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Mapping Freezing and Thawing Surface State
Periods With the CYGNSS Based F/T Seasonal
Threshold Algorithm

Hugo Carreno-Luengo

Abstract—Freeze/Thaw (F/T) surface state detection and imag-
ing has been demonstrated as a capability of NASA’s Cyclone
Global Navigation Satellite System mission. The objective of the
research presented here is the application of an existing F/T re-
trieval algorithm to multiple target areas over several years in order
to demonstrate the ability to provide long term trending of F/T
behavior. Metrics are developed and evaluated to characterize F/T
trends related to global warming. They include the annual fraction
of time spent frozen and thawed as a function of location and year,
and the earliest fall freeze and earliest spring thaw as a function of
location and year. The results demonstrate the capability of Global
Navigation Satellite Systems Reflectometry to provide long term
trending of F/T behavior relevant to studies of climate change.

Index Terms—CH4, climate change, CYGNSS, freeze/thaw,
GNSS-R, retrieval algorithm.

I. INTRODUCTION

LIMATE change is affecting many socio-economic ac-
C tivities, including agriculture production because of the
warmer temperatures and the reduced water availability [1], [2],
[3]. Climate change action requires the accurate determination
of many parameters that characterize atmosphere, ocean, and
land processes, their interaction; as well as the ability to predict
future changes. Freeze/Thaw (F/T) surface state detection and
monitoring is important for quantifying carbon, energy, and
water fluxes, and their impact on land cover change. At present,
there is a lack of operational space-borne measurements of
active layer thickness and extension. In this study, the Cy-
clone Global Navigation Satellite System (CYGNSS) mission
Global Navigation Satellite Systems Reflectometry (GNSS-R)
data [4], [5], [6], [7], [8], [9], [10], [11], [12], [13] are used to
characterize F/T surface state changes due to water-ice phase
conversion. These changes are an indirect measurement that can
be used to characterize the active layer. The main objective is
to demonstrate the potential of GNSS-R based F/T surface state
monitoring by future high-inclination orbit GNSS-R missions.

CYGNSS was selected by NASA as a low-cost and high-
science Earth Venture Mission in 2012. In 2016, it was suc-
cessfully launched into space [14], [15]. The original mission
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objective was wind speed estimation over tropical cyclones
(TCs). Traditional remote sensing satellites are not able to
access TCs inner core when there are strong precipitations i.e.,
heavy rain, while CYGNSS does. The CYGNSS orbital con-
figuration was designed to accomplish this goal. Consequently,
CYGNSS operates from a low Earth orbit with an inclination
angle of ~35°. The mission coverage is within the latitude band
~ [—=37.5 37.5]°. At present, the science team has significantly
expanded the number of scientific applications over land and
atmosphere.

Previous F/T studies have been performed using GNSS-R
[16], [17], [18], [19], [20], [21]. Several power delay Doppler
maps (DDM) parameters were derived from different satellite
products, including Soil Moisture Active Passive (SMAP) [16],
TechDemoSat-1 [17], and CYGNSS [18]. Results showed a
promising sensitivity to F/T seasonal changes. A dual-pol (H,V)
ground-based study was also performed [21], showing a strong
correlation with Sentinel-1 backscatter coefficient. Additionally,
retrieval methods have been presented using CYGNSS [19] and
TechDemoSat-1 data [20].

CYGNSS offers an unprecedented spatio-temporal sampling
of the Earth surface, helping to further understand F/T surface
state dynamics. Consequently, in 2020, we initiated a research
project to explode this strong potential for F/T studies. A
seasonal-threshold algorithm (STA) [19] was developed and
validated using surface temperature data as provided by the Eu-
ropean Centre for Medium-Range Weather Forecast (ECMWF)
ERAS5-Land numerical reanalysis model. The agreement be-
tween CYGNSS and ERAS5-Land F/T maps was found to be
quite good in winter and summer (see Fig. 10 and Table I in
[19]). During the transitional spring and fall months, the F/T
missed detection increases, possibly as a result of uncertainties
in the reference models during these periods (see Fig. 10 and
Table I in [19]).

In addition, CYGNSS-derived F/T surface state was evaluated
and an inter-comparison with the SMAP-radiometer F/T data
product was performed (see Fig. 11 in [19]). The SMAP F/T
product was derived from the normalized polarization ratio of
radiometer measurements. A good agreement was found with
both CYGNSS and ERAS5-Land maps. Finally, a time-series
analysis was performed (see Fig. 12 in [19]) over two key areas
with high and low altitude terrain. The scale factor A(¢) was
selected, which is the fundamental input observable used by the
retrievals. Over the high-altitude target area, a significant incre-
ment was found from fall A(t) ~0.2 to winter A(¢) ~1.2. Over
the low-altitude terrain, A(t) remained low throughout the year.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0002-7775-7314
https://orcid.org/0000-0002-5937-4483
mailto:carreno@umich.edu
mailto:cruf@umich.edu

9944

This manuscript corresponds to the second part of our research
project. Here, we apply our previously validated F/T CYGNSS-
based retrieval algorithm [19] over different target areas within
the CYGNSS coverage (the Tibet Plateau, the Andes Mountains,
and the Rocky Mountains). The ability to detect and monitor
long term trends related to global warming are demonstrated by
examining the year-to-year changes in the following F/T related
parameters:

1) The yearly number of frozen and thawed months at each

pixel.

2) The first month after the warm season in which each pixel