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Evaluation and Improvement of Generalization
Performance of SAR Ship Recognition Algorithms
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Abstract—As artificial intelligence continues to advance, deep
learning has greatly contributed to the advancement of ship recog-
nition using synthetic aperture radar (SAR) images. Deep learning-
based SAR ship recognition performance is largely dependent on
the sample set used. SAR ship recognition datasets published in
recent years, however, are most derived from a single SAR satellite
sensor. It needs to be evaluated and analyzed carefully whether
the model trained by a single satellite dataset can still achieve the
same accuracy with different SAR satellites. This article focuses on
the following research to address these issues. First, using multiple
SAR satellite sensors, we create a new SAR ship dataset (named
generalization performance evaluation dataset, GPED) containing
multiresolution and multipolarization data to examine the general-
ization performance of the deep learning-based SAR ship recogni-
tion method. GPED and a marine target detection dataset (MTDD)
are then used to evaluate and analyze the generalization perfor-
mance of current mainstream deep learning methods. According
to the the experiment results, the mean average accuracy of the ship
recognition model trained on GPED is generally higher than that
of MTDD, which proves that the GPED has a better generalization
performance. Furthermore, SAR ship detection datasets have more
samples than ship recognition datasets, which inspired us to use
transfer learning to transfer knowledge from ship detection to ship
recognition. In this article, a method for ship recognition based
on transfer learning that utilizes the knowledge gained from the
ship detection task is proposed. The method includes two modules:
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1) pretraining module and 2) fine-tuning module. It can apply
samples of unlabeled ship types to ship recognition, thus reducing
the number of labeled samples that are required for ship recogni-
tion. The experimental results on GPED and MTDD show that our
method can achieve good recognition performances.

Index Terms—Deep learning, generalization performance, ship
recognition, synthetic aperature radar (SAR), transfer learning.

I. INTRODUCTION

A S THE most important carrier of human maritime activi-
ties, ships play an important role in a variety of maritime

affairs, such as border control, environmental protection, traffic
monitoring, and rescue [1]. Synthetic aperture radar (SAR) is
an all-time and all-weather microwave imaging radar that is
widely employed for ship detection and recognition. In addition,
the rapid development of satellite technology has caused an
increase in the number of SAR satellites. With the launches of
TerraSAR-X, Sentinel-1, GF-3 (Gaofen-3), and other satellites,
SAR has gradually become the primary data source for ship
detection and recognition [2].

Recently, many ship detection methods, such as the constant
false alarm rate (CFAR) method, have been developed [3]. This
algorithm determines the discrimination threshold between the
background and the target by setting a constant false alarm rate
to achieve fast target detection. Because the detection accuracy
of the CFAR method is dependent on the sea clutter model [4],
several improved CFAR algorithms, including the smallest of
CFAR (SO-CFAR) [5], variability Index CFAR (VI-CFAR) [6],
ordered-statistic CFAR (OS-CFAR) [7], and trimmed-mean
CFAR (TM-CFAR) [8], have been developed. In addition, ship
detection methods based on ship features are widely utilized.
Common ship features include geometric features [9], [10], [11],
[12], orientation features [13], structural features [14], [15],
polarization features [16], [17], [18], [19], [20], and scattering
features [21], [22], [23]. Recently, Zhu et al. [24] proposed a
projection shape template-based ship recognition method. An
efficient feature extraction and classification algorithm based on
a visual saliency model is proposed in [25]. Amrani et al. [26]
extracted the histogram of oriented gradients (HOG) feature of
the target and obtained new discriminant features based on bag
of visual words (BOVW) model and discriminant correlation
analysis (DCA). The method in [27] employs the BOVW and
support vector machine (SVM) for SAR target classification.

With the development of artificial intelligence in recent years,
deep learning methods have become prevalent in ship detection,
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TABLE I
DETAILED DESCRIPTIONS OF FIVE OPEN SAR SHIP DETECTION DATASETS

which somewhat helps alleviate the shortcomings of traditional
methods. In addition, several object detection methods have
been developed through convolutional neural networks (CNNs),
including the faster region CNN (faster R-CNN) [28], single shot
multibox detector (SSD) [29], you only look once (YOLO) [30],
and RetinaNet [31]. In addition to the above anchor-based meth-
ods, anchor-free methods are also widely used. CornerNet [32]
and CenterNet [33] are new methods based on key point detec-
tion. The former focuses on the corner points of the bounding
box and the latter focuses on the center point of the bounding
box. FCOS [34] and Foveabox [35] are also classic anchor-free
methods, which predict the position of target bounding box pixel
by pixel. Moreover, researchers proposed target detection algo-
rithms based on attention mechanism to improve the detection
accuracy of small targets, including DETR [36], ViT [37], etc.

Deep learning-based algorithms rely on a large number of
training samples. Therefore, several SAR ship detection datasets
(as shown in Table I) have been presented, which further pro-
motes the development of SAR ship detection methods that are
based on deep learning. For example, Li et al. [38] produced an
SAR ship detection dataset (SSDD) that contains 1160 SAR im-
ages. Wang et al. [39] produced the SAR-ship-dataset, which is a
larger-scale SAR ship detection dataset for complex scenes that
consist of 43 819 ship slices. Sun et al. [40] published an SAR
ship detection dataset (AIR-SARShip-1.0) for high resolution,
which consists of 31 GF-3 images. Wei et al. [41] constructed
a high-resolution SAR ship detection dataset (HRSID) with
5604 images and 16 951 ship slices. Zhang et al. [42] released
a large-scale SAR ship detection dataset (LS-SSDD-v1.0) for
small ship detection, which contains 15 images from Sentinel-1.

