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SAR Change Imaging in the Sparse Transforming
Domain Based on Compressed Sensing
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Abstract—Since compressed sensing (CS) theory broke through
the limitation of the traditional Nyquist sampling theory, it has
attracted extensive attention in the field of microwave imaging.
However, conventional CS-based imaging models always suffer
from the limitation of sparse properties of the scene itself. In
this article, a novel change imaging in the transforming domain
based on CS is proposed, which converts the recovery of the scene
itself to that of scene change from the historical observation to the
current observation. First, a new complex-data sparse microwave
imaging model in the transforming domain is built by the real-
imaginary separated operation. Then, a scene transform method
named inverse-whitening processing is introduced to confirm the
relationship between the real part, imaginary part, and amplitude
part of a complex scene, and the sparse transforming domain is
constructed based on this processing and historical observation. At
last, a CS algorithm is used to recover this change with undersam-
pling echo, and the scene of the current observation can be achieved
by integrating the recovered change with the historical observation.
The effectiveness of change imaging in the transforming domain is
verified on both simulated and real synthetic aperture radar (SAR)
images.

Index Terms—Change imaging, compressed sensing (CS),
inverse-whitening processing, synthetic aperture radar (SAR),
transforming domain.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is a microwave remote
sensing system that works in all-weather and all-day, and

it plays an important role to observe key targets and hot regions
[1]. In the traditional SAR system, the azimuthal resolution and
range swath are irreconcilable contradictions for the limitation
of the Nyquist sampling theorem. As the compressed sensing
(CS) theorem is proposed [2], [3], [4], this contradiction can
be effectively relieved and the nonlinear iteration algorithm
can recover the sparse scene with sub-Nyquist samples. Some
SAR systems based on CS have been proposed, e.g., AgileSAR
[5], sub-Nyquist SAR [6], and CopSAR [7]. Compared with
Sentinel-1, which can achieve 5 m resolution and 80 km swath
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[8], AgileSAR can achieve 5 m resolution and 300 km swath with
a single azimuthal channel. Compared with the traditional high-
resolution wide-swath (HRWS) SAR system, i.e., the azimuthal
multichannel SAR [9] and multi-input multioutput SAR [10],
the CS-SAR system has low system complexity, small antenna,
and amount of data to relieve the pressure of data storage and
transmission. Therefore, CS-SAR is an attractive and promising
technology. However, these systems often require that the ob-
served scene is sparse so the CS-SAR has a certain limitation. For
example, CS algorithms only recover some significant features
of the urban while other details are lost [5], [6], [7]. To further
improve the universality and availability of sparse microwave
imaging, we propose change imaging in the transform domain
in the CS-SAR system.

For some scenes, which need frequent observation, the con-
tents one acquired have changed a little with each other. In other
words, the change denoted as (Δσ)abs is sparse, where (·)abs
denotes the amplitude of a complex signal. For these scenes, e.g.,
the urban area, CS algorithm can efficiently recover this sparse
change instead of directly recovering the whole scene itself at
each observation. Therefore, the concept of change imaging
is proposed in this article. It means that the sparse change
(Δσ)abs can be recovered by CS algorithms, and then the scene
information (σ1)

abs of the current observation can be achieved
by integrating the recovered change (Δσ)abs with the historical
observation (σ0)

abs. Obviously, the sparse property of scene
change can guarantee the effectiveness of change imaging, and
this property requires that the scene information of the current
observation has consistency with that of the historical observa-
tion. This consistency includes temporal consistency and spatial
consistency. Temporal consistency represents that the interval
time between the historical observation and the current observa-
tion is not too long. For example, the change between Beijing’s
downtown in 2010 and that in 2022 is relatively big so change
imaging may not be feasible. Spatial consistency guarantees the
backscattering coefficient data of the observed scene does not
change much. These factors that affect the radar cross section are
usually represented by incidence angle, wavelength, and antenna
polarization [11]. These factors also should not change much to
ensure spatial consistency. Temporal consistency explains the
property of changing parts of the observed scene, the latter
corresponds to the property of the no-changing parts. Therefore,
time consistency and spatial consistency guarantee the sparse
property of scene change.

So far there are two similar works in sparse microwave radar
imaging and they take good advantage of the CS theorem.
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Bi et al. [12] proposed a similar work, which applies change
imaging in the SAR echo domain. However, the system requires
that the satellite trajectories must be the same to obtain the echo
change. This requirement is too strict to realize in the actual
applications. The direct representation of scene change is the am-
plitude of the scene itself, so the simplest application of change
imaging is also on the amplitude of the scene itself. To reduce
the requirement for the observation geometry, Geng et al. [13]
proposed an increment imaging in the SAR image domain. The
increment imaging is essentially the same as change imaging,
and it directly maps the amplitude of the scene itself. Because
this method is an additively solving problem, i.e., (σ1)

abs =

(σ0)
abs + (Δσ)abs and requires that the current observation

(σ1)
abs has the same quantification level with the historical ob-

servation, it is sensitive to the change’s amplitude so that change
imaging fails once the intermediate estimation goes wrong.

