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A Comprehensive Review for Typical Applications
Based Upon Unmanned Aerial Vehicle Platform
Yuqi Han , Huaping Liu , Senior Member, IEEE, Yufeng Wang , Member, IEEE, and Chunlei Liu

Abstract—Unmanned aerial vehicles (UAVs) have been widely
applied in military and civilian fields due to their flexibility and
effectiveness. As a vital component of UAVs, the vision system
has taken on great significance in different applications (e.g.,
autonomous landing, traffic surveillance, and disaster rescue) to
attract widespread attention in recent years. Therefore, the auto-
matic understanding of visual data collected from these air plat-
forms becomes urgently needed in UAV systems. In this review,
we revisit and summarize the recent techniques and developments
for several typical UAV applications, including object detection,
object tracking, and semantic segmentation. In addition, we also
highlight the difficulties and subsequent orientations from different
perspectives, which may stimulate future research and applications
in the UAV vision era.

Index Terms—Object detection, object tracking, semantic seg-
mentation, unmanned aerial vehicles (UAV).

I. INTRODUCTION

A S THE remote sensing platforms and technologies have
been leaping forward [1] over the past few years, how to

effectively and intelligently process and interpret massive data
has attracted widespread attention among researchers. As one of
the critical remote sensing platforms, unmanned aerial vehicles
(UAVs) can obtain wide-view vision and multimodal informa-
tion in real time for the postprocessing in different regimes [2],
[3], [4], [5], [6]. However, different from the general monitor-
ing scenes, where the cameras (e.g., mobile phones, handheld
cameras, surveillance cameras, and satellite) are always static on
the ground or slow-moving with less geometric and photo-metric
changes [7], [8], [9], [10], [11]. The UAV platforms overlook the
targets from the air, which enables it to acquire the data flexibly
and make up the information loss for the target appearance
due to the geographic and time limitations. However, its unique
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imaging mechanism and characteristic also pose new challenges
for remote sensing vision tasks.

Inevitable Image Degradation: Considering the rapid move-
ment for the UAV platform and the target of the interest, the ex-
ternal environment changes rapidly (e.g., weather, illumination
condition, scenes). Moreover, under strong wind, the platform
would usually inevitably undergo mechanical vibration, which
may even result in motion blur and fuzzy image degradation.
Such challenging attributes may bring in a large variety of object
appearance, which degrades the quality for the captured data. In
addition, harsh scenes, such as rainy or foggy days and night,
which has poor visibility, also bring new challenges for the
algorithms to detect the object from the background. Therefore,
to improve the quality of the captured data, it would be necessary
to carry out a preprocessing image module to reduce the noise
and correct the camera distortion.

Uneven Target Size and Distribution: Generally, the UAV
obtains data from different altitudes using a large aperture, fixed
focal, and wide-angle lens, thus resulting in an uneven target
size problem. Specifically, some objects may be densely located,
even overlap with each other, while some objects may be very
sparse; some objects may occupy a large proportion of the image,
while some objects are very small with limited distinct features.
In [12], Han pointed put that such uneven statistical properties
would also increase the difficulties of detecting the targets from
their surrounding background.

Viewpoint Variation and Occlusion: Due to the UAV platforms
having the characteristics of large freedom and mobility degrees,
UAVs might capture the targets from different aspects by flying
around the targets by 360◦. For example, UAVs can capture
the back or front side of the targets, in which case the targets
may have severe variations in the imaging process [13]. This
will become a big challenge if the methods do not have the
ability for timely online learning and model updates. In addition,
partial or even full occlusion is common due to the high mobility
freedom of the UAV platform, as illustrated in [14]. However,
such attributes would temporally corrupt the target template and
may lead to detection failure and tracking drift due to model
degradation.

Limited Computation Source: For most of the UAV plat-
forms, only a single CPU could be embedded as the processing
resources due to the strict limitations in terms of its weight
and power, which greatly limits the on-board computing speed.
To this end, the intelligent algorithms should be carefully de-
signed without casting aside high efficiency in order to meet the
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Fig. 1. Schematic diagram for several typical UAV-based Earth Observation applications. The UAVs would capture and pre-process the data with the on-board
sensors firstly. Afterward, they would transmit the captured data too the ground station. The ground station would analyze the obtained data with according to the
category for different applications.

real-time requirement for on-board processing. In addition, con-
sidering of the energy-consuming applications like maneuvering
flight, the on-board algorithms also need to be light-weighted
enough to save the power supplies at best.

These issues present significant challenges in analyzing the
image and video data captured from the UAV platform. Aiming
for these challenges, many works have emerged to extract useful
information from the data, and perform different tasks of UAVs,
thus making the UAV more intelligent.

Notably, researchers have concentrated on various UAV-based
vision tasks with cutting-edge deep learning (DL) technologies.
Some studies summarize the current research on one specific
task of UAVs. However, most reviews target normal camera
objects [15], [16], [17], [18], [19], [20], while few reviews
focus on UAV-view objects [21], [22], [23]. To the best of
our knowledge, there is a lack of survey on UAV emergency
landing. Therefore, based on the practical background of the
Earth observation, we provide a unified overview of the object
detection, tracking, and semantic segmentation technologies of
images and videos captured from the UAVs. The main UAV-
based Earth observation scene can be seen in Fig. 1. First,
UAVs acquire data and preprocess the data using corresponding
sensors; second, UAVs transmit the data back to the ground
station, and the ground station performs task analysis, including
but not limited to, scene classification, target detection, target
segmentation, scene segmentation, etc. Our work highlights the
following aspects.

1) Unlike other works that only review single tasks or ob-
ject detection/tracking tasks, our work aims for the typical
applications, i.e., object detection, object tracking, and sematic
segmentation for UAV Earth observation. It should be noted that
object tracking indicates the single object tracking.

2) This article focuses on analyzing various representative
and recent algorithms thoroughly. We found that the existing
methods are mostly evaluated on a specific dataset, and a com-
prehensive benchmark is lacking.

3) We summarize the challenges in the UAV imaging process
and provide future directions, which could benefit the audience
in the UAV vision area.

The overall structure of this study is organized as follows. In
Section II, we present a brief description of UAV-based datasets
for the abovementioned applications. Section III provides a de-
tailed description of the relevant works and algorithms for these
applications. In Section IV, we discuss the potential directions
to stimulate the development of this field. Finally, Section V
concludes this article.

II. DATASET

Noting that there exist numerous aerial images and video
datasets for object detection, single object tracking and seman-
tic segmentation (e.g., DOTA [49], NWPU VHR-10 [50], and
VEDAI [51]). In this study, we will focus on reviewing the
datasets captured on the UAV platform. Illustration and featured
attributes, including the length or sequences, total representa-
tive frames, target categories, and their corresponding available
websites are shown in Tables I and II.

A. Object Detection

Okutama-Action: Okutama-Action [24] is a human action
detection dataset captured from at 45/90◦ cameras mounted at
two flexible UAV platforms in 2017. It is formed with 43 fully
annotated sequences containing 12 actions, including carrying
handshaking, drinking, and reading, with 77 365 total frames.
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TABLE I
ILLUSTRATION AND FEATURED ATTRIBUTES FOR THE EXISTING UAV-CAPTURED DATASETS IN TYPICAL EARTH-OBSERVATION APPLICATIONS

The recording UAV works at the height of 10–45 m, with a 30-fps
imaging speed and 3840 × 2160 image resolution. Okutama-
Action dataset gathers several typical challenging factors in
the action detection field, such as abrupt camera movement,
remarkable aspect ratio and scale variation, and dynamic action
transition.

VisDrone: The VisDrone dataset [25] is collected by the
AISKYYE team of the Machine Learning and Data Mining
Laboratory of Tianjin University. The image data in this dataset
are collected by different types of drones from 14 cities (both
country and urban) across China with a variety of lightening
and weather conditions (i.e., daytime, night, rainy, and foggy).
The initial construction for this dataset starts in 2018. After-
ward, several object detection and tracking challenges are host
in top-ranking computer vision conferences from then on. In
addition, the capacity and difficulty of the dataset would continue

to increase over the previous year. More specifically, in 2018, the
organizing committee provided 8599 representative frames with
ten classes of targets (i.e., pedestrian, person, car, van, bus, truck,
motor, bicycle, awning-tricycle, and tricycle). While in 2022, the
dataset supplies 400 videos, including 10 209 static pictures and
265 228 frames to fully validate the performance for participated
algorithms. It should be also noted that in VisDrone, most of
the targets are densely distributed or overlapped in 2.6 million
labeled bounding boxes. Besides that, some targets are extremely
small, which also pose great challenges for detectors to generate
suitable anchors. Some crucial factors, such as out of view and
occlusion factors are also highlighted in the ground-truth for
better and more accurate validation.

