be observed, the retrieved images also include
concepts such as “building,” “road,” “green,” and “tree.” The
third image is a wrong retrieval result, but it contains “road.”
The fifth image is also a wrong retrieval result, but it contains
“green.” This shows that the proposed method can identify the
effective information of the voices and retrieve the relevant scene
images.

F. Further Analysis

1) Ablation Experiments: The ablation experiments are im-
plemented to further verify the effectiveness of the similarity
preserving and the balance controlling term of the loss function.
Table V shows the ablation experiment results about similarity
preserving term and balance controlling term. The significance
of bold entities is best experimental result in each metric. First,
we analyze the situation with only balance controlling term.
For the image-to-voice retrieval task, the similarity preserving
term improves performance by 5.72%, 3.86%, and 4.95% on
Sydney Image-Voice, UCM Image-Voice, and RSICD Image-
Voice dataset, respectively. For the voice-to-image retrieval task,
the similarity preserving term improves performance by 6.32%,
2.54%, and 7.36% on Sydney Image-Voice, UCM Image-Voice,
and RSICD Image-Voice dataset, respectively. Then, we analyze
the situation with only similarity preserving term. For the image-
to-voice retrieval task, the balance controlling term improves
performance by 3.79%, 3.34%, and 3.16% on Sydney Image-
Voice, UCM Image-Voice, and RSICD Image-Voice dataset,
respectively. For the voice-to-image retrieval task, the balance
controlling term improves performance by 4.25%, 2.4%, and
6.57% on Sydney Image-Voice, UCM Image-Voice, and RSICD
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Image-Voice dataset, respectively. The aforementioned results
demonstrate the effectiveness of the similarity preserving and
the balance controlling term in the loss function.

2) Complexity Analysis: Theoretical inference time com-
plexity is further analyzed. Suppose there are N1 images and
N2 voices in total, and the length of hash code is K. The theo-
retical inference time complexity of the proposed framework
is O(N1 ·N2 ·K) approximately [49]. The proposed DIVH
framework is implemented on a server with an NVIDIA Quadro
RTX 6000 GPU and 24 G of RAM. The single query runtime is
tested. The single query runtime indicates the time to compare
a single voice query to all of images in the test set of the Sydney
Image-Voice dataset. The single query runtime and complexity
of the proposed DIVH method are reported in Table VI.

V. CONCLUSION

In this article, a deep remote sensing image-voice retrieval
method is proposed, called DIVH. The image and voice fea-
ture learning are combined into a single framework capable
of learning efficient hash codes. Furthermore, the image-voice
pairwise loss is presented by considering hash code similarity
preservation and hash code balance controlling. Experiments
demonstrate that the proposed DIVH method obtains superior
retrieval performance than other state-of-the-art cross-modal
methods. The existing cross-modal remote sensing retrieval still
focuses on one most important content in the small remote
sensing image. In the future, the retrieval challenge for multiple
contents in the same huge remote sensing image will be the new
research focus.
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