A good imaging algorithm should not have too many re-
quirements for the system. To increase the universality and
availability of sparse microwave imaging, we propose change
imaging in the transform domain based on CS in this article.
The idea of change imaging in the transform domain is that
we transform the abovementioned additively solving problem
into the multiplicatively solving problem, so we mainly pay
attention to the signal form, not the absolute amplitude. At first,
since the unrecovered current observation σ1 in the imaging
is a complex signal and the recovered change (Δσ)abs is a
real signal, we construct the complex-data optimization problem
by real-imaginary separated operation. Then, a signal transform
method we named inverse-whitening processing is introduced
to confirm the relationship between the real part, imaginary
part, and amplitude part of the scene change, and the sparse
transforming domain is constructed based on inverse-whitening
processing and the prior information of historical observation.
At last, a CS algorithm is used to recover this change with
undersampling echo, and the scene of the current observation
can be achieved by integrating the recovered change with the
historical observation. Simultaneously, adequate experimental
results with the simulated signal and real SAR images demon-
strate the effectiveness and universality of change imaging in
the transforming domain. A summary of the main contributions
of our work is listed as follows.

1) The idea of change imaging makes full advantage of the
CS theorem, because scene change is easier to satisfy the
sparse property compared with the scene itself. This imag-
ing method can further decrease the sampling frequency
and relieve the contradiction between high resolution and
wide swath in the SAR system.

2) We apply change imaging in the transform domain and
this method transforms an additively solving problem into
a multiplicatively solving problem, so the estimation is not
sensitive to the amplitude of the scene itself and improves
imaging efficiency.

3) A complex-data optimization model in the change imag-
ing is constructed by the real-imaginary separated oper-
ation. Simultaneously, a signal transform method named
inverse-whitening processing is introduced to confirm the

relationship between the real part, imaginary part, and
amplitude part of the scene’s change. A sparse trans-
forming dictionary is constructed based on the historical
observation data and the inverse-whitening processing.

4) Change imaging is applied to microwave sparse re-
construction, both simulation and experimental SAR
data demonstrate the feasibility and effectiveness of our
method in the transforming domain.

The rest of this article is organized as follows. In Section II,
the change imaging signal model in the sparse transforming
domain is introduced. In Section III, a signal transform method
we named inverse-whitening processing is introduced, and then
a sparse transforming dictionary is constructed based on this
processing method and the historical observation. The current
observation of the scene is achieved by integrating the historical
observation with the recovered change based on the CS algo-
rithm. In Section IV, numerical results demonstrate the effec-
tiveness of our method. Finally, Section V concludes this article.

II. CHANGING IMAGING SIGNAL MODEL IN THE SPARSE

TRANSFORMING DOMAIN

In this section, a sparse microwave imaging signal model is
introduced. Usually, the SAR system is deemed to be stationary
after transmitting one pulse and receiving one echo before the
next transmitting [1], [11]. The raw data in the SAR system can
be written as

sc (τ, η) =
∑

xm,ym

σmWm (τ, η)

exp
{
jπKr[τ − 2Rm (η)/c]2

}
· exp (−j4πRm (η)/λ) + n (τ, η) (1)

where η and τ is the slow time along the azimuth and the fast
time along the range, respectively. Rm(η) represents the range
between the radar and the point target located at the coordinate
(xm, ym, 0) at the azimuth timeη.xm andym denote the azimuth
and range coordinates, respectively. Because two-dimensional
image, i.e., azimuth and range, is considered, the coordinate
(xm, ym, 0) is simplified as (xm, ym). σm and Wm(τ, η) are
the radar cross-section and the weighting pattern corresponding
to the target at (xm, ym). Kr denotes the chirp rate of linear
frequency modulated signal, c is the light speed, λ is the wave-
length, and n(τ, η) is the system noise.

To relieve the inherent contradiction in the HRWS system,
sub-Nyquist sampling in the CS-SAR system is implied along
the azimuthal dimension. The CS-SAR system only adopts the
traditional matched filtering (MF) method to not recover the
scene exactly. Accordingly, CS-SAR imaging includes three
steps: 1) range compression based on MF; 2) range cell migra-
tion correction (RCMC): interpolating by zero-padding every
azimuthal signal after range compression, and then sum up all
the range-compressed signals of grids on the same range cell to
the predefined grid; 3) azimuth reconstruction with sub-Nyquist
samples based on the CS algorithm. After implementing range
compression and RCMC to the formula (1), the signal at a certain
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range cell is represented by

sc (τ0, η) =
∑

xm,ym

σmWm (τ0, η)Tr

sin c
{
KrTr

(
τ0 − 2Rm (η − ηcm)/c

)}
× exp

{
−j4πRm (η − ηcm)/λ

}
+ n (τ0, η) (2)

where ηcm is the beam center crossing time for the target
(xm, ym). Tr is the pulse width and sinc(·) denotes the sinc
function.