MOR-UAV: MOR-UAV [26] dataset is collected and made
public by the research team in Malaviya National Insti-
tute of Technology Jaipur in 2020. This dataset contains 30
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TABLE II
ILLUSTRATION FOR THE AVAILABLE WEBSITE SOURCES OF THE REVIEWED UAV-BASED DATASETS

UAV-captured video sequences with 10 948 frames at
different locations (e.g., highways, agricultural regions, urban
areas, and traffic intersections) with various of challenging
attributes (flexible viewpoint, altitude, abrupt drone motion,
changing lightning conditions, different weather, occlusion, and
temporal out-of-view). The authors have categorized the cap-
tured 89 783 instances into two classes, i.e., cars and heavy
vehicles. The sequences are recorded at 30 fps with the im-
age resolution varying from 1280 × 720 to 1920 × 1080 in
MOR-UAV. In addition, the moving instances are automatically
labeled using YOLO-mark tool, which would be employed for
validating target detection and recognition algorithms.

Stanford Drone: Stanford Drone [52] is a large-scale object
detection and tracking dataset, which was collected by Stanford
University in 2016. This dataset mainly collects the outdoor
scenarios for the Stanford university campus with a 4 K camera
mounted at a quad-copter at the height of approximate 80 m
above the ground. Afterward, the collected videos are processed
and generates a series of image sequences with the resolution
of 1400 × 1904. In sum, 929 499 frames with six categories are
carefully labeled in the Stanford Drone. Specifically, this dataset
cover over 19 000 targets, including 11 000 buses, 22 000 golf
carts, 33 000 skateboarders, 13 000 cars, 64 000 bicyclists, and
112 000 walking pedestrians.

UAVDT: UAVDT [34] was collected by the Chinese Academy
of Sciences in 2018, which aims to provide a unified large-scale
benchmark for multiple tasks, such as vehicle tracking and
detection. In UAVDT, 100 sequences from nearly 10 h of raw
videos are selected and processed into about 80 000 annotated

representative frames at various common scenes, including
toll stations, highways, arterial roads, intersections, squares,
and so on. About 2700 vehicles are broadly categorized into
three classes (i.e., car, truck, and bus), with 840 000 annotated
bounding boxes. Furthermore, the image resolution in UAVDT
dataset is 1080 × 540 pixels and the imaging speed is 30 fps.
Comparing to the other existing datasets, UAVDT contains up to
14 representative challenging factors in detection and tracking
(i.e., occlusion, vehicle category, camera view, flying altitude,
and weather condition).

CARPK: The Car Parking Lot dataset (CARPK) [27] is pro-
posed by the National Taiwan University, in 2017, which collects
1448 images with approximately 90 000 cars in accordance
at four different parking lots. Apart from vehicle detection,
CARPK is also the first large-scale UAV-captured dataset to
validate counting algorithms, where each vehicle target is man-
ually annotated for facilitating evaluation. As for the details for
this CARPK, the image sequences are collected by a Phantom
3 drone with the flying altitude at about 40-m high. In CARPK,
the largest target is much more bigger than 64 × 64, and the
maximum number of the targets in a single view is about 200,
which reflects the characteristic for the target (multiscale and
dense distributed) in parking counting application.

AU-AIR: AU-AIR [28] is a multimodal UAV object detection
dataset, organized by the Department of Engineering, Aarhus
University, in 2020. Different from the other UAV-collected
dataset, AU-AIR not only provides the visual data but also
supplies the other necessary modal information (i.e., the current
altitude, velocity, GPS, time, and IMU). It has 32 823 labeled
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frames, at the size of 1920 × 1080 pixels. AU-AIR collects
132 034 object instances with eight object categories (namely,
pedestrian, trailer, bike, motorbike, car, bus, truck, and van)
related to traffic surveillance in various of weather and lightening
circumstances.

UVSD: UVSD [29] is collected and formed by Shandong
University with a DJI matrice 200 platform in a variety of
locations and altitudes in 2020. This dataset is made up of
5874 images with their resolution varies from 5280 × 2970 to
960 × 540 pixels. In addition, the vehicle instances in UVSD
are densely distributed with more than 150 vehicles per image.
To this end, UVSD could also be employed for the validation for
other task, such as vehicle counting. Furthermore, UVSD con-
tains up to 98 600 high-quality annotations with different types,
including horizontal bounding-box, oriented bounding-box, as
well as instance-level semantic annotations.

DroneVehicle: In order to overcome the low light conditions
in UAV visual tasks, DroneVehicle dataset [30] collects 15 532
RGB-Thermal image pairs and 441 642 instances with their
resolution at 840 × 712 pixels. The dataset mainly focuses on
the urban field covering roads, parking lots, residential fields,
highways, and so on. In order to validate the performance for
vehicle detection and counting approaches, the UAV platform
collects the image sequences from day to night, with large-scale
illumination variation. The authors divide the vehicles into five
categories, but the number for each class is somehow unbalanced
according to the statistical counting in the original article.

BIRDSAI: BIRDSAI [31] (pronounced similar to bird’s eye)
is a large-scale infrared UAV object detection and tracking
dataset, organized by the Harvard University in 2020. Similar
to UAV123, BIRDSAI contains both the real aerial videos and
synthetic sequences. Specifically, 48 real infrared sequences are
collected with changing wavelength on a fixed-wing UAV in
multiple protected areas at southern Africa, while 124 synthetic
sequences are generated from Air Shepherd. The image frame
in BIRDSAI contains lots of challenging factors which may
affect stable tracking and accurate detection, such as image
rotation, target deformation, large-scale change, and aspect ratio
variation, etc. The resolution for each respective frame is fixed
at 640 × 480 pixels.

MOHR: MOHR dataset [32] is a TIR object detection bench-
mark, collected by Harbin Institute of Technology in 2020 to
extend the object detection research for large-scale variation,
arbitrary orientations, as well as irregular target deformation.
In MOHR, 90 014 object instances could be broadly classified
into five categories, namely, building, flood damage, truck, car,
and collapse. Furthermore, in order to quantitatively validate
the performance for the testing detectors, the authors manually
annotate this dataset and count the number for each class as
follow. In MOHR, there are 41 468 buildings, 25 575 cars, 12 957
trucks, 7718 flood damages, as well as 2296 collapses, with a
large-range of scale changes. It should be noted that collapses
and flood damages are first concluded as target categories in UAV
dataset. Furthermore, MOHR is collected with three types of
cameras (Nikon D800, Sonny RX1rM2, as well as DJI Phantom
4Pro) at varying flying height. In this way, 3048 aerial images
have the size of 5482 × 3078, 5192 images have the size of

7360 × 4912. While for the rest of 2390 screenshots, their
resolution is 8688 × 5792.

VSAI: VSAI dataset [33] is a dataset for object detection,
which was collected by the National University of Defense
Technology in 2022. In VSAI, 444 images are collected by
different camera angles, flight height, times, weather conditions
and illuminations. VSAI contains the bounding boxes of objects
with two shapes, i.e., oriented bounding boxes (49 712) and
arbitrary quadrilateral bounding boxes (47 519 small vehicles
and 2193 large vehicles). The resolution of these data includes
4000 × 3000, 5472 × 3648, and 4056 × 3040. In order to fur-
ther improve the generalization abilities of the object detection
methods, VSAI also annotates the occlusion rate of objects.

B. Object Tracking

DTB70: DTB70 [37] comprises 70 video sequences with
15 777 representative frames. The construction for this dataset is
led by the Hong Kong University of Science and Technology, in
2017. What is interesting, DTB70 is made up of two constitute
parts, where some of the sequences collects the outdoor scenar-
ios for the university campus with a 4 K camera mounted at a
DJI Phantom-2 drone flying at the height of approximate 120-m
high. While the other parts are supplemented from Youtube to
introduce the diversity for the data distribution. Each frames are
carefully annotated with horizontal bounding box same as some
other UAV datasets, and the resolution for the respective video
frame is 1280 × 720.

VisDrone: In addition to the object detection, VisDrone
dataset also has the challenge sequences for object tracking.
VisDrone 2018 single-object tracking task dataset contains 132
sequences with about 106 354 frames. Based on these data, Vis-
Drone2019 provides 167 challenging sequences with 188 998
frames in total. Furthermore, VisDrone2020 provides 192 chal-
lenging sequences with 221 920 frames in total.

UAV123: UAV123 [38] is collected and proposed by KAUST
(King Abdullah University of Science and Technology), in 2016,
which involves 123 sequences and over 110 000 representative
images from an aerial viewpoint. UAV123 is made up of three
parts, including a professional DJI UAV, a tiny UAV with low
cost, and a self-designed UAV simulator. Therefore, the reso-
lution for the respective frame varies due to the difference for
the captured platform. Aiming at supplement the gap for aerial
object tracking, each frame is carefully annotated by the authors
with horizontal bounding boxes and its corresponding attributes
(i.e., occlusion, camera motion, illumination variation, aspect
ratio change). In addition, the flying circumstance for these UAV
platforms varies a lot (i.e., weather condition, flying altitude,
scenarios), in order to enhance the variety and challenges for
this dataset.