Through the above datasets, researchers have carried out much
work on SAR ship detection. For example, Kang et al. [43] used
a deep neural network for SAR ship detection and introduced
contextual features based on a CNN, which significantly im-
proved the detection performance. Zhang et al. [44] proposed
a lightweight feature optimizing network (LFO-Net) that is
based on the SSD algorithm and verified the effectiveness of
this method by using an SSDD. Lin et al. [45] proposed an
improved faster R-CNN algorithm that is based on the channel
attention mechanism for ship detection. Chang et al. [46] applied
YOLOv2 [47] to SAR ship detection. Wang et al. [48] employed
RetinaNet for GF-3 image ship detection. Hou et al. [49] intro-
duced the squeeze and excitation (SE) module into RetinaNet to
improve the precision of ship detection. Tang et al. [50] proposed
a ship detection method called N-YOLO (Noise-YOLO). Hu
et al. [51] presented a dual-polarmetric SAR dataset and a
weakly supervised ship detection method based on anomaly

detection via advanced memory-augmented autoencoder. Am-
rani et al. [52] proposed a very deep CNN (VDCNN) method
by using small filters to reduce the noise affect and improve the
performance.

With advancements in SAR satellite technology progressing,
the number of SAR satellites is increasing, and the resolution
of SAR images is continuously improving. As a result, finely
recognizing different ship types has become an important re-
search topic. Consequently, some scholars have constructed
SAR ship recognition datasets (see Table II) and utilized deep
learning methods to identify ships. For example, Xing et al. [53]
constructed a high-resolution SAR ship dataset (HR-SAR) based
on six TerraSAR-X stripmap-mode SAR images and employed a
sparse representation method to classify ships. Huang et al. [54]
assembled an SAR ship recognition dataset, OpenSARShip,
which consists of 41 Sentinel-1 images and 17 types of ships. He
et al. [55] deployed dense CNNs to classify ships, presented a
multitask learning framework, and carried out an experiment that
is based on OpenSARShip, which indicates that the method has
excellent performance. Hou et al. [56] published the FUSAR
dataset, which contains 126 scenes, 15 major ship classes,
and 98 subcategories, and implemented a CNN to classify the
ships. Ma et al. [57] constructed a maritime target detection
dataset (MTDD) based on GF-3 satellite containing six types
and proposed a single shot multibox detector with a multires-
olution input (MR-SSD) for ship detection and recognition.
Lei et al. [58] released a high-resolution SAR ship recognition
dataset SRSDD-v1.0, which consists of GF-3 stripmap-mode
SAR images with 1-m resolution and 666 ship slices and utilized
eight advanced deep learning detectors to evaluate the dataset.
Moreover, Zhang et al. [59] proposed a polarization fusion net-
work with geometric feature embedding for ship classification.
Amrani et al. [60] proposed an SAR target recognition method
based on YOLO and multicanonical correlation analysis. In [61],
the extracted deep features are fused by using DCA algorithm
and the K-nearest neighbors algorithm is used for SAR target
classification.

However, the above datasets all use a single type of SAR
satellite as the data source. The generalization performance of
these datasets needs to be evaluated. We obtained a TerraSAR-X
image at 22:53:46, 7 January 2012 and a RADARSAT-2 image
at 22:51:10, 7 January 2012 of the Straits of Malacca. In this pair
of data, the interval between acquisition times of TerraSAR-X
and RADARSAT-2 data is about 3 min. Moreover, we matched
SAR with automatic identification system (AIS) data and got 62
pairs of ships. Fig. 1 shows the SAR images of two pairs of ships
after normalization, where the legend shows the information of
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TABLE II
DETAILED DESCRIPTIONS OF FIVE OPEN SAR SHIP RECOGNITION DATASETS

Fig. 1. Differences of the same ship in different satellite images, where
(a) and (b) show the same cargo ship, (c) and (d) show the same tanker ship. The
legend shows the scattering intensity after normalization. (a) Images of cargo
ship in RADARSAT-2. (b) Images of cargo ship in TerraSAR-X. (c) Images of
tanker in RADARSAT-2. (d) Images of tanker in TerraSAR-X.

the intensity change of the scattering point of the ship. It can
be seen that the scattering point distribution of the same ship
in different SAR images has some differences. Such differences
may affect the appearance of the ship features that were extracted
from the SAR images [62], [63]. Moreover, we analyzed the
difference in the geometric features of the same ship target in
the TerraSAR-X image and the RADARSAT-2 image, where
the geometric features include the ship’s perimeter, area, and
aspect ratio. We obtain the length and width of the ship by
visual interpretation of the ship in the SAR image, and then
calculate the area, perimeter, and aspect ratio of the ship. The
ratio of the difference between RADARSAT-2 and TerraSAR-X
ship characteristics to the ship characteristics of RADARSAT-2
is used to express the rate of change of characteristics of the
same ship. Fig. 2 shows the rate of change of characteristics
of 62 pairs of ships. It can be seen from Fig. 2 that there
are about 32 ships with a characteristic rate of change greater
than 30%. Therefore, the geometric features of same ship tar-
gets in different SAR satellite images vary greatly, which may
affect the accuracy of ship classification. To further analyze
the generalization performance of multidata source datasets, a
generalization performance evaluation dataset (GPED) based