Let σ = [σ1, σ2, . . . , σM ]T be the vectored backscattering
cross-sections of targets on the same range cell, and yN×1 =
[sc(τ0, η1), sc(τ0, η2), . . . , sc(τ0, ηN )]T be the vectored signal
after range compression and RCMC. The vectored signal can be
modeled as

yN×1=AN×MσM×1+nN×1 (3)

where N is the sampling number on the azimuthal di-
mension, and M is the number of resolution cells at
the certain range cell in the observed scene. AN×M =
{Am(τ0, ηn)}N,M

n=1,m=1 denotes the mapping relationship be-
tween the received signal and the scene, and Am(τ0, ηn) =
Wm(τ0, ηn) · Tr · exp{−j4πRm(ηn − ηcm)/λ}. The noise is
nN×1 = [n(τ0, η1), n(τ0, η2), . . . , n(τ0, ηN )]T .

The CS theorem requires that the variable to be estimated
is sparsely distributed. Nonlinear iterative algorithms can be
implemented to recover the sparse scene, e.g., ship detection,
by formula (3). However, many observed scenes do not have
the sparse property so the development of the CS-SAR system
is limited. Considering that some scenes themselves are not
sparse but have a little change (Δσ)abs during each observation,
change imaging is introduced by recovering the change (Δσ)abs

and further recovering the whole scene by integrating the prior
information of historical observation (σ0)

abs. And the current
observation (σ1)

abs is required to be consistent with the histor-
ical observation (σ0)

abs so that it ensures the sparse property
of change (Δσ)abs. This consistency has temporal consistency
and spatial consistency. Temporal consistency denotes that the
current observation has similarities with historical observation
and the interval time is not too long, so the change is small. For
example, some areas may only add several targets in several
days, the change is several targets and efficiently recovered
by CS algorithms. Spatial consistency explains the consistency
of backscattering coefficient data in the nonchange part of the
scene. Because the observed incidence angle, wavelength, and
antenna polarization affect the backscattering cross section [11],
the consistency of the invariant part should be ensured. Tem-
poral consistency and spatial consistency explain the property
of the change part and invariant part, respectively. When this
consistency is satisfied, we can apply change imaging in sparse
microwave imaging to improve the universality of the CS-SAR
system.

The simple and direct method of change imaging is applied
in the spatial domain [13]. This method converts change imag-
ing problem into additively solving problem, i.e., (σ1)

abs =

(σ0)
abs + (Δσ)abs. Only when the change (Δσ)abs has the

same quantification level as the historical observation (σ0)
abs ,

the current observation (σ1)
abs can be exactly recovered. Once

(Δσ)abs is not exactly estimated or does not have the same
quantification level, the change imaging fails. So the requirement
in the spatial domain is strict. To improve the accuracy of the
imaging algorithm, change imaging in the sparse transforming
domain is proposed

yN×1=AN×MDM×MΔσM×1+nN×1. (4)

This method converts the imaging problem into a multiplica-
tively solving problem and is not sensitive to the scene amplitude
itself.

III. CHANGE IMAGING IN THE SPARSE TRANSFORMING

DOMAIN

In the abovementioned section, the change (Δσ)abs is ex-
plained to be sparse in the transforming domain, and it is a real
signal. But the formula (4) in the sparse microwave imaging
problem is the recovery of complex signals. Therefore, the
following data structure for echo y and sceneσ is established by
the conversion from a complex signal to a real signal based on
the real-imaginary separated operation. The real and imaginary
parts of original complex data (3) and (4) are separated and can
be expressed as[

yreal

yimag

]
=

[
Areal −Aimag

Aimag Areal

] [
σreal

σimag

]

+

[
nreal

nimag

]
(5)

[
yreal

yimag

]
=

[
Areal −Aimag

Aimag Areal

] [
DrealΔσreal

DimagΔσimag

]

+

[
nreal

nimag

]
. (6)

The sparse variable in the transforming domain is the ampli-
tude part (Δσ)abs, not the real part (Δσ)real or the imaginary
part (Δσ)imag . To achieve change imaging in the transforming
domain, first, the relationship between the real part, imaginary
part, and amplitude part of the scene should be analyzed and
inverse-whitening processing is introduced to confirm this rela-
tionship. And then, the transforming dictionaryD is constructed
based on this processing method and the historical observa-
tion. At last, the underdetermined problem is recovered by CS
algorithms.

A. Inverse-Whitening Processing

The phase distribution of SAR image follows an uniform
distribution, real and imaginary parts of SAR image are similar
to amplitude part [14], and it can also be demonstrated in Fig. 1.
If the relationship between the real part, imaginary part, and
amplitude part is certain, the real and imaginary parts can also
be sparse in the transforming domain.
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Fig. 1. Relationship between the real part, imaginary part, and amplitude part of the SAR image. (a) Relationship between the real part and imaginary part of the
SAR image. (b) Relationship between the real part and amplitude part of the SAR image. (c) Relationship between the imaginary part and amplitude part of the
SAR image.

Fig. 2. Relationship between the real part, imaginary part, and amplitude part of the SAR image after inverse-whitening processing. (a) Relationship between
the real part and imaginary part of the SAR image after inverse-whitening processing. (b) Relationship between the real part and amplitude part of the SAR image
after inverse-whitening processing. (c) Relationship between the imaginary part and amplitude part of the SAR image after inverse-whitening processing.