UAV20 L: The authors select 20 long-term video sequences
in UAV123 to form up UAV20 L dataset. As a subset for
UAV123, UAV20 L has 58 670 frames in total. According to the
experimental results reported in the original article, most of the
testing trackers perform inferior in UAV20 L when compared
with their performance in UAV123. Such phenomenon could
be attributed to the absence for redetection mechanism for the
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testing trackers, which has also pointed out a direction for object
tracking field.

Anti-UAV: Anti-UAV [39] is collected by research team in the
University of Chinese Academic of Sciences using two types of
drones (DJI and Parrot) in 2021. The initial purpose for publish-
ing Anti-UAV is to pioneer an interesting research field in the
task of tracking UAV. Anti-UAV dataset comprises 318 RGB-T
video pairs containing 585.9 k annotations, where the respective
pair contains a thermal video and an RGB video. The videos
cover a variety of backgrounds (e.g., tree, cloud, building), two
light modes (visible and infrared), and two lighting conditions
(night and day) at 25 FPS.

Small90/112: Small90 [40] comprises 90 small-sized object
sequences with about 39 380 frames, in which additional chal-
lenges (e.g., low resolution and target drifting) are encompassed.
Based on Small90, Small112 [35] adds another 20 more chal-
lenging sequences. Totally, Small112 has 112 sequences with
about 55 669 frames.

UAVDark135: UAVDark135 [41] refers to the first dark track-
ing benchmark based upon UAV platform, to make up the
blank for tracking performance evaluation in dark environment.
UAVDark135 comprises 135 sequences filmed with a standard
UAV at night with 125 466 frames with manual annotation.
The total frames, mean frames, maximum frames, and min-
imum frames of the benchmark are 125 466, 929, 4571, and
216, respectively. Meanwhile, UAVDark135 contains various
scenes (e.g., lakeside, highway, street, ocean, and road) and
covers considerable objects (e.g., bikes, trucks, athletes, build-
ings, cars, and pedestrians) making it suitable for large-scale
evaluation.

HighD: Researchers in Aachen University collect 16.5 h of
measurements to form up HighD [36] dataset, which contains
110 000 vehicles with 5600 recorded lane variation and 45 000
km driving distance in total. The videos are collected using
a consumer quad-copter at the recording rate of 25 fps with
the image resolution set as 4096 × 2160. In addition, HighD
involves six different recording locations with different traffic
circumstances during sunny and windless weather from 8 A.M. to
5 P.M. Different from other datasets, HighD is organized initially
for safety assessment, but it could also be employed into the
simulation and validation for vehicle counting, traffic analysis,
and object tracking.

DarkTrack2021: DarkTrack2021 [42] covers 110 challenging
sequences with 100 K frames, which are taken with 30 FPS
at night-time in urban scenes. Similar to UAVDark135 [41],
the original purpose for constructing this dataset is to provide
a comprehensive assessment for tracking performance in ill-
lighting status. The shortest, longest, and the average length of
sequences are 92, 6579, and 913 frames, respectively. Dark-
Track2021 provides abundant scenarios of in night-time real
world with various challenges, including full-occlusion, low
resolution, motion blur, and viewpoint variation.

UAVTrack112: UAVTrack112 [43], [44] is created from im-
ages captured and annotated during the real-world tests, which
contains 112 sequences with 100 313 representative frames. The
aim of establishing this dataset is for aerial tracking. Therefore,
some cityscape scenes are also selected in this dataset. Same as

DarkTrack2021 [42], this dataset is organized and maintained
by Tongji University, China.

C. Semantic Segmentation

AVSD: AVSD [45] is designated as public by Beihang Univer-
sity, in 2020, which involves ten different sequences with total
525 pictures. 131 pictures out of all the 525 pictures are anno-
tated manually. The sequences are captured at the speed of 12
fps with their resolution fixed as 1280 × 1024. In addition, there
are six classes of targets in AVSD, namely, bare land, grassland,
forest, building, road, and vehicles. The most challenging factor
for AVSD is the variant motion and scene complexity for the
collected video sequences.

UAVid: UAVid dataset [46] is jointly constructed by Univer-
sity of Twente and Wuhan University, in 2018, including 30
video sequences with the image resolution fixed as 4 K. In this
dataset, 300 pictures are densely labeled with eight classes (i.e.,
background clutters, moving cars, humans, low vegetation, trees,
static cars, roads, and buildings) for the urban scene understand-
ing task. Noting that the authors also propose an in-house video
labeling tool to automatically annotate the sequences in UAVid.

AeroScapes: The AeroScapes aerial semantic segmentation
benchmark [47], was designed and organized by Carnegie Mel-
lon University, in 2018. The imaging altitude for the commercial
drone varies from 5-m high to 50-m high when constructing
this dataset. According to the original article, AerosScapes is
made up of 3269 pictures for 11 object classes with large-scale
variation, viewpoint change, as well as scenarios composition.

ManipalUAVid: ManipalUAVid [48] is constructed and made
publicly available by Manipal Institute of Technology, in 2019,
which comprises 667 frames with four classes: road, construc-
tion, greenery, and water bodies. They are captured in six lo-
cations, such as the library, canteen, and hostel, with an image
resolution of 1280× 720. The presentation for ManupalUAVid
greatly complements the gap in the direction of semantic seg-
mentation using UAV platform.

III. METHODS

Taking the emergency landing of UAVs as the application
background, this section presents a brief overview of methods
for object detection, object tracking, and semantic segmentation
of the UAV images and videos.

A. Object Detection

Recent advancements in deep learning technologies create
large opportunities to study object detection in a previously
inaccessible way. Existing object detection methods can usually
be divided into two types: 1) two-stage detectors, where one
model is adopted for the extraction of object region proposals and
another model is adopted for classifying and refining the object
localization, including fast R-CNN [53], faster R-CNN [54],
cascade RCNN [55], etc. 2) One-stage detectors refer to models
skipping the region proposal stage of the two-stage models and
implementing detection over a dense sampling of locations,
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including the YOLOv1 [56], YOLOv2 [57], SSD [58], Reti-
naNet [59], FCOS [60], etc. In general, the two-stage detectors
achieve higher object localization and recognition accuracy,
while the one-stage detectors are characterized by higher in-
ference speed. Next, we introduce the detecting methods for
the UAV environment in detail. Mittal et al. [21] reviewed the
low-altitude UAV object detection based on deep learning. They
proposed that low-altitude UAV-based object detection has more
challenges compared with standard images, such as large-scale
changes, densely distributed objects, arbitrary orientations, ob-
ject relative motion, detection for small objects, class imbalance,
and large-scale changes. In the following, we mainly review
the representative deep learning-based UAV object detection
methods [61], [62], [63], [64] with detectors at one stage and
two stages.

One-stage Detector: To mitigate the real-time scene pars-
ing challenges, Zhang et al. [65] developed the SlimYOLOv3
model to be capable of learning efficient deep object detectors
via channel pruning of convolutional layers. For the problem
of small object detection, Liang et al. [66] proposed a fea-
ture fusion and scaling-based single shot detector (FS-SSD),
which incorporates the spatial object relationships into object
redetection. To tackle the small objects in UAV images, Liu
et al. [67] proposed a multiscale feature fusion algorithm, termed
as dilated-attention-feature fusion SSD (D-A-FS SSD), with the
combination of dilated convolution and attention mechanism.
Liu et al. [68] developed UAV-YOLO for detecting small objects
in UAV by enlarging the receptive field. To tackle the challenges
of large-scale change and real-time problems, Li et al. [69]
proposed the DSYolov3 model by adding multiple scale-aware
decision discrimination networks, which involves a channel
attention model and a sparsity-based channel prunning based
on the YOLOv3 model.

Two-/Multistage Detector: To increase the resolution of ob-
jects in UAV images, Soleimani et al. [70] proposed a “yes or no”
question answering framework with two steps for finding partic-
ular individuals conducting one or several actions within aerial
pictures. For the detection of multioriented vehicles within aerial
images and videos, Li et al. [71] developed a rotatable region-
based residual network (R3-Net). To tackle the small-sized
pedestrian problems, Xie et al. [72] proposed a context-aware
pedestrian detection approach, i.e., deconvolution integrated
faster R-CNN (DIF R-CNN), to integrate the deconvolutional
module into DIF R-CNN for acquiring additional context infor-
mation. Yang et al. [73] developed a clustered detection (Clus-
Det) network to unify the detection and clustering of the object
within an end-to-end framework, covering a dedicated detection
network (DetecNet), a scale estimation subnetwork (ScaleNet),
as well as a cluster proposal subnetwork (CPNet). To solve the 1)
large object size variation and 2) nonuniform object distribution
problems, Li et al. [74] proposed a density-map-guided object
detection network (DMNet), which involves a density map
generation module, an image cropping module and an object
detector. Liu et al. [75] proposed a high-resolution detection
network (HRDNet) to take multiple resolutions with multidepth
backbones as inputs. HRDNet involves a multiscale feature

pyramid network (MS-FPN) and multidepth image pyramid
network (MD-IPN) to optimize the detection of small objects and
keep the performance of large-scale and middle-scale objects.
Wu et al. [76] developed a dubbed nuisance disentangled feature
transform (NDFT), which utilizes free meta-data with relevant
UAV images to learn domain-robust features via an adversarial
training framework.