Fig. 2. Difference in the geometric features of same ship targets in TerraSAR-
X and RADARSAT-2 images. Characteristic rate of change represents the ratio
of the difference between RADARSAT-2 and TerraSAR-X ship characteristics
to the ship characteristics of RADARSAT-2.

on SAR images from multiple satellites was constructed in this
article. Moreover, to evaluate the generalization performance
of datasets constructed from a single satellite image and those
constructed from multiple satellite images, we conducted exper-
iments on GPED and MTDD using mainstream deep learning
methods. Alternatively, the number of labeled samples also
has a great impact on the accuracy of ship recognition. To
improve the accuracy of ship recognition without increasing
the complexity of the model, ship recognition based on transfer
learning is proposed. Transfer learning applies knowledge from
source domain to target domain. The source domain generally
has sufficient labeled data, while the target domain has scarce
labeled data. The natural image domain is usually selected as
the source domain because there are a large number of samples
in the natural image dataset, such as ImageNet [64]. Natural
images refer to the pictures taken by optical cameras commonly
used in the field of computer vision. There are more than 14
million natural images in the ImageNet. Several recent works
applied transfer learning to SAR ship recognition. For example,
Wang et al. [65] utilized the natural image domain as the source
domain and achieved cross-domain knowledge migration from
the natural image domain to the SAR image domain based on
the PASCAL VOC dataset. Rostami et al. [66] selected the
optical remote sensing image domain as the source domain
and employed the optical ship detection dataset for knowledge
migration. Although natural images, optical remote sensing
images, and SAR images describe the same physical world,
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the imaging mechanisms of natural images and optical remote
sensing images are very different from those of SAR images.
Thus, natural images, optical remote sensing images, and SAR
images significantly vary in data distribution. The difference
in data distribution between the source domain and the target
domain may lead to a very large domain mismatch problem
when knowledge is transferred [67]. In addition, some scholars
transferred data from AIS [68] domain to the SAR domain to
improve the accuracy of ship detection and recognition [69],
[70], [71], [72]. However, such methods require complex data
association and matching techniques, which increases the com-
plexity of transfer learning. To solve the problem of domain
mismatch, some researchers proposed the domain adaptation
method, which entails preprocessing data in the source or target
domain to ensure that these data have similar probability distri-
butions. However, the method needs to establish the model of the
intermediate embedding space, which increases the complexity
of the algorithm [73].

As a result, considering that the number of samples in SAR
ship detection datasets is much more than that in ship recognition
datasets, an SAR ship recognition method based on transfer
learning is proposed in this article. It can be found that all
datasets in Table I have a total of 59 614 ship slices, and all
datasets in Table II have a total of 19 432 ship slices. In the
method, both the source task and the target task belong to
the SAR image domain, which effectively avoids the domain
mismatch problem caused by the different data distributions.
Moreover, the research objects of both the source task and target
task are ships, which have common features. The ship features in
ship detection task are equally effective in ship recognition task
and can be transferred to ship recognition task. Therefore, the
proposed method can apply ship samples with unlabeled type
to ship recognition, thereby realizing knowledge transfer from
ship detection tasks to ship recognition tasks.

In conclusion, the main contributions of this article are shown
as follows. First, a generalized performance evaluation dataset
is constructed to evaluate the generalization performance of
datasets constructed using multiple data sources and datasets
constructed using one data source. Second, a task transfer
method for SAR ship recognition is proposed, which can apply
samples of unlabeled ship types in SAR ship detection dataset
to ship recognition and reduce the number of labeled samples
that are required for ship recognition. The method can achieve
knowledge migration from a ship detection task of a single
type to a ship recognition task of multiple types. The previous
research is to transfer knowledge in different fields, while we
transfer knowledge between different tasks in the same field.
The superiority of the proposed method is proved by comparing
with other former transfer learning cases through experiment
testing on the GPED and MTDD.

The rest of this article is organized as follows. First, we
introduce MTDD and the process of constructing the GPED
in Section II. Second, we introduce six deep learning algorithms
employed in this article and the performance evaluation index in
Section III. Third, we evaluate the generalization performance
of deep learning algorithms based on MTDD and the GPED and
analyze the experimental results in Section IV. We introduce

the methods proposed in this article, conduct comparative ex-
periments, and analyze the experimental results in Section V.
Finally, Section VI concludes this article.

II. DATASETS

A. MTDD

Published by Ma et al. [57] in 2018, MTDD is a marine target
detection dataset that includes 1727 ship slices. The size of each
slice is 500 × 500. These samples are obtained from 111 large-
scale SAR SLC images of GF-3 satellite, which carries a C-band
radar sensor working at 12 imaging modes. These 111 GF-3
SAR images are captured from the offshore areas of Eastern
Asia, Western Asia, Western Europe, and Northern Africa. All of
them are acquired from December 2016 to May 2018. Samples
of MTDD have four types of polarization (HH, HV, VH, and
VV), with ground resolution from 0.5 to 5 m. MTDD contains
six types of targets, which are mainly cargo, container, tanker,
tower, platform, and windmill. There are 913 cargo ships, 147
container ships, and 240 tankers in MTDD.