In this article, a scene transform method named the inverse-
whitening processing method is introduced by the scaling oper-
ation [

(σ)real
new

(σ)imag
new

]
= Q ·

[
(σ)real

(σ)imag

]

Q =

[
cos θ − sin θ
sin θ cos θ

] [
a 0
0 b

] [
cos θ sin θ
− sin θ cos θ

]
(7)

(σ)real
new =

(
acos2θ + bsin2θ

)
(σ)real

+ (a sin θ cos θ−b sin θ cos θ) (σ)imag

(σ)imag
new = (a sin θ cos θ−b sin θ cos θ) (σ)real

+
(
asin2θ+bcos2θ

)
(σ)imag

to make the real part of the SAR image equal to the imaginary
part of that ∣∣∣(σ)real

new

∣∣∣ ≈ ∣∣∣(σ)imag
new

∣∣∣ ≈ (σ)absnew

/√
2 (8)

where Q is the scaling matrix, a and b are the scaling factors.
θ is the rotating angle and is usually selected as π/4. This
processing method is similar with the inverse operation of the
whitening processing in traditional signal processing [15], so we

name it inverse-whitening in this article. To acquire the formula
(8), (a− b) should be approximate to (a+ b). Additionally, to
prevent the scaling matrix Q from being singular, a/b should
not be too large. Assuming that a/b = 10, θ = π/4, the data in
Fig. 1 after inverse-whitening processing is illustrated in Fig. 2.
In addition, Fig. 3 demonstrates that this scaling operation does
not change the scene structure and just makes some adjustments
to the scene amplitude. After inverse-whitening processing, the
dynamic range of the SAR image in the probability histogram
increases so that the image looks dim.

Now, the inverse-whitening processing is introduced to the
observation model in (5)[

yreal

yimag

]

=

[
p11A

real − p21A
imag p12A

real − p22A
imag

p11A
imag + p21A

real p12A
imag + p22A

real

]
[

σreal
new

σimag
new

]
+

[
nreal

nimag

]
(9)

where the matrix P =

[
p11 p12
p21 p22

]
= Q−1, and p11 =

a−1cos2θ + b−1sin2θ, p12 = p21 =
(
a−1 − b−1

)
sin θ cos θ,

p22 = a−1sin2θ + b−1cos2θ.
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Fig. 3. Scene and probability histogram before and after inverse-whitening processing. (a) Scene before inverse-whitening processing. (b) Scene after inverse-
whitening processing. (c) Probability histogram before and after inverse-whitening processing.

B. Construction of Sparse Transforming Domain

To achieve change imaging in the transforming domain, an
appropriately sparse transforming dictionary is constructed in
this section. First, the amplitude-based transforming dictionary
(D)abs is constructed. Then, the transforming domains for the
real and imaginary parts of the scene in the formula (6) are con-
structed based on (D)abs after the inverse-whitening processing.

Assuming that the amplitude-based vector-space of
the transforming domain can be expressed as (D)abs =
{ξ1, ξ2, . . . , ξm, . . . ξM},D ∈ RM×M . The constructed
method of vector-space is given as follows. Take the historical
observation (σ0)

abs as one dimension of vector-space, i.e.,
ξm = (σ0)

abs, and choose m = 1 without loss of generality.
Each vector should be relatively orthogonal to ensure the
reversibility of this transforming vector-space, i.e.,

ξT1 ξm = 0,m = 2, . . . ,M. (10)

Therefore, the vector-space of the transforming domain is
denoted as (D)abs = {(σ0)

abs, orth(Dsub, (σ0)
abs)}, where

orth(·) denotes the orthogonality operation, (Dsub)
abs =

{ξ2, . . . , ξM} is the M × (M − 1) subspace. Assuming ξm =

[ ξm,1 ξm,2 · · · ξm,M ]
T

, The formula (10) is unfolded as

|σ1| ξm,1 + |σ2| ξm,2 + · · ·+ |σM | ξm,M

= 0,m = 2, 3, . . . ,M (11)

ξm has many solutions, the constructed method of which deter-
mines the sparse property of change. In this article, a simple con-
structed method of transforming vector-space is demonstrated,
and it selects the pth dimension as the reference axis, i.e., ξm,p

is a constant. The formula (11) is written as

|σ1| ξm,1 + · · ·+ |σp−1| ξm,p−1 + |σp+1| ξm,p+1

+ · · · |σM | ξm,M = − |σp| ξm,p

m = 2, 3, . . . ,M (12)

so we have

ξ2 = [− |σp| ξ2,p/|σ1|, 0, . . . , 0, ξ2,p, 0, . . . , 0]T
ξ3 = [0,− |σp| ξ3,p/|σ2|, . . . , 0, ξ3,p, 0, . . . , 0]T

...
ξM = [0, 0, . . . , 0, ξM,p, 0, . . . ,− |σp| ξM,p/|σM |]T

(13)

and then the transforming vector-space can be denoted as (14),
shown at the bottom of the next page, where the constant
dimension ξm,p can be an arbitrary value, and it generally takes
ξm,p = 1. Additionally, any dimension can be selected as the
reference axis. To guarantee the stability of transforming vector-
space, it usually takes the dimension of which the value in the
historical observation (σ0)

abs is the largest as the reference axis.
The construction of the sparse transforming dictionary (D)abs

based on the amplitude of historical observation is finished.
In this transforming domain, the sparse property of the change

(Δσ)abs is explained by three following points.
1) Similarity: The current observation (σ1)

abs is extremely
similar to historical observation (σ0)

abs so that the non-
change part can be mapped on the dimension ξ1 con-
structed by historical observation (σ0)

abs, as illustrated
in Fig. 4.