B. Object Tracking

Object tracking can fall into two types: 1) generative tracking
and 2) discriminative tracking. Generative tracking methods,
such as Meanshift, Camshift, optical flow method, and particle
filter, are capable of building a target model to extract target
features and perform similar feature searches within subse-
quent frames. The discriminative model reveals that the target
model and background information are both considered in the
training process [77], [78]. The discriminative model acquires
the target location in the current frame by comparing the dif-
ferences between the background information and the target
model. The discriminative model primarily has two directions:
one is DCF-based methods, including MOSSE [79], CSK [80],
KCF [81], and SAMF [82]; another is DL-based methods, such
as MDNet [83], TCNN [84], and Siamese network [85]. Next,
we review the representative discriminative tracker models for
UAV object tracking [86], [87].

DCF-Based Tracker: Huang et al. [88] developed an aber-
rance repressed correlation filter (ARCF) to repress the aber-
rances in UAV object detection. By restricting the alteration
rate in response maps generated at the detection phase, the
ARCF tracker is capable of suppressing aberrances and exhibit-
ing robustness and accuracy in tracking objects. Ye et al. [89]
developed a multiregularized correlation filter (MRCF) through
the regularization of the reliability of channels and the devi-
ation of responses. The MRCF tracker can lead to adaptive
channel weight distributions and smooth response changes si-
multaneously, which can effectively adapt to object appearance
changes and enhance discriminability. In order to tackle the
internal and external interference, Han proposed a state-aware
anti-drift tracker (SAT) [90] by jointly learning the feature of
the target and its surrounding patches. Afterward, Han et al. and
Yuan et al. [91], [92] proposed several spatial-temporal context-
aware tracking algorithms in accordance with DCF. Specifically,
these models can learn a spatial-temporal context weight so
that the target and background can be precisely distinguished
under the UAV-tracking conditions. Furthermore, considering
the aerial view and the small object scale under UAV-tracking
scenarios, both of these DCF-based trackers incorporate the
spatial context information to reduce background interference.
Li et al. [93] proposed a spatially local response map change as
spatial regularization, capable of learning spatio-temporal regu-
larization terms online adaptively and automatically. Targeting
the UAV tracking at night, Ye et al. [42] proposed a spatial-
channel transformer-based low-light enhancer (SCT), which is
trained based on the inspiration of a new task. Specifically, they
developed a novel spatial-channel attention module for modeling
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information worldwide and retaining local context. During the
enhancement process, SCT simultaneously denoises and illumi-
nates nighttime images based on a nonlinear curve projection.
Fu et al. [94] proposed a novel tracker learned by dynamic re-
gression with automatic distractor repression (DR-Track), where
the regression label is controlled dynamically for repressing
distractors indicated as the local maximums. Yang et al. [95]
transformed the large-scale least-squares problem in the spatial
domain into several small-scale problems with constraints in the
Fourier domain, using the correlation filter method to solve the
real-time problems in UAV tracking.

DL-Based Tracker: The emergence of deep learning has
brought a significant leap forward in visual object tracking filed,
especially for the out-door scenes. Zhang et al. [96] proposed a
coarse-to-fine deep scheme for tackling the ratio change problem
in UAV tracking. First, the coarse-tracker generates an initial
estimation of the target object, and then a sequence of actions
is learned for fine-tuning the four boundaries of the bounding
box. Jiang et al. [39] proposed a dual-flow semantic consistency
(DFSC) method for UAV tracking. Under the modulation by
the semantic flow across video sequences, the tracker can learn
more robust class-level semantic information and obtain more
discriminative instance-level features. To tackle the multiobjects
tracking problem in UAV videos, Yu et al. [97] proposed a
Siamese network to estimate global motion information in UAV
video, which leverages the conditional generative adversarial
networks (GAN) to produce the final motion prediction. Han
et al. [12] combined the efficient DCF-based tracker with the
precise DL model to eliminate the accumulating drift for the
vehicle tracking. To be specific, the prediction for DCF tracker
is incorporated as the input for a boundary regressing network,
which are designed to correct the target’s boundary, aiming at
achieving a long-term tracking. Siamese models are employed to
verify hand signature first [98], [99], and are gradually extended
to object tracking task. Thanks to the powerful feature repre-
sentation capability for CNNs, Siamese models present a great
potential, as concluded in relevant surveys [100], [101], [102],
[103], [104]. Although DL-based trackers could accomplish
higher performance, it still face the difficulties in deploying
efficient GPUs due to the limited size and computation resource
on UAV platform. After all, the interference time for DL-based
algorithms is relatively long, which could not meet the real-time
standard for aerial tracking. Fu et al. [23] reviewed the research
progress of Siamese trackers [105] and the development for
high-performance embedded devices [106], pointed out a po-
tential direction for Siamese UAV tracking.

C. Semantic Segmentation

Semantic segmentation aims to associate a label or category
with each pixel in an image and identify collections of pixels that
constitute different types [107], [108], [109]. There are two main
types of semantic segmentation research: 1) the probabilistic
graph model, such as [45] and 2) the DL-based methods [110]
that have emerged over the past few years.

The probabilistic graph model, such as Markov random fields
(MRF) and conditional random fields (CRF), establishes a

probabilistic model with a graph to express the conditional
dependence structure between random variables. It can model
the joint probability distribution of the related image entities
to perform semantic segmentation. At the same time, the rapid
development of deep learning in computer vision also provides
a basis for its application in remote sensing imagery [111]. The
progress of the convolutional neural network in the pixel-by-
pixel classification of images is based on massive data, such as
Pascal VOC [112] and MS-COCO, in daily scenes. The remote
sensing images are different from the daily scene ones with
the characteristics of high spatial resolution, complex scenes,
and numerous targets. Since then, more and more research has
focused on applying CNNs to various remote sensing tasks. In
the following, we mainly review the semantic segmentation of
UAV images [86], [87] with a probabilistic graph model and
DL-based methods.

Probabilistic Model: Yao et al. [113] constructed a triple-
multipyramid structure, which combines the multiresolution,
multiregion adjacency graph (RAG), and multisemantic ele-
ments. Kong et al. [114] exploited the geographical information
of the region of interest in the form of a digital surface model
(DSM) for urban UAV images semantic segmentation, which
combines the visual features, DSM information, and a multiscale
strategy with attention to improve the segmenting results.

DL-based Model: Sherrah et al. [110] proposed a deep fully
convolution networks (FCN) without downsampling to obviate
the need for deconvolution or interpolation. To more effec-
tively exploit image features, they fine-tune the pretrained CNN
on remote sensing data with a hybrid network. Kampffmeyer
et al. [115] targeted the class imbalance problem for small
objects. They use recent uncertainty measurement advances
in CNNs and assess their qualitative and quantitative quality
in a remote sensing context. Specifically, they adopt differ-
ent deep architectures to cover the patch-based and so-called
pixel-to-pixel methods and their integration for semantic seg-
mentation. Maggiori et al. [116] derived a CNN framework
adapted to the semantic segmentation problem, which can learn
features at different resolutions and learn how to combine the
above features. Girisha et al. [117] created a novel semantic
segmentation dataset annotated manually. Moreover, they ex-
plore the performance of semantic segmentation algorithms for
aerial videos achieved with the FCN and U-net architectures.
Girisha et al. [118] proposed an enhanced encoder–decoder-
based CNN architecture (UVid-Net) for UAV video semantic
segmentation. The encoder can embed temporal information in
terms of temporally consistent labeling. The decoder introduces
the feature-refiner module to improve the location of the class
labels.

Besides the semantic segmentation of images, video seg-
mentation aims to divide pixels with consistent appearance
and motion in video frames into continuous spatio-temporal
communities. Video segmentation can be brought into remote
sensing applications as a preprocessing module for further high-
level applications. However, research on remote sensing video
segmentation is extremely rare. Cheng et al. [119] developed a
video segmentation algorithm by an expert mixture for aerial
surveillance video. They employ trainable sequence maximum
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posterior probability for supervised image segmentation algo-
rithm, mean-shift unsupervised image segmentation algorithm,
and moving object detection algorithm. With the domain knowl-
edge of aerial video surveillance, the outputs of the above three
experts can be effectively combined to generate the final seg-
mentation result. Teutsch assessed various object segmentation
methods according to machine learning [120], blob extraction,
and contour extraction. They proposed a local sliding window
method with an AdaBoost classifier and integrated channel
features. Wang proposed the S-MRF approach [45], which is
a principled combination of superpixel labeling priors and the
Markov random field for UAV semantic segmentation. Specifi-
cally, S-MRF utilizes the UAV metadata for motion estimation,
followed by the superpixel labeling prior and MRF optimization.