B. Construction of the GPED

The SAR images used to construct the GPED were ob-
tained from multisource SAR satellites, such as RADARSAT-2,
Sentinel-1 A, GF-3 in the C-band, and TerraSAR-X in the
X-band. The information of these satellites is shown in Table III.
A total of 94 SAR images were acquired, which are mainly dis-
tributed in the Bohai Sea, the Yangtze River Delta, the southeast
coast of the Jiaodong Peninsula, the Strait of Malacca, and the
major ports in Japan. The SAR images were saved in tag image
file format (TIFF), and all data were processed by geometric
correction and radiometric correction.

The original SAR image covers a wide area, which compli-
cates the sample labeling and increases the computer’s memory
burden. Therefore, we cropped the original SAR images into ship
slices of suitable size. Due to the difference in the resolution of
the SAR images from distinct data sources, the size of the ship
slices ranged from 50 × 50 pixels to 200 × 200 pixels. We saved
the ship slices in JPEG format for easy labeling and modified
them with linear stretching. Last, 2441 ship slices were obtained.

In this article, sample annotations of the ship slices were
performed with the ship type information provided by the AIS.
Selecting the imaging time of the SAR image as the center, we
obtained AIS data in the same area within 30 min. Considering
that the AIS acquisition time and the SAR acquisition time do not
exactly coincide and that the position of the ships may deviate,
linear interpolation and extrapolation processes were performed
to unify the temporal and spatial positions of the AIS with SAR
images. For moving ships, due to the influence of the Doppler
frequency shift, there is also position variation in the azimuth
direction of the image. Thus, compensating for the Doppler
frequency shift of moving ships is necessary. The LabelImg [74]
tool was used to label the ship target, and the labeling range
was the smallest outer rectangle of the ship. All ship slices
were manually annotated by SAR interpretation experts. The
annotation of ships was stored in extensible markup language
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TABLE III
INFORMATION ON SAR DATA OF THE GPED

TABLE IV
COMPARISON OF MTDD AND GPED

Fig. 3. Example of a ship sample in GPED.

(XML) format, and the specific information is shown in Fig. 3
, which mainly includes the name and size of the ship slice and
the type of ship.

After the above steps, there are 2441 ship slices in the GPED.
There are 16 types of ships in the GPED, including cargo
ships, tankers, passenger ships, rescue ships, etc. The number
of samples for cargo ships, container ships, and tankers is high,
while the number of samples for other ship types is low.

C. Comparision of MTDD and GPED

The major difference between the GPED and MTDD is that
the GPED employs SAR images from multiple data sources,
while MTDD only uses SAR images from GF-3. The polariza-
tion modes and image resolution of different SAR satellites vary,
which causes MTDD and the GPED to differ regarding specific
image parameters. Table IV shows the difference between the
GPED and MTDD in image parameters. Moreover, both MTDD
and the GPED suffer from category imbalance. During the
training process, deep learning models typically focus more on
the types with a larger number of samples and disregard the types
with a smaller number of samples [75]. Thus, the classification
accuracy for categories with a smaller number of samples can
be very poor, which lowers the average recognition accuracy

and affects the stability of the evaluation results. Therefore,
we screened the sample types in the original dataset before
conducting experiments and selected three types of samples with
larger numbers from the original dataset, including cargo ships,
container ships, and tankers. The experiments in this article
were conducted on the screened dataset. The GPED and MTDD
that are subsequently mentioned are the screened GPED and
screened MTDD, respectively. The processed MTDD contains
1300 samples that consist of 913 cargo ships, 147 container
ships, and 240 tankers. The processed GPED contains 1557 sam-
ples, including 810 cargo ships, 505 tankers, and 242 container
ships. These three ship categories are also the most common
in SAR ship recognition because of their different scattering
properties [76]. As shown in Fig. 4, under ideal conditions,
cargo ships exhibit black and white stripes and have obvious
ship margins. Container ships have stronger black and white
stripes than cargo ships and exhibit irregular strong scattering
when the containers are loaded. Tankers have obvious symmetry
in their scattering characteristics. In addition, Fig. 4 shows some
examples from the GPED that are difficult to distinguish and dis-
turbed by backgrounds, such as sea clutter, cross-sidelobe, and
defocusing phenomena. These samples increase the difficulty of
ship recognition.

III. METHOD OF GENERALIZATION PERFORMANCE

EVALUATION

A. Ship Recognition Algorithm Based on Deep Learning

To evaluate the generalization performance of the GPED
and MTDD, eight ship recognition algorithms based on deep
learning were employed in this article. The model structure and
principle of these eight algorithms are introduced as follows.

1) Faster R-CNN: Faster R-CNN [28] is a two-stage target
recognition algorithm based on deep learning. The faster R-CNN
network discussed in this article consists of three components: 1)
VGGNet [77], 2) region proposed network (RPN), and 3) fast R-
CNN [78]. VGGNet is a CNN that can extract the deep features
of objects. The RPN can generate target candidate regions at
different scales on the feature map. Fast R-CNN combines the
results of the first two modules, regresses the location of the
bounding box based on the candidate regions, and determines
the target type based on the scores of each category.
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Fig. 4. Examples of SAR images of different types of ships in GPED. (a) Cargo. (b) Tanker. (c) Container.

2) SSD: The backbone of the SSD [29] algorithm is VG-
GNet, which serves to extract the features of the input image. The
SSD algorithm removes the fully connected layer of VGGNet
and obtains five extra prediction feature layers by stacking
convolutional layers to achieve multiscale target recognition.
The position regression of the target bounding box is achieved
by setting the default box with different scales and aspect ratios
on each prediction feature layer. The SSD model can be divided
into SSD300 and SSD512 according to the input image size. In
addition, the SSD300 model with an input image size of 300 ×
300 is utilized in this article.