2) Sparse property: In the transforming domain, the sparse
property of change (Δσ)abs depends on the subspace
(Dsub)

abs because most energy of the current observation
is mapped on the dimension ξ1 of vector-space (D)abs.
When the subspace (Dsub)

abs is a well-conditioned ma-
trix, the change (Δσ)abs in the transforming domain is
sparse. The well-conditioned property of transforming
subspace is verified in the following. Assuming there
are constants A and B for the nonzero vector (σ)abs ∈
RM×1so that [16]

A ≤

∥∥∥(DT
sub

)abs
(σ)abs

∥∥∥2
2∥∥∥(σ)abs∥∥∥2

2

≤ B (15)
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Fig. 4. Historical observation (σ0)
abs and the current observation (σ1)

abs.
(a) Historical observation (σ0)

abs. (b) Current observation (σ1)
abs.

holds. We notice

∥∥∥(DT
sub

)abs
(σ)abs

∥∥∥2
2∥∥∥(σ)abs∥∥∥2

2

=

[
(σ)abs

]T
(Dsub)

abs(DT
sub

)abs
(σ)abs[

(σ)abs
]T

(σ)abs

=

M∑
m=1

δmcos2θm (16)

where δm is the singular value of the matrix
(Dsub)

abs(DT
sub)

abs
. θm is the angle between the mth singular

vector of the matrix (Dsub)
abs(DT

sub)
abs

and the vector (σ)abs.
Because different singular vectors are relatively orthogonal,
we infer that A is the smallest singular value, i.e., δmin = A,
and B is the largest singular value, i.e., δmax = B. Therefore,
the well-conditioned property of subspace can be explained
by the singular value. Now the singular values of the matrix

(Dsub)
abs(DT

sub)
abs

are analyzed shown at the bottom of this
page

Assuming ξm,p = 1

(Dsub)
abs(DT

sub

)abs
= |σp|2 · diag

([ |σ1|−2 |σ2|−2 · · · |σM−1|−2
])

+ 1T1 (18)

where 1 denotes [ 1 1 · · · 1 ]T1×(M−1), 1
T1 is the matrix

where all the elements are equal to 1. diag(·) is the oper-
ation that converts the vector to the diagonal matrix. Since
|σp| ≥ |σm|, the inequality |σp|2/|σm|2 ≥ 1 holds. Assum-
ingΩ = |σp|2 · diag([ |σ1|−2 |σ2|−2 · · · |σM−1|−2 ]), the

matrix (Dsub)
abs(DT

sub)
abs

can be regarded as adding the noise
matrix 1T1 to the matrix Ω. Therefore, the singular value δm is
approximately estimated by only considering Ω, so

δmax

(
(Dsub)

abs(DT
sub

)abs) ≈ max
(
|σp/σm|2

)
δmin

(
(Dsub)

abs(DT
sub

)abs) ≈ min
(
|σp/σm|2

)
.

(19)

According to the abovementioned formula (19), the singular
value of the matrix (Dsub)

abs(DT
sub)

abs
is decided by historical

observation (σ0)
abs. The smallest singular value is

δmin ≈ min
(
|σp/σm|2

)
= |σp|2

/
max

(
|σm|2

)
= 1 (20)

the largest singular value is

δmax ≈ max
(
|σp/σm|2

)
= |σp|2

/
min

(
|σm|2

)
. (21)

Assuming that (σ0)
abs is the data after the quantification of

u-mean and k times ς-standard variance, the condition number
of the subspace (Dsub)

abs is

cond
(
(Dsub)

abs
)
≈ u+ kς

u− kς
(22)

(D)abs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|σ1| − |σp| ξ2,p/|σ1| 0 · · · 0
|σ2| 0 − |σp| ξ3,p/|σ2| · · · 0

...
...

...
. . .

...
|σp−1| 0 0 · · · 0
|σp| ξ2,p ξ3,p · · · ξN,p

|σp+1| 0 0 · · · 0
...

...
...

. . .
...

|σM | 0 0 · · · − |σp| ξN,p/|σN |

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

(Dsub)
abs(DT

sub

)abs
=⎡

⎢⎢⎢⎣
(|σp| ξ2,p/|σ1|)2 + ξ22,p ξ2,pξ3,p · · · ξ2,pξM,p

ξ3,pξ2,p (|σp| ξ3,p/|σ2|)2 + ξ23,p · · · ξ3,pξM,p

...
...

. . .
...

ξM,pξ2,p ξM,pξ3,p · · · (|σp| ξM,p/|σM−1|)2 + ξ2M,p

⎤
⎥⎥⎥⎦ .