IV. EVALUATION METRICS

In addition, we need the evaluation metrics to quantitatively
demonstrate the effectiveness of the object detection, object
tracking, and semantic segmentation methods. In the following,
we introduce some of the most commonly used evaluation
metrics in these tasks.

A. Object Detection

We can measure the object detection methods from three
aspects: 1) localization accuracy, 2) classification accuracy, and
3) efficiency.

Localization Accuracy: IoU is the most commonly used met-
rics, which calculates the ratio of the intersection and union of
two sets of true and predicted values, generally represented as

IoU =
TP

FP + FN + TP
, (1)

where TP , FP , TN , and FN denote true positive, false posi-
tive, true negative, and false negative, respectively.

Classification Accuracy: There are a lot of metrics such as
Accuracy, Confusion Matrix, Precision, Recall, and AP.

Accuracy is defined as the correct predicted samples divided
by the total samples

Accuracy =
TP + TN

FP + FN + TP + TN
. (2)

Precision is defined as the ratio of the true positive samples
in the data predicted as positive samples

Precision =
TP

FP + TP
. (3)

Recall always accompanies Accuracy, which calculate the
ratio between the predicted positive samples and total positive
samples

Recall =
TP

TP + FN
. (4)

Usually, the Precision–Recall curve is used in the object
detection task to show the tradeoff between precision and recall
of the classification.

Average precision (AP) and mean average precision (mAP)
are another two important metrics in object detection algorithms.

AP is the area under the Precision–Recall curve. mAP is the
average of multiple class APs. For both AP and mAP, the higher,
the better.

F1-score is the harmonic mean of precision and recall, which
is calculated as follows:

F1 =
2TP

2TP + FP + FN
. (5)

Receiver operating characteristic (ROC) is another common
used metric, in which x-axis and y-axis represent FPR and TPR,
respectively. When the TPR is larger but the FPR is smaller, the
classification result is better.

Efficiency: FPS is always used to measure how many images
are processed per second. The larger, the faster. Also, some
works also measure the memory usage during the running time.

B. Object Tracking

Generally, researchers employ one-pass-evaluation (OPE)
methodology [121], [122] to validate the accuracy and robust-
ness for SOT algorithms. Each comparison trackers are initial-
ized with the target’s state (location and scale) given at the first
frame of the video. Afterward, the tracking result is recorded
for each subsequent frame no matter the tracker is located on
the target or not. Based upon the OPE manner, two metrics
(precision and success rate) are incorporated to evaluate the
performance of comparison methods.

Precision Rate: Precision rate illustrates the percentage of the
frames whose center location error (CLE) are within the given
threshold between the predicted center for the candidate tracker
Cpr with the one for the annotated bounding-boxCbb. Generally,
20 pixel is set as the threshold to determine whether the tracker
is drift in each frame. However, for some specific scenarios, the
threshold may be adjusted according to the target size. Since
the precision rate varies across different videos, researchers
generally average the precision score for all the sequences to
obtain a comprehensive evaluation for the participated tracking
algorithm on a certain dataset. It should be also noted that the
precision metric can be easily affected by the image resolution
and the bounding box scale, the normalized precision metric
is also employed for performance evaluation in some literature
by normalized the center location error over the scale for the
bounding box

CLE = ||Cbb − Cpr||. (6)

Success Rate: Success Rate is based upon the overlap ratio
OP , which is defined as the intersection over union for the area
of the annotated bounding box Abb and the predicted one for
candidate tracker Apr. The success plot shows the percentage
of the frames, where the overlap ratio is larger than a predefined
threshold. In this way, we could obtain a continuous curve by
linking the success rate under different threshold and the area
under the curve (AUC) could be served as the second measure
metric to rank the trackers

OP =
Apr ∩Abb

Apr ∪Abb
. (7)
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C. Sematic Segmentation

Pixel Accuracy (PA): PA represents the ratio of correct pre-
dictions for all pixel classes to the total number of pixels

PA =

∑k
i=0 pii∑k

i=0

∑k
j=0 pij

(8)

where (k + 1) is the total categories with k foreground cate-
gories and 1 background category. pij represents that the pixel
of class i is predicted to be class j. When i = j, the prediction
is correct, otherwise the prediction is wrong.

Mean Pixel Accuracy (MPA): Different from PA, MPA calcu-
lates the ratio of correct predictions to the total number of pixels
in that category, then average the results for all categories

MPA =
1

k + 1

k∑

i=0

pii∑k
j=0 pij

. (9)

Mean Intersection over Union (MIoU): In semantic segmen-
tation, MIoU can be represented as the mean of the IoU among
all categories

MIoU =
1

k + 1

k∑

i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

. (10)

Frequency Weighted Intersection over Union (FWIoU):
FWIoU is an improved version of MIoU. The difference between
FWIoU and MIoU is the weighting way. MIoU applies the
same weight 1

k+1 to each category, while FWIoU uses the ratio
between the number of each category and the total number as
different weights for different categories

MIoU =
1

∑k
i=0

∑k
j=0 pij

k∑

i=0

∑k
j=0 pijpii∑k

j=0 pij +
∑k

j=0 pji − pii
.

(11)

V. UPCOMING DOMAINS AND FUTURE OPPORTUNITIES

This work reviews several popular UAV task-related datasets
and methods for Earth observation. This section summarizes
some potential future directions for the UAV vision area.

First, the recent work lacks systematic validation. Most UAV
vision tasks only rely on a certain or few datasets to validate
the performance of their methods. They did not evaluate their
methods on extensive datasets and for the various characteristics
of the UAVs. Therefore, establishing a benchmark for evaluating
different methods on extensive datasets for various characteris-
tics of UAVs is a very useful direction in the future.

Second, real time is a significant problem in the UAV vision
area. In recent years, deep learning has become a popular method
for dealing with visual tasks because of its powerful recognition
ability. However, it always requires a lot of computing resources.
On the other hand, small UAVs cannot load with large devices
such as GPUs. Therefore, how to perform real-time visual tasks
on small devices is an urgent problem to be solved. Current
researches focus on how to do vision tasks on the data captured
by UAVs, and few works consider real-time problems.

Third, the technological advances in the UAV visual field are
extending our capability at a breakneck speed, enabling many

other data modalities of individual image data to be taken. For
instance, recent development in imaging provides the opportu-
nity to analyze infrared or other data modalities from different
sensor devices, holding great promises to further transform the
UAV visual field. Given the different modalities of such data
(e.g., visible light, infrared), we can merge them before applying
them to our tasks and anticipate UAV visual techniques to be
readily adopted for the above data types when they become more
available.

VI. CONCLUSION

The explosion of UAVs over the past few years has resulted
in a resurgence in designing and employing the corresponding
vision techniques for analyzing UAV data. In this study, we re-
visited and summarized the datasets for object detection, object
tracking, and semantic segmentation methods for UAVs in the
last decade. Subsequently, we reviewed the recent literature for
their applications, summarized the achievements, and identified
the missing aspects. Finally, we provide several research di-
rections and practical considerations that we hope will spark
future research in the application of the UAV vision era, such as
the comprehensive study, real-time problem, and multimodality
information.

REFERENCES

[1] N. Audebert, B. Le Saux, and S. Lefevre, “How useful is region-based
classification of remote sensing images in a deep learning framework?”
in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2016, pp. 5091–5094.

[2] D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, and J. Chanussot, “Graph
convolutional networks for hyperspectral image classification,” IEEE
Trans. Geosci. Remote Sens., vol. 59, no. 7, pp. 5966–5978, Jul. 2021.

[3] D. Honget al., “More diverse means better: Multimodal deep learning
meets remote-sensing imagery classification,” IEEE Trans. Geosci. Re-
mote Sens., vol. 59, no. 5, pp. 4340–4354, May 2021.

[4] D. Hong, N. Yokoya, G.-S. Xia, J. Chanussot, and X. X. Zhu, “X-
ModalNet: A semi-supervised deep cross-modal network for classifi-
cation of remote sensing data,” ISPRS J. Photogrammetry Remote Sens.,
vol. 167, pp. 12–23, 2020.

[5] D. Honget al., “Spectralformer: Rethinking hyperspectral image classi-
fication with transformers,” IEEE Trans. Geosci. Remote Sens., vol. 60,
pp. 1–15, 2021, Art. no. 5518615.

[6] W. Wang, Y. Han, C. Deng, and Z. Li, “Hyperspectral image classification
via deep structure dictionary learning,” Remote Sens., vol. 14, no. 9, 2022,
Art. no. 2266.