3) RetinaNet: The backbone of RetinaNet consists of two
parts, ResNet [79] and the feature pyramid network (FPN) [80].
ResNet extracts the deep features of images using the residual
module, and the FPN further processes the extracted features
to accomplish feature fusion, build feature pyramids, and fully
utilize the shallow network’s feature information. Focal loss is
proposed by RetinaNet. The focal loss adds a modulation factor
to the cross-entropy loss function to mitigate the loss assigned to
well classified or simple targets. Therefore, the hard examples
will contribute to more loss. And this method can effectively
solve the problem of the imbalanced number of samples between
classes.

4) YOLOv3: The backbone of YOLOv3 [81] is Darknet53
with 53 convolutional layers and has a strong feature extraction
capability by introducing a residual structure. The residual struc-
ture can reduce the risk of vanishing/exploding gradients while
increasing the network depth. YOLOv3 combines convolutional
operations and upsampling to fuse features of shallow and

deep networks. Furthermore, this method adds two prediction
feature layers to fully utilize the information in the shallow
network and to enhance the detection capability of small targets.
YOLOv3 draws on the experience of the anchor mechanism
in faster R-CNN and sets three different scales of the anchor
on each prediction feature layer to identify targets of various
sizes.

5) YOLOv5: The model structure of YOLOv5 is divided
into the following three parts: 1) The backbone, 2) neck, and
3) head. The backbone of YOLOv5 is cross-stage partial net-
work Darknet53 (CSPDarknet53) [82], and the focus module is
added. The neck of the YOLOv5 model is composed of FPN
and PANet [83], which serves to further process the features
extracted from the backbone and to improve the diversity and
robustness of the features. The head of YOLOv5 constitutes a
three-scale detection network through feature fusion to achieve
target detection and recognition at multiple scales. The YOLOv5
algorithm is divided into the following four models according
to the model size and network depth: YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x. YOLOv5x is used in the experiments
of this article.

6) EfficientDet: The backbone of EfficientDet [84] is Ef-
ficientNet [85]. EfficientNet is a CNN and is divided into
seven models, which are the range of EfficientNet-B0 through
EfficientNet-B6, according to the network depth and resolution
of the input image. EfficientDet uses the BiFPN algorithm
for feature fusion and a hybrid scaling method to scale the
target detection models. Eight different model structures are
obtained by the exploratory scaling method (EfficientDet-D0 to
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EfficientDet-D7). We use EfficientDet-D2 for the experiments
of this study.

7) PAA: Probabilistic anchor assignment (PAA) [86] is a new
anchor assignment strategy. PAA first adaptively divides the
anchor corresponding to each ground truth (GT) into positive
samples and negative samples according to the learning state of
the model. Then the anchor’s score under the current model con-
ditions is calculated and the probability distribution of anchor’s
score is obtained. Finally, the probability distribution is used to
identify positive samples and negative samples. We constructed a
target recognition model using PAA in this article. The backbone
of the model is ResNet50. FPN is used for feature fusion. PAA
is used to assign positive and negative sample, and focal loss is
used for loss calculation.

8) VFNet: VFNet [87] (VarifocalNet) is a dense target de-
tector. The method uses Iou-aware classification score (IACS)
to express confidence and localization accuracy of the object. A
new star-shaped bounding box feature representation for IACS
prediction and bounding box refinement is used in the method.
The backbone of the VFNet is ResNet50. FPN is used for feature
fusion. The head of VFNet consists of two branches, which are
used to predict the bounding box and IACS. Varifocal loss is
used to train the target detector.

B. Experimental Environment and Performance Evaluation
Indexes

The experiments are implemented under the PyTorch frame-
work through the Python programming language on a 64-bit
computer with Intel Xeon(R) CPU E5-2699, 128 GB RAM, and
Geforce RTX2080TI with GUDA10.2 and cuDNN7.2. In order
to ensure fairness, all algorithms use the uniform parameters.
The initial learning rate is set to 0.001. The batch size is set to
8, and the epoch is set to 100. The stochastic gradient descent
(SGD) optimizer is employed. The weight decay and momentum
coefficient are set to 0.0005 and 0.9, respectively. The threshold
of the intersection over union (IOU) is set to 0.5, and the
threshold of confidence is set to 0.45.

The performance of the SAR ship recognition algorithm is
evaluated by using the precision, recall, average precision (AP),
mean average precision (mAP), and frames per second (FPS).
The precision is the percentage of data that are predicted to be
positive samples, and the true value of the data is also positive.
The precision is used to evaluate the accuracy of the model. The
recall represents the proportion of positive samples with correct
predictions. The formula of precision and recall can be expressed
as follows:

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

where true positive (TP) is the true positive that indicates the
number of ships that are correctly detected, and false positive
(FP) is the false positive that indicates the target number of
false alarms. The parameter FN is the false negative that in-
dicates the number of ships that miss inspection. The positive

and negative samples are determined according to the IOU and
confidence between the bounding box and the ground truth.

The AP is used to evaluate the accuracy of each type of ship
target recognition, which is defined as the average of multiple
training accuracies and is calculated as

AP =

∫ 1

0

P (R)dR (3)

where P denotes precision, and R denotes recall.
The mAP denotes the average value of the AP for each type of

ship. The mAP is an important index for evaluating the overall
recognition accuracy. Moreover, FPS is used to evaluate the
inference speed of the model.