(17)
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Fig. 5. Historical observation (σ0)
abs and the current observation (σ1)

abs in
the amplitude-based transforming domain. (a) (σ0)

abs in the amplitude-based
transforming domain. (b) (σ1)

abs in the amplitude-based transforming domain.

Fig. 6. After the inverse-whitening,σreal
new andσimag

new in the amplitude-based
transforming domain. (a) σreal

new in the amplitude-based transforming domain.
(b) σimag

new in the amplitude-based transforming domain.

where cond(·) denotes the condition number,u and ς is the mean
and standard variance of the historical observation (σ0)

abs. As
we all know, the closer to 1 the condition number of the matrix
is, the better the well-conditioned property of the matrix is. Gen-
erally, the dynamic range of SAR image is not large. When the
quantitative number k is not large [14], the condition number is
not large so that the subspace (Dsub)

abs has the well-conditioned
property. Therefore, the sparse property of change (Δσ)abs is
guaranteed by the well-conditioned subspace (Dsub)

absand is
demonstrated in Fig. 5 by the signal in Fig. 4 mapped on the
transforming dictionary (D)abs, where the change (Δσ)absis
circularly shifted for the sake of presentation.

3) Ignoring the speckle noise: Since the transforming dictio-
nary (D)abs has changed little about the signal amplitude,
and the speckle noise is generally small, it can be ignored
in the sparse reconstruction.

After the construction of the amplitude-based transforming
dictionary (D)abs, the following is the construction of the sparse
transforming domain for the real and imaginary parts of the scene
based on (D)abs. Because the signs of real and imaginary parts
are not consistent with that of the amplitude part, the real and
imaginary parts of the scene after inverse-whitening processing
are not sparse in the sparse transforming domain (D)abs, as
illustrated in Fig. 6.

Fig. 7. Sign segmentation of the scene before and after inverse-whitening
processing. (a) Sign segmentation before inverse-whitening processing. (b) Sign
segmentation after inverse-whitening processing.

The real and imaginary parts are represented by

σreal
new = sgn

(
σreal

new

) · ∣∣σreal
new

∣∣ ,σimag
new = sgn

(
σimag

new

) · ∣∣σimag
new

∣∣ .
(23)

The inverse-whitening processing does not change signs of
variables, so (23) can be further simplified as

σreal
new = sgn

(
σreal

) · ∣∣σreal
new

∣∣ ,σimag
new = sgn

(
σimag

) · ∣∣σimag
new

∣∣ .
(24)

The sign should be first determined to ensure change imaging
in the transforming domain D. The best segmentation line of
Figs. 1(a) and 2(a) is α = 3π/4, as illustrated in Fig. 7, where α
and ϕ are the segmentation angle and the scene phase.

Then, the sign of the real part is

sgn
(
σreal

)
=

{
1, − π

4 ≤ angle (σ) < 3π
4−1, others

. (25)

Notice that

sgn
(
σreal

)
+ sgn

(
σimag

)
= 0 (26)

so

sgn
(
σimag

)
=

{ −1, − π
4 ≤ angle (σ) < 3π

4
1, others

. (27)

The transforming dictionaries of the real and imaginary parts
are denoted as

Dreal
new = (D)abs · diag {sgn (σreal

)}
Dimag

new = (D)abs · diag {sgn (σimag
)}

.
(28)

C. Change Imaging in the Transforming Domain

Based on the inverse-whitening processing, the observation
model (6) is[

yreal

yimag

]

=

[
p11A

real − p21A
imag p12A

real − p22A
imag

p11A
imag + p21A

real p12A
imag + p22A

real

]
[

Dreal
new ·Δσreal

new

Dimag
new ·Δσimag

new

]
+

[
nreal

nimag

]
. (29)

The changeΔσreal
new andΔσimag

new are sparse in the transforming
domain Dreal

new and Dimag
new , respectively. And it can be illustrated
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Fig. 8. Change Δσreal
new and Δσimag

new in the transforming domain Dreal
new and

Dimag
new , respectively. (a) Change Δσreal

new in the transforming domain Dreal
new. (b)

Change Δσimag
new in the transforming domain Dimag

new .

Algorithm: Reconstruction Based on the Real-Imaginary
Separated Operation.

Initialization: (σ0)
abs, A, y, P;

1. Construct the transform dictionary (D)abs by (14);
2. Calculate the initial result σMF based on matched

filter;
3. Acquire the sign sgn(σreal) and sgn(σimag) based on

σMF ;
4. Calculate the transforming dictionary Dreal

new and
Dimag

new ;
5. Solve the optimization (29) by CS algorithms [17],

[18], [19];
6. Acquire the final image by (30).

in Fig. 8. We adopt the CS algorithms [17], [18], [19] to recover

the change [ Δσreal
new Δσimag

new ]
T

by solving (29).
After the recovery of change, a real SAR image can be

acquired by[ (
σreal

)T(
σimag

)T
]
= P ·

⎡
⎣

(
Dreal

newΔσreal
new

)T(
Dimag

new Δσimag
new

)T

⎤
⎦ . (30)

At last, the terminated condition can be determined by the
loss function ∣∣L (

σk+1
)− L

(
σk

)∣∣ < ι (31)

where L(σ) = ‖y −Aσ‖22, and ι is the error threshold, which
usually takes 10−3 [20]. The procedure of change imaging in the
transforming domain is presented as follows.