[7] H. Shi, Z. Fang, Y. Wang, and L. Chen, “An adaptive sample assignment
strategy based on feature enhancement for ship detection in SAR images,”
Remote Sens., vol. 14, no. 9, 2022, Art. no. 2238.

[8] H. Shi, Q. Sheng, Y. Wang, B. Yue, and L. Chen, “Dynamic range com-
pression self-adaption method for SAR image based on deep learning,”
Remote Sens., vol. 14, no. 10, 2022, Art. no. 2338.

[9] C. Deng, D. Jing, Y. Han, S. Wang, and H. Wang, “FAR-Net: Fast anchor
refining for arbitrary-oriented object detection,” IEEE Geosci. Remote
Sens. Lett., vol. 19, pp. 1–5, 2022, Art. no. 6505805.

[10] L. Tang, W. Tang, X. Qu, Y. Han, W. Wang, and B. Zhao, “A scale-
aware pyramid network for multi-scale object detection in SAR images,”
Remote Sens., vol. 14, no. 4, 2022, Art. no. 973.

[11] B. Zhao, Y. Han, H. Wang, L. Tang, and T. Wang, “Robust shadow
tracking for video SAR,” IEEE Geosci. Remote Sens. Lett., vol. 18, no. 5,
pp. 821–825, May 2021.

[12] Y. Han, H. Wang, Z. Zhang, and W. Wang, “Boundary-aware vehicle
tracking upon UAV,” Electron. Lett., vol. 56, no. 17, pp. 873–876, 2020.

[13] B. Zhao, H. Wang, L. Tang, and Y. Han, “Towards long-term UAV object
tracking via effective feature matching,” Electron. Lett., 2020.

[14] C. Deng, S. He, Y. Han, and B. Zhao, “Learning dynamic spatial-temporal
regularization for UAV object tracking,” IEEE Signal Process. Lett.,
vol. 28, pp. 1230–1234, 2021.



9664 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

[15] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: A survey,”
2019, arXiv:1905.05055.

[16] L. Jiaoet al., “A survey of deep learning-based object detection,” IEEE
Access, vol. 7, pp. 128837–128868, 2019.

[17] X. Wu, D. Sahoo, and S. C. Hoi, “Recent advances in deep learning for
object detection,” Neurocomputing, vol. 396, pp. 39–64, 2020.

[18] K. Oksuz, B. C. Cam, S. Kalkan, and E. Akbas, “Imbalance problems
in object detection: A review,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 43, no. 10, pp. 3388–3415, Oct. 2021.

[19] W. Liet al., “Deep domain adaptive object detection: A survey,” in Proc.
IEEE Symp. Ser. Comput. Intell., 2020, pp. 1808–1813.

[20] J. Chen, Q. Wu, D. Liu, and T. Xu, “Foreground-background imbalance
problem in deep object detectors: A review,” in Proc. IEEE Conf. Multi-
media Inf. Process. Retrieval, 2020, pp. 285–290.

[21] P. Mittal, R. Singh, and A. Sharma, “Deep learning-based object detection
in low-altitude UAV datasets: A survey,” Image Vis. Comput., vol. 104,
2020, Art. no. 104046.

[22] X. Wu, W. Li, D. Hong, R. Tao, and Q. Du, “Deep learning for unmanned
aerial vehicle-based object detection and tracking: A survey,” IEEE
Geosci. Remote Sens. Mag., vol. 10, no. 1, pp. 91–124, Mar. 2022.

[23] C. Fu, K. Lu, G. Zheng, J. Ye, Z. Cao, and B. Li, “Siamese object tracking
for unmanned aerial vehicle: A review and comprehensive analysis,”
2022, arXiv:2205.04281v2.

[24] M. Barekatainet al., “Okutama-action: An aerial view video dataset for
concurrent human action detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. Workshops, 2017, pp. 28–35.

[25] P. Zhuet al., “Detection and tracking meet drones challenge,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 44, no. 11, pp. 7380–7399,
Nov. 2021.

[26] M. Mandal, L. K. Kumar, and S. K. Vipparthi, “MOR-UAV: A benchmark
dataset and baselines for moving object recognition in UAV videos,” in
Proc. 28th ACM Int. Conf. Multimedia, 2020, pp. 2626–2635.

[27] M.-R. Hsieh, Y.-L. Lin, and W. H. Hsu, “Drone-based object counting
by spatially regularized regional proposal network,” in Proc. IEEE Int.
Conf. Comput. Vis., 2017, pp. 4145–4153.

[28] I. Bozcan and E. Kayacan, “Au-air: A multi-modal unmanned aerial
vehicle dataset for low altitude traffic surveillance,” in Proc. IEEE Int.
Conf. Robot. Automat., 2020, pp. 8504–8510.

[29] W. Zhang, C. Liu, F. Chang, and Y. Song, “Multi-scale and occlusion
aware network for vehicle detection and segmentation on UAV aerial
images,” Remote Sens., vol. 12, no. 11, 2020, Art. no. 1760.

[30] Y. Sun, B. Cao, P. Zhu, and Q. Hu, “Drone-based RGB-infrared cross-
modality vehicle detection via uncertainty-aware learning,” IEEE Trans.
Circuits Syst. Video Technol., vol. 32, no. 10, pp. 6700–6713, 2021.

[31] E. Bondiet al., “BIRDSAI: A dataset for detection and tracking in aerial
thermal infrared videos,” in Proc. IEEE/CVF Winter Conf. Appl. Comput.
Vis., 2020, pp. 1736–1745.

[32] H. Zhang, M. Sun, Q. Li, L. Liu, M. Liu, and Y. Ji, “An empirical
study of multi-scale object detection in high resolution UAV images,”
Neurocomputing, vol. 421, pp. 173–182, 2021.

[33] J. Wang, X. Teng, Z. Li, Q. Yu, Y. Bian, and J. Wei, “VSAI: A multi-view
dataset for vehicle detection in complex scenarios using aerial images,”
Drones, vol. 6, no. 7, 2022, Art. no. 161.

[34] D. Duet al., “The unmanned aerial vehicle benchmark: Object detection
and tracking,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 370–386.

[35] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese, “Learning social
etiquette: Human trajectory understanding in crowded scenes,” in Proc.
Eur. Conf. Comput. Vis., 2016, pp. 549–565.

[36] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highd dataset:
A drone dataset of naturalistic vehicle trajectories on German highways
for validation of highly automated driving systems,” in Proc. 21st Int.
Conf. Intell. Transp. Syst., 2018, pp. 2118–2125.

[37] S. Li and D.-Y. Yeung, “Visual object tracking for unmanned aerial
vehicles: A benchmark and new motion models,” in Proc. AAAI Conf.
Artif. Intell., 2017, pp. 4140–4146.

[38] M. Mueller, N. Smith, and B. Ghanem, “A benchmark and simulator for
UAV tracking,” in Proc. Eur. Conf. Comput. Vis., 2016, pp. 445–461.

[39] N. Jianget al., “Anti-UAV: A large multi-modal benchmark for UAV
tracking,” 2021, arXiv:2101.08466.

[40] C. Liuet al., “Aggregation signature for small object tracking,” IEEE
Trans. Image Process., vol. 29, pp. 1738–1747, 2020.

[41] B. Li, C. Fu, F. Ding, J. Ye, and F. Lin, “All-day object tracking for
unmanned aerial vehicle,” IEEE Trans. Mobile Comput., to be published,
doi: 10.1109/TMC.2022.3162892.

[42] J. Ye, C. Fu, Z. Cao, S. An, G. Zheng, and B. Li, “Tracker meets night:
A transformer enhancer for UAV tracking,” IEEE Robot. Autom. Lett.,
vol. 7, no. 2, pp. 3866–3873, Apr. 2022.

[43] C. Fu, Z. Cao, Y. Li, J. Ye, and C. Feng, “Siamese anchor proposal
network for high-speed aerial tracking,” in Proc. IEEE Int. Conf. Robot.
Automat., 2021, pp. 1–7.

[44] C. Fu, Z. Cao, Y. Li, J. Ye, and C. Feng, “Onboard real-time aerial tracking
with efficient Siamese anchor proposal network,” IEEE Trans. Geosci.
Remote Sens., vol. 60, 2021, Art no. 5606913.

[45] Y. Wang, W. Ding, B. Zhang, H. Li, and S. Liu, “Superpixel labeling
priors and MRF for aerial video segmentation,” IEEE Trans. Circuits
Syst. Video Technol., vol. 30, no. 8, pp. 2590–2603, Aug. 2020.

[46] Y. Lyu, G. Vosselman, G. Xia, A. Yilmaz, and M. Y. Yang, “The UAVid
dataset for video semantic segmentation,” 2018, arXiv:1810.10438.