IV. GENERALIZATION PERFORMANCE EVALUATION OF THE

SAR SHIP RECOGNITION METHOD

In this section, we use eight target recognition algorithms
to evaluate the generalization performance of the GPED and
MTDD. These eight target recognition algorithms include faster
R-CNN, SSD, YOLOv3, RetinaNet, EfficientDet, YOLOv5,
PAA, and VFNet. The algorithms all use the pretraining weights
on ImageNet. First, the eight algorithms are trained using the
training sets of the GPED and MTDD and are tested in their
respective test sets to compare the performance of the same
algorithm in different datasets. Second, one dataset is selected to
train the model, and the other dataset is selected for testing. This
crossover experiment is utilized to evaluate the generalization
performance of the GPED and MTDD.

A. Comparison of Recognition Results Between the GPED
and MTDD

To evaluate the generalization performance of the GPED and
MTDD, we randomly divide the GPED and MTDD into training
sets, validation sets, and test sets according to a ratio of 7:2:1,
respectively. We first evaluate and analyze the ship recognition
accuracy of different algorithms in GPED and MTDD. The
experimental results of MTDD and the GPED are shown in
Tables V and VI.

Table V shows that the the average mAP of all algorithm
is approximately 81.87% in MTDD. Table VI shows that the
average mAP of all algorithms is approximately 64% in GPED,
which is lower than that of MTDD. This result occurs because
the MTDD is constructed using GF-3 satellite, which has a high
ground resolution. However, GPED is constructed based on SAR
images from multiple satellites, which has some low-resolution
images and poor-quality images. In addition, it can be seen from
Table V that the AP of container ships is lower than that of the
other two types of ships, which is also the reason for the low
recognition accuracy of GPED.

B. Crossover Experiment Between the GPED and MTDD

In this section, the generalization performance of the GPED
and MTDD is evaluated by testing the accuracy of the ship
recognition model on different datasets. The specific steps of
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TABLE V
SHIP RECOGNITION RESULTS OF MTDD

TABLE VI
SHIP RECOGNITION RESULTS OF GPED

TABLE VII
SHIP RECOGNITION RESULTS THAT TRAINED ON GPED AND TESTED ON MTDD

the crossover experiments are as follows. First, the ship recog-
nition model is trained on GPED and tested on MTDD. The
experimental results are shown in Table VII. Second, the ship
recognition model is trained on MTDD and tested on GPED.
The experimental results are shown in Table VIII.

Table VII shows that the average mAP of all algorithms is
approximately 24.14%. Table VIII shows that the average mAP
of all algorithms is approximately 11.26%. The ship recognition
accuracy in the crossover experiments is significantly reduced
because the GPED and MTDD have significant differences
in terms of data sources and image resolutions, making the
data distributions of the training and test sets different. This
result indicates that the model trained on one dataset may not
necessarily apply to another dataset and that the generalization
performance of the dataset is very important for the applicability
of the model. Among all the algorithms, the recognition accuracy

of the GPED-based trained model is higher than that of the
MTDD-based trained model, which indicates that the GPED-
based trained model can be better applied to the MTDD images
and proves that GPED has a better generalization performance.
This result occurs because the samples in the GPED are obtained
from SAR images from multiple data sources, which can better
adapt to changes in the data distribution and image features in
contrast to MTDD from a single data source.

Considering that the number of samples in SAR ship de-
tection datasets is much more than that in ship recognition
datasets, a novel SAR ship recognition method based on
transfer learning is proposed. In this section, the principle
of the proposed SAR ship recognition method is introduced,
and then comparative experiments based on the GPED and
MTDD are conducted to test the performance of the proposed
method.
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TABLE VIII
SHIP RECOGNITION RESULTS THAT TRAINED ON MTDD AND TESTED ON GPED

Fig. 5. General framework of the ship recognition method based on the task transfer.

C. Proposed Method

The basic idea of transfer learning is to transfer information
from the source domain to the target domain. The source domain
and target domain are usually different domains; thus, trans-
fer learning is essentially a cross-domain data migration. The
method of cross-domain migration imposes strict requirements
on the similarity between the source domain and the target
domain. When the data distribution of the source domain and
the target domain significantly differs, domain mismatch and
even negative migration may occur [88]. Therefore, we pro-
posed an SAR ship recognition method based on task transfer,
which transfers migration learning from different domains to the
same domain (SAR domain) without considering the similarity
between the source domain and the target domain. The source
task in the proposed method is SAR ship detection, and the
target task is SAR ship recognition. The specific steps of this
method are as follows. First, the model is trained using the SAR
ship detection dataset and saves the weight parameters of the

model. Second, the target model is initialized by using the weight
parameters. Last, the whole model will be fine-tuned based on
the SAR ship recognition dataset. The method is equivalent to
merging the data in the source domain and target domain, which
can somewhat improve the generalization performance of the
model. Both the source domain and target domain in this method
are SAR image domains, which eliminates the influence of the
differences in the data distribution on transfer learning. The
framework of the SAR ship recognition method based on task
transfer is shown in Fig. 5, which is divided into the following
two modules: 1) The pretraining module and 2) the fine-tuning
module.