IV. EXPERIMENTAL RESULTS

The recovered performance based on CS depends on sparsity,
signal-noise ratio (SNR), and the undersampling ratio. In this
article, we analyze the sparse property of change in the trans-
forming domain in a numerical test environment first. Then, the
proposed change imaging in the transforming domain is verified
in terms of the recovered performance under different SNRs.
Experiments on simulated and real SAR images both verify the
effectiveness of our proposed algorithm.

TABLE I
SIMULATED PARAMETERS

In our experiments, two scenes, which include two optical
images and four SAR images were used in the experimen-
tal part of this article, and preprocessing, such as alignment
and correction, was performed before the experiments. Fig. 9
shows the first experimental data observed in a city located in
Yamanashi Prefecture in Japan, where Fig. 9(a) is the optical
images achieved by Google Earth on 2014/6/15, while Fig. 9(b)
and (c) are 3 m SAR images achieved by ALOS-2 satellite radar
on 2014/10/28 and 2014/11/11, respectively. Fig. 10 shows the
second experimental data observed on some buildings around
Xueyuan Road in Beijing, China, where Fig. 10(a) is the optical
images observed on Google Earth on 2020/8/28, while Fig. 10(b)
and (c) are 1 m SAR images achieved by TerraSAR-X satellite
radar on 2020/10/16 and 2020/10/27, respectively. Two types of
changes are labeled in the scene Fig. 10(b) and (c). One is the
increased parts circled by red lines. It means these targets do
not exist in Fig. 10(b) but exist in Fig. 10(c). The other is the
decreased parts circled by yellow lines. It means these targets
exist in Fig. 10(b) but do not exist in Fig. 10(c).

Temporal and spatial consistencies are represented by time
interval and incidence angle difference, respectively. In (b) and
(c) of Figs. 9 and 10, the time intervals are 14 days and 11 days,
and the incidence angle differences are 0.5320 ° and 0.0092 °,
respectively. Therefore, it can be confirmed that current obser-
vation (c) has temporal and spatial consistencies with historical
observation (b) so that it can ensure the sparse property of
change (Δσ)abs required by CS reconstruction. SAR echoes
are generated according to the parameters in Table I and the
scene in Figs. 9 and 10. For a given under-recovered signal σ,
the recovered performance can be evaluated by mean square
error (MSE)

MSE = ‖σ̂ − σ‖22 (32)

where σ̂ is the recovered scene.

A. Sparse Property of the Transforming Domain

Sparse property is the requirement of change imaging in the
transforming domain based on CS algorithms. The Wavelet
dictionary [21], [22] and the identity matrix I are introduced to
compare the sparse property with that of the proposed sparse
transforming domain in Section III. An identity matrix I is
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Fig. 9. Optical image, historical SAR image, and current SAR image observed in a city located in Yamanashi Prefecture in Japan. (a) Optical image. (b) Historical
SAR image. (c) Current SAR image.

Fig. 10. Optical image, historical SAR image, and current SAR image observed in the Buildings around Xueyuan Road, Beijing, China. (a) Optical image. (b)
Historical SAR image. (c) Current SAR image.

Fig. 11. Recovered performance against sparsity of change’s real and imag-
inary parts. The blue and green lines are the results based on the Wavelet
dictionary and our proposed transforming domain, respectively. The red line
is the result after the processing under different sparse thresholds. (a) Recovered
performance against sparsity of change’s real part. (b) Recovered performance
against sparsity of change’s imaginary part.

an ideal dictionary. At the same sparsity level of change, the
more accurate the representation in the transforming domain, the

better the performance of the transforming dictionary, and the
sparser the change. The procedure of simulation is demonstrated,
First, the change (Δσ)abs is achieved by comparing Fig. 8(b)
and (c), and then we set different threshold values z to change
the sparsity of change. The values of change that are smaller
than the threshold value are set to zero, and the rest remains.
This change is denoted as (Δσ)absz . Considering the wavelet
dictionary and our proposed transforming domain, the current
observation is σz = D(Δσ)absz . As for the identity dictionary,
the current observation isσz = σ0+(Δσ)absz . The performance
of the transforming domain is evaluated by ‖σ − σz‖22. In this
section, two scenes of Figs. 9 and 10 are selected to verify the
sparse property of the proposed transforming domain.

The simulation in Fig. 11 demonstrates that the proposed
transforming domain D after inverse-whitening processing can
achieve the approximated result with the identity matrix. Oc-
casionally, the proposed transforming domain performs bet-
ter. This is because the inverse-whitening processing concen-
trates most components of current observation on the historical
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Fig. 12. Results of change imaging in the transforming domain with the 10-, 20-, and 30-times undersampling ratio while no noise exists. (a) Recovered result
with the 10-times undersampling echo. (b) Recovered result with the 20-times undersampling echo. (c) Recovered result with the 30-times undersampling echo.
(d) Recovered result with the 10-times undersampling echo. (e) Recovered result with the 20-times undersampling echo. (f) Recovered result with the 30-times
undersampling echo.

observation so that the change is sparser. In a short, the proposed
transforming domain ensures the sparse property required by CS
algorithms.