[47] I. Nigam, C. Huang, and D. Ramanan, “Ensemble knowledge transfer for
semantic segmentation,” in Proc. IEEE Winter Conf. Appl. Comput. Vis.,
2018, pp. 1499–1508.

[48] S. Girisha, M. M. Pai, U. Verma, and R. M. Pai, “Performance analysis of
semantic segmentation algorithms for finely annotated new UAV aerial
video dataset (manipaluavid),” IEEE Access, vol. 7, pp. 136239–136253,
2019.

[49] G.-S. Xiaet al., “Dota: A large-scale dataset for object detection in aerial
images,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 3974–3983.

[50] G. Cheng, J. Han, P. Zhou, and L. Guo, “Multi-class geospatial object
detection and geographic image classification based on collection of part
detectors,” ISPRS J. Photogrammetry Remote Sens., vol. 98, pp. 119–132,
2014.

[51] S. Razakarivony and F. Jurie, “Vehicle detection in aerial imagery: A
small target detection benchmark,” J. Vis. Commun. Image Representa-
tion, vol. 34, pp. 187–203, 2016.

[52] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese, “Learning social
etiquette: Human trajectory prediction in crowded scenes,” in Proc. Eur.
Conf. Comput. Vis., 2020, pp. 549–565.

[53] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis., 2015,
pp. 1440–1448.

[54] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time
object detection with region proposal networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 91–99.

[55] Z. Cai and N. Vasconcelos, “Cascade R-CNN: Delving into high quality
object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2018, pp. 6154–6162.

[56] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2016, pp. 779–788.

[57] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 7263–7271.

[58] W. Liuet al., “SSD: Single shot multibox detector,” in Proc. Eur. Conf.
Comput. Vis., 2016, pp. 21–37.

[59] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp. 2980–2988.

[60] Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: Fully convolutional one-
stage object detection,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019,
pp. 9627–9636.

[61] C. Chenet al., “RRNet: A hybrid detector for object detection in drone-
captured images,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshops,
2019, pp. 100–108.

[62] X. Zhang, E. Izquierdo, and K. Chandramouli, “Dense and small object
detection in UAV vision based on cascade network,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. Workshops, 2019, pp. 118–126.

[63] Y. Hu, X. Wu, G. Zheng, and X. Liu, “Object detection of UAV for
anti-UAV based on improved YOLO v3,” in Proc. Chin. Control Conf.,
2019, pp. 8386–8390.

[64] J. Deng, Z. Shi, and C. Zhuo, “Energy-efficient real-time UAV object
detection on embedded platforms,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 39, no. 10, pp. 3123–3127, Oct. 2020.

[65] P. Zhang, Y. Zhong, and X. Li, “SlimYOLOv3: Narrower, faster and better
for real-time UAV applications,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis. Workshops, 2019, pp. 37–45.

[66] X. Liang, J. Zhang, L. Zhuo, Y. Li, and Q. Tian, “Small object detection in
unmanned aerial vehicle images using feature fusion and scaling-based
single shot detector with spatial context analysis,” IEEE Trans. Circuits
Syst. Video Technol., vol. 30, no. 6, pp. 1758–1770, Jun. 2019.

https://dx.doi.org/10.1109/TMC.2022.3162892


HAN et al.: COMPREHENSIVE REVIEW FOR TYPICAL APPLICATIONS BASED UPON UAV PLATFORM 9665

[67] Y. Liu, Z. Ding, Y. Cao, and M. Chang, “Multi-scale feature fusion UAV
image object detection method based on dilated convolution and attention
mechanism,” in Proc. 8th Int. Conf. Inf. Technol., IoT Smart City, 2020,
pp. 125–132.

[68] M. Liu, X. Wang, A. Zhou, X. Fu, Y. Ma, and C. Piao, “UAV-YOLO:
Small object detection on unmanned aerial vehicle perspective,” Sensors,
vol. 20, no. 8, 2020, Art. no. 2238.

[69] Z. Li, X. Liu, Y. Zhao, B. Liu, Z. Huang, and R. Hong, “A lightweight
multi-scale aggregated model for detecting aerial images captured
by UAVs,” J. Vis. Commun. Image Representation, vol. 77, 2021,
Art. no. 103058.

[70] A. Soleimani and N. M. Nasrabadi, “Convolutional neural networks
for aerial multi-label pedestrian detection,” in Proc. 21st Int. Conf. Inf.
Fusion, 2018, pp. 1005–1010.

[71] Q. Li, L. Mou, Q. Xu, Y. Zhang, and X. X. Zhu, “R3-Net: A deep network
for multi-oriented vehicle detection in aerial images and videos,” 2018,
arXiv:1808.05560.

[72] H. Xie, Y. Chen, and H. Shin, “Context-aware pedestrian detection
especially for small-sized instances with deconvolution integrated faster
RCNN (DIF R-CNN),” Appl. Intell., vol. 49, no. 3, pp. 1200–1211, 2019.

[73] F. Yang, H. Fan, P. Chu, E. Blasch, and H. Ling, “Clustered object
detection in aerial images,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.,
2019, pp. 8311–8320.

[74] C. Li, T. Yang, S. Zhu, C. Chen, and S. Guan, “Density map guided
object detection in aerial images,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. Workshops, 2020, pp. 190–191.

[75] Z. Liu, G. Gao, L. Sun, and Z. Fang, “Hrdnet: High-resolution detection
network for small objects,” in Proc. IEEE Int. Conf. Multimedia Expo.,
2021, pp. 1–6.

[76] Z. Wu, K. Suresh, P. Narayanan, H. Xu, H. Kwon, and Z. Wang, “Delving
into robust object detection from unmanned aerial vehicles: A deep nui-
sance disentanglement approach,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis., 2019, pp. 1201–1210.

[77] C. Deng, Y. Han, and B. Zhao, “High-performance visual tracking with
extreme learning machine framework,” IEEE Trans. Cybern., vol. 50,
no. 6, pp. 2781–2792, Jun. 2020.

[78] Z. Zhao, Y. Han, T. Xu, X. Li, H. Song, and J. Luo, “A reliable and real-
time tracking method with color distribution,” Sensors, vol. 17, no. 10,
2017, Art. no. 2303.

[79] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual object
tracking using adaptive correlation filters,” in Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit., 2010, pp. 2544–2550.

[80] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “Exploiting the
circulant structure of tracking-by-detection with kernels,” in Proc. Eur.
Conf. Comput. Vis., 2012, pp. 702–715.

[81] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed
tracking with kernelized correlation filters,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 3, pp. 583–596, Mar. 2014.

[82] Y. Li and J. Zhu, “A scale adaptive kernel correlation filter tracker with
feature integration,” in Proc. Eur. Conf. Comput. Vis., 2014, pp. 254–265.

[83] Z. Zhang, Y. Xie, F. Xing, M. McGough, and L. Yang, “MDNet: A seman-
tically and visually interpretable medical image diagnosis network,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 6428–6436.

[84] H. Nam, M. Baek, and B. Han, “Modeling and propagating CNNs in a
tree structure for visual tracking,” 2016, arXiv:1608.07242.

[85] Z. Zhang and H. Peng, “Deeper and wider Siamese networks for real-
time visual tracking,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2019, pp. 4591–4600.

[86] S. Zhang, L. Zhuo, H. Zhang, and J. Li, “Object tracking in unmanned
aerial vehicle videos via multifeature discrimination and instance-aware
attention network,” Remote Sens., vol. 12, no. 16, 2020, Art. no. 2646.

[87] S. Kapania, D. Saini, S. Goyal, N. Thakur, R. Jain, and P. Nagrath,
“Multi object tracking with UAVs using deep sort and YOLOv3 retinanet
detection framework,” in Proc. 1st ACM Workshop Auton. Intell. Mobile
Syst., 2020, pp. 1–6.

[88] Z. Huang, C. Fu, Y. Li, F. Lin, and P. Lu, “Learning aberrance repressed
correlation filters for real-time UAV tracking,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis., 2019, pp. 2891–2900.

[89] J. Ye, C. Fu, F. Lin, F. Ding, S. An, and G. Lu, “Multi-regularized
correlation filter for UAV tracking and self-localization,” IEEE Trans.
Ind. Electron., vol. 69, no. 6, pp. 6004–6014, Jun. 2021.

[90] Y. Han, C. Deng, B. Zhao, and D. Tao, “State-aware anti-drift object
tracking,” IEEE Trans. Image Process., vol. 28, no. 8, pp. 4075–4086,
Aug. 2019.

[91] Y. Han, C. Deng, B. Zhao, and B. Zhao, “Spatial-temporal context-
aware tracking,” IEEE Signal Process. Lett., vol. 26, no. 3, pp. 500–504,
Mar. 2019.

[92] D. Yuan, X. Chang, Z. Li, and Z. He, “Learning adaptive spatial-temporal
context-aware correlation filters for UAV tracking,” ACM Trans. Multi-
media Comput., Commun., Appl., vol. 18, no. 3, pp. 1–18, 2022.