1) Pretraining Module: Most target recognition algorithms
based on deep learning are divided into the following two parts:
1) Feature extraction and 2) classification. As the first step
of target recognition, feature extraction has a very important
role in the target recognition model. The pretraining module is
applied to the feature extraction part of the SAR ship recognition
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Fig. 6. Basic structure of the pretraining module.

model. Pretraining means that the feature extraction network of
the target task model is trained in the source task so that the
model of the target task is trained with a better initial parameter
instead of with random parameters. These parameters contain
some general feature information of the ship target, such as the
length, width, area, and texture of the ship. These features can
distinguish the ship from the background. As a result, they are
not only useful in ship detection tasks but also effective in ship
recognition tasks.

The feature extraction of images in target recognition usually
employs CNN algorithms, such as VGGNet, ResNet, and Dark-
net53, with excellent performance. Although these networks
can extract deep features of images, there is a large amount of
repetitive gradient learning during the training process, which
increases the computational effort and reduces the learning
ability of the model. To reduce repetitive gradient learning,
CSPNet is proposed and introduced into the CNN. CSPNet
decreases the gradient variability by integrating feature maps
at the beginning and end of the network stages. CSPNet is
introduced into the Darknet53 network to form CSPDarknet53,
which is the basis of the pretraining module in this section.
Fig. 6 shows the basic structure of the pretraining module. A
new residual module is added to the original residual module,
and the feature maps obtained from Part 2 are further fused
with those processed by Part 1 and multiple residual blocks
to achieve a richer combination of gradients. The network
is trained using the labeled samples from the source task to
obtain the trained CSPDarknet53 model, i.e., the pretrained
model.

2) Fine-Tuning Module: After pretraining the feature ex-
traction network for the SAR ship recognition model, we ob-
tain the initialized feature extraction network CSPDarknet53.
The network can extract features that distinguish ships from
other targets, but the model still needs to be further trained
using the dataset of the target task to extract detailed in-
formation about the ship targets, and thus, classify the spe-
cific types of ships. Therefore, we use SAR ship recognition
datasets to fine-tune the CSPDarknet53 and YOLOv5 classi-
fiers. The reason why we used YOLOv5 as the benchmark is
that YOLOv5 is the state-of-the-art method on GPED dataset

in Table VI. First, the loss obtained from forwarding prop-
agation of the model is calculated, and second, the error is
backpropagated using stochastic gradient descent to update
the weight parameters of the whole network. The loss of this
process consists of the following three parts: 1) Localization
loss, 2) confidence loss, and 3) classification loss. The confi-
dence loss Lossconf and class loss Loss class are calculated as
follows:

Lossconf = −
K×K∑
i=0

Io b j
ij

[
ĉi log c

j
i +

(
1− ĉji

)
log

(
1− cji

)]

− λnoobj

K×K∑
i=0

M∑
j=0

In o o b j
ij

[
ĉji log c

j
i

+
(
1− ĉji

)
log

(
1− cji

)]
(4)

Lossclass = −
K×K∑
i=0

Io b j
ij

∑
c∈ classes

[
P̂ j
i logP j

i

+
(
1− P̂ j

i

)
log

(
1− P j

i

)]
(5)

where K denotes the final feature map divided into K × K
grids, and M denotes the number of anchors that correspond to
each grid. The term In o o b j

ij denotes the anchors without targets,
and λnoobj is the weight factor.

Localization loss refers to the error between the position of
the target bounding box that is predicted by the ship recognition
model and the ground truth box. In the ship recognition task,
rectangular boxes are usually employed to localize the target,
which provides the feasibility of calculating the minimum en-
closing area of the target. Therefore, the IOU is usually applied
to calculate the localization loss. The IOU reflects the overlap
between the bounding box and ground truth boxes, and the IOU
of A and B is defined as

I O U =
A ∩B

A ∪B
. (6)

The IOU has scale invariance, and the similarity between
any bounding boxes and the ground truth is independent of
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Fig. 7. Relationship of the bounding box between IOU and GIOU. (a) IOU.
(b) GIOU.

Fig. 8. ROC curves of the different methods on GPED.

their spatial scale size. Only the overlap degree between the
bounding box and the ground truth is selected for measurement.
According to the formula, the IOU is zero when the bounding
box and ground truth do not intersect. In this case, the IOU
cannot reflect the distance between the two bounding boxes,
and thus, the location error between the bounding box and the
ground truth cannot be determined. In addition, distinguishing
different alignments between two objects by using the IOU is im-
possible, i.e., the IOU of two overlapping objects with the same
intersection level in different directions will be equal. To solve
the above problems, we use a generalized IOU (GIOU) [89]
to calculate the localization loss. Fig. 7 shows the bounding
box relationship between the IOU and the GIOU. The GIOU
considers the nonoverlapping regions that do not belong to A
and B, and the minimum enclosing rectangle (C) of the two
targets is involved in the calculation to effectively respond to the
overlapping way of A and B. Thus, the result of the localization
loss is more stable. The GIOU is defined as

G I O U = I O U − C − (A ∪B)

C
. (7)

TABLE IX
EXPERIMENTAL RESULTS OF DIFFERENT METHODS ON GPED

TABLE X
EXPERIMENTAL RESULTS OF DIFFERENT METHODS ON MTDD

Based on the GIOU, the final target localization loss Lossl o c

is obtained

Lossloc = 1− G I O U = 1− I O U +
C − (A ∪B)

C
. (8)

Through the calculation of the above three losses, the loss
of the SAR ship recognition algorithm is obtained. The total
loss is assigned according to the backpropagation principle, and
the parameters of each layer are updated by using the SGD
optimization function.