B. Recovered Performance Against Undersampling Ratio
Under Different SNR

In this section, we simulate the reconstructed performance
against the undersampling ratio under different SNRs. SNR
refers to that of the raw data after the range signal is compressed.
The recovered results are achieved with echoes under different
undersampling ratios by our proposed change imaging in the
transforming domain based on CS. The simulated results in
Fig. 12 and the performance curves in Fig. 13 demonstrate the
effectiveness of our proposed algorithm. In Fig. 12, the proposed
algorithm can recover the scene very well with echoes under the
10-, 20-, and 30-times undersampling ratio without noise. The
details of the increased part in red circles or decreased part in
yellow circles are perfectly focused and recognized. In Fig. 13,
we simulate the curves of recovered performance against the
undersampling ratio under different SNRs. Low SNR affects
the recovered results. Fortunately, SNR is larger than 0 dB after
the range is compressed for most SAR systems. Therefore, the
recovered results are better under the SNR larger than 0 dB.

Fig. 13. Performance curve of change imaging in the transforming domain
against different undersampling ratios. (a) Performance curve of change imaging
in the transforming domain against different undersampling ratios in the first
scene. (b) Performance curve of change imaging in the transforming domain
against different undersampling ratios in the second scene.

C. Simulation Results Comparison of Increment Imaging in
the Spatial Domain and Change Imaging in the Transform
Domain

Increment imaging [13] requires that the current observation
has the same quantification level with the historical observation.
To further reflect the performance of our proposed algorithm,
we also quantized the recovery results (σ̂1)

abs at the same level
as [13], i.e., (σ̂1)

abs_q , where the newly added superscript q
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Fig. 14. Performance curves against under-sampling ratio in different SNRs.
(a) Performance curve of increment imaging against different undersampling
ratios in the first scene. (b) Performance curve of change imaging in the
transforming domain against different undersampling ratios in the first scene.

represents quantification. The performance curves are shown in
Fig. 14, and it can be seen that the reconstruction error is almost
10-times of [13]. However, this does not mean that the algorithm
is meaningless, and the proposed method offers an alternative in
change imaging but does not necessarily improve reconstructed
performance over [13].

The changes (Δσ)abs_q of increment imaging in [13] exist
in the spatial domain, i.e., (σ1)

abs_q = (σ0)
abs_q + (Δσ)abs_q ,

where the newly added superscript q represents quantification.
To make compare, these two SAR images should be quantified at
the same level. Therefore, the algorithm proposed in [13] should
own the ability to estimate the quantification accurately. That is
why the uniform quantification matrix is introduced in [13]. To
make the algorithm general, the historical image data (σ0)

abs_q

is quantified into 0∼1. Therefore, the MSE of estimated spa-
tial changes (Δσ)abs_q will be very small, i.e., the order of
magnitude in Fig. 14(a). However, the changes in this proposed
algorithm lie in the transform domain. It avoids estimating the
quantification level directly, making it more applicable. The
sparsity depends on the transform dictionary D. That means
the recovery errors not only have the part of changes but also
mixed with some parts introduced by D. Therefore, compared
with errors introduced only by (Δσ)abs_q in [13], the recovery
error in the transform domain is essentially larger.

To implement the sparse changes in [13], it is necessary to
ensure that the position in each resolution grid is sufficiently
accurate, and the quantification level should be estimated accu-
rately as well. That means the historical image data should be
of high quality, acting as a strong prior. However, the proposed
algorithm is based on a transform domain dictionary constructed
by using the structural features of historical data. It focuses on the
similarity between historical data and current observations and
has very low requirements for specific values. It means a weak
prior. The reduced constraints lead to an increase in estimation
error, which is worthwhile for the generality of observation.
From the simulation results, although the overall accuracy has
degenerated, the effective imaging of the changing targets can
still be guaranteed, as shown in Fig. 12.

V. CONCLUSION

In this article, we propose SAR change imaging in the trans-
forming domain, which converts the recovery of the scene

itself to the recovery of the change, to increase the universality
and availability of CS-SAR imaging. First, the complex-valued
sparse problem is solved by the real-imaginary separated oper-
ation. Then, inverse-whitening processing is introduced and the
sparse transform domain is constructed based on this processing
and the prior amplitude of historical observation to ensure the
sparse property of the real and imaginary parts of change.
Finally, CS algorithms recover the change to achieve change
imaging in the transforming domain. Experiments carried out
on simulated and real-measured SAR images demonstrate the
effectiveness and the advanced accuracy of the proposed method
by the curves of recovered performance.

Based on this imaging processing method, the undersampling
raw data can be recovered well so that the contradiction be-
tween high resolution and wide swath can be further relieved.
Therefore, the potential applications of this proposed method
may achieve an HRWS system. Note that the proposed method
converts complex-data operations to matrix operations, this will
take up a large amount of memory resources to achieve large
scene recovery. A multichannel processing scheme may have
great potential for this article and deserves further attention.
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