[93] Y. Li, C. Fu, F. Ding, Z. Huang, and G. Lu, “Autotrack: Towards high-
performance visual tracking for UAV with automatic spatio-temporal
regularization,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2020, pp. 11923–11932.

[94] C. Fu, F. Ding, Y. Li, J. Jin, and C. Feng, “Learning dynamic regression
with automatic distractor repression for real-time UAV tracking,” Eng.
Appl. Artif. Intell., vol. 98, 2021, Art. no. 104116.

[95] Y. Xiaoyuan, Z. Ridong, W. Jingkai, and L. Zhengze, “Real-time ob-
ject tracking via least squares transformation in spatial and fourier
domains for unmanned aerial vehicles,” Chin. J. Aeronaut., vol. 32, no. 7,
pp. 1716–1726, 2019.

[96] W. Zhang, K. Song, X. Rong, and Y. Li, “Coarse-to-fine UAV target
tracking with deep reinforcement learning,” IEEE Trans. Autom. Sci.
Eng., vol. 16, no. 4, pp. 1522–1530, Oct. 2018.

[97] H. Yu, G. Li, L. Su, B. Zhong, H. Yao, and Q. Huang, “Conditional GAN
based individual and global motion fusion for multiple object tracking in
UAV videos,” Pattern Recognit. Lett., vol. 131, pp. 219–226, 2020.

[98] SHAH ROOPAKet al., “Signature verification using a “Siamese” time
delay neural network,” Int. J. Pattern Recognit. Artif. Intell., vol. 07, no. 4,
pp. 669–669, 1993.

[99] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature
verification using a “Siamese” time delay neural network,” in Proc. Adv.
Neural Inf. Process. Syst., 1993, pp. 737–744.

[100] S. M. Marvasti-Zadeh, C. Li, H. Ghanei-Yakhdan, and S. Kasaei, “Deep
learning for visual tracking: A comprehensive survey,” IEEE Trans. Intell.
Transp. Syst., vol. 23, no. 5, pp. 3943–3968, May 2022.

[101] M. Ondrasovic and P. Tarabek, “Siamese visual object tracking: A sur-
vey,” IEEE Access, vol. 9, pp. 110149–110172, 2021.

[102] R. Pflugfelder, “An in-depth analysis of visual tracking with Siamese
neural networks,” 2017, arXiv:1707.00569.

[103] S. Javed, M. Danelljan, F. S. Khan, M. H. Khan, M. Felsberg,
and J. Matas, “Visual object tracking with discriminative filters
and Siamese networks: A survey and outlook,” to be published,
doi: 10.1109/TPAMI.2022.3212594.

[104] L. Leal-Taixé, C. Canton-Ferrer, and K. Schindler, “Learning by tracking:
Siamese CNN for robust target association,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. Workshops, 2016, pp. 33–40.

[105] Z. Cao, C. Fu, J. Ye, B. Li, and Y. Li, “SiamAPN++: Siamese attentional
aggregation network for real-time UAV tracking,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2021, pp. 3086–3092.

[106] S. Mittal, “A survey on optimized implementation of deep learning
models on the Nvidia Jetson platform,” J. Syst. Architect., vol. 97,
pp. 428–442, 2019.

[107] H. Shi, J. Fan, Y. Wang, and L. Chen, “Dual attention feature fusion
and adaptive context for accurate segmentation of very high-resolution
remote sensing images,” Remote Sens., vol. 13, no. 18, 2021, Art. no.
3715.

[108] Y. Wang, H. Shi, S. Dong, Y. Zhuang, and L. Chen, “Dual-path
sparse hierarchical network for semantic segmentation of remote sens-
ing images,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2021,
Art. no. 8010505.

[109] T. Wei, J. Wang, W. Liu, H. Chen, and H. Shi, “Marginal center loss for
deep remote sensing image scene classification,” IEEE Geosci. Remote
Sens. Lett., vol. 17, no. 6, pp. 968–972, Jun. 2019.

[110] J. Sherrah, “Fully convolutional networks for dense semantic labelling
of high-resolution aerial imagery,” 2016, arXiv:1606.02585.

[111] C. Liuet al., “RB-Net: Training highly accurate and efficient binary neural
networks with reshaped point-wise convolution and balanced activation,”
IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 9, pp. 6414–6424,
Sep. 2022.

[112] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman,
“The pascal visual object classes (VOC) challenge,” Int. J. Comput. Vis.,
vol. 88, no. 2, pp. 303–338, 2010.

[113] H. Yao, X. Wang, L. Zhao, M. Tian, L. Gong, and B. Li, “Semantic
segmentation for remote sensing images using pyramid object-based
markov random field with dual-track information transmission,” IEEE
Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2021, Art. no. 8023105.

[114] Y. Kong, B. Zhang, B. Yan, Y. Liu, H. Leung, and X. Peng, “Affiliated
fusion conditional random field for urban UAV image semantic segmen-
tation,” Sensors, vol. 20, no. 4, 2020, Art. no. 993.

[115] M. Kampffmeyer, A.-B. Salberg, and R. Jenssen, “Semantic segmenta-
tion of small objects and modeling of uncertainty in urban remote sensing
images using deep convolutional neural networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. Workshops, 2016, pp. 1–9.

https://dx.doi.org/10.1109/TPAMI.2022.3212594


9666 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

[116] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “High-resolution
aerial image labeling with convolutional neural networks,” IEEE Trans.
Geosci. Remote Sens., vol. 55, no. 12, pp. 7092–7103, Dec. 2017.

[117] S. Girisha, M. P. MM, U. Verma, and R. M. Pai, “Semantic segmentation
of UAV aerial videos using convolutional neural networks,” in Proc. IEEE
Second Int. Conf. Artif. Intell. Knowl. Eng., 2019, pp. 21–27.

[118] S. Girisha, U. Verma, M. M. Pai, and R. M. Pai, “UVID-Net: Enhanced
semantic segmentation of UAV aerial videos by embedding temporal
information,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 14, pp. 4115–4127, 2021.

[119] H. Cheng and D. Butler, “Segmentation of aerial surveillance video using
a mixture of experts,” in Proc. Digit. Image Comput.: Techn. Appl., 2005,
pp. 66–66.

[120] M. Teutsch, W. Krüger, and J. Beyerer, “Evaluation of object segmenta-
tion to improve moving vehicle detection in aerial videos,” in Proc. IEEE
11th Int. Conf. Adv. Video Signal Based Surveill., 2014, pp. 265–270.

[121] Y. Wu, J. Lim, and M.-H. Yang, “Online object tracking: A benchmark,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2013, pp. 2411–2418.

[122] Y. Wu, J. Lim, and M. H. Yang, “Object tracking benchmark,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1834–1848,
Sep. 2015.

Yuqi Han received the B.Eng. degree in information
engineering from Beijing Institute of Technology,
Beijing, China, the B.Sc. degree in the field of Econ-
omy from National School of Development, Peking
University, Beijing, China, in 2015, and the Ph.D.
degree in information and communication engineer-
ing with the School of Information and Electronics,
Beijing Institute of Technology, Beijing, China, in
2021.

He is currently a Research Fellow with the Depart-
ment of Computer Science and Technology, Tsinghua

Univeristy, Beijing, China. His research interests include computer vision,
remote sensing and UAV.

Huaping Liu (Senior Member, IEEE) received the
Ph.D. degree in computer science and technology
from Tsinghua University, Beijing, China, in 2004.

He is currently a Tenured Associate Professor with
the Department of Computer Science and Technol-
ogy, Tsinghua University, Beijing, China. He is also
with the State Key Laboratory of Intelligent Systems
and Technology and the Beijing National Research
Center for Information Science and Technology, Bei-
jing, China. In 2020, he was recognized as a Dis-
tinguished Young Scholar by the Natural Science

Foundation of China. His research interests include robotics, dynamic systems,
and machine learning, with particular emphasis on robotic perception, learning,
and control.

Yufeng Wang (Member, IEEE) received the B.S.
degree in communication engineering from North-
western Polytechnical University, Xi’an, China, in
2015, and the Ph.D. degree in information and com-
munication system from Beihang University, Beijing,
China, in 2021.

He has been with the Institute of Unmanned Sys-
tem, Beihang University, since 2021. His research in-
terests include computer vision and machine learning.

Chunlei Liu received the B.S. degree in information
engineering from Nanjing University of Aeronautics
and Astronautics, Nanjing, China, in 2016, and the
Ph.D. degree in information and communication sys-
tem with the Department of Electrical and Informa-
tion Engineering, Beihang University, Beijing, China,
in 2022.

She is currently a Postdoc with the Children Med-
ical Research Institute, Univerisity of Sydney, Par-
ramatta, NSW, Australia. Her research interests in-
clude computer vision, machine learning, and pattern

recognition.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