D. Experimental Results and Analysis

According to the experimental settings and evaluation met-
rics in Section III, we conducted experiments based on the
SAR-ship-dataset, MTDD, and GPED. SAR-ship-dataset is a
large-scale SAR ship detection dataset for complex scenes. This
dataset is publicly available in [39] and contains 43 819 labeled
samples. The dataset can meet our experimental needs. Accord-
ing to the SAR ship recognition method proposed in this article,
first, the model is trained using the SAR-ship-dataset. Second,
the model is fine-tuned using the training set of GPED (MTDD).
Last, the performance of the proposed method is tested using the
test set of GPED (MTDD). To make the results more intuitive,
experiments are conducted by using the following two methods
to compare the experimental results: 1) Direct training (DT):
No transfer learning method is used, and the model is trained
using the initial parameters; 2) freeze training (FT): Backbone
of the model is frozen during training and the parameters are not
updated; 3) transfer learning from different domains (TLDF):
The natural image domain (ImageNet) is selected as the source
domain for cross-domain knowledge transfer [65]. The results
are shown in Tables IX and X.

Tables IX and X show that the proposed method has the
highest recognition accuracy. The mAP of the proposed method
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Fig. 9. Comparison of ship recognition results of different methods. (a) DT. (b) FT. (c) TLDF. (d) Proposed method. (e) Ground truth.

on GPED and MTDD is 75.9% and 91.7%, respectively. The re-
sults indicate that our method can effectively achieve knowledge
migration from the ship detection task to the ship recognition
task. Because the data distribution of training set and test set in
MTDD is more similar than that in GPED, the mAP achieved
by the proposed method on GPED is about 15% lower than the
one obtained on MTDD. Thus, the proposed method is proven

to be superior to the cross-domain migration method because
our method is performed in the SAR image domain, which
avoids the performance degradation caused by the differences
in the data distribution and image features of different domains.
In addition, the mAP of our method on GPED and MTDD is
higher than that of the method without transfer learning, which
indicates that transfer learning is beneficial to ship recognition
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TABLE XI
EXPERIMENTAL RESULTS OF DIFFERENT METHODS TRAINED ON GPED AND

TESTED ON MTDD

TABLE XII
EXPERIMENTAL RESULTS OF DIFFERENT METHODS TRAINED ON MTDD AND

TESTED ON GPED

in SAR images. The mAP of our method on GPED and MTDD
is higher than that of the freeze training method, which further
proves the advantages of the proposed method. Among the three
types of ships, the recognition accuracy of cargo ships and
tankers is improved, and the recognition accuracy of container
ships does not change much on GPED, which indicates that
our method applies to different types of ships. Moreover, the
results of FPS show that the inference speed of the proposed
method is slightly lower than that of TLDF method, which means
that the computational of the proposed method has slightly
increased.

To further evaluate the performance of the proposed method,
we performed cross experiments between GPED and MTDD.
Tables XI and XII show the ship recognition accuracy of the
models trained on GPED and MTDD, respectively. The experi-
mental results show that the accuracy of the proposed method is
higher than that of other methods, which proves the effectiveness
of the proposed method. Moreover, the accuracy of the model
trained on GPED is higher than that of the model trained on
MTDD, which further proves that GPED has better generaliza-
tion performance.

Positive and negative samples of ship recognition are obtained
according to the threshold of GIOU and confidence. We define
the recognition rate Pd as the proportion of samples that are
predicted to be positive in all positive samples and define the
false alarm Pfa as the proportion of samples that are predicted
to be positive in all negative samples. The receiver operating
characteristic (ROC) curves of the different methods on GPED
are shown in Fig. 8. One can see that the proposed method has
a higher recognition rate than other methods at a constant false
alarm rate. The method also has a lower false alarm rate than
other methods at a constant recognition ratio. In addition, the
recognition results of the different methods in test samples are

shown in Fig. 9, which prove that the recognition performance
of the proposed method is better than that of the other methods.

V. CONCLUSION

The active recognition of ship targets has been getting refined
with the development of deep learning. However, most of the
published ship recognition datasets use a single SAR satellite
sensor. It needs to be evaluated and analyzed carefully whether
the model trained by a single satellite dataset can still achieve
the same accuracy with different SAR satellites. In this article,
an SAR ship recognition dataset is constructed based on SAR
images from multiple SAR satellites and is named the GPED.
Then we evaluate and analyze the generalization performance
of current mainstream deep learning methods on the GPED
and MTDD. The experimental results show that the GPED has
a better generalization performance than MTDD. Moreover,
considering that the number of samples in SAR ship detection
datasets is much more than that in ship recognition datasets, an
SAR ship recognition method based on task transfer is proposed
in this article. The proposed method can apply ship samples with
unlabeled type to ship recognition, thereby realizing knowledge
transfer from ship detection tasks to ship recognition tasks. The
experimental results on the GPED and MTDD show that the
mAP of the proposed method is 75.9% and 91.7%, respectively,
which achieves state-of-the-art performance. The method has
great potential in the application of an SAR ship recognition
system. However, the inference speed of the proposed method
is slightly reduced and the pretraining module of the method
will take a long time. In addition, due to the uneven distribution
of the incident angle of the images in the dataset, we did not
consider the impact of the change of the incident angle on the
SAR ship recognition accuracy. In the future, we will focus on
this topic.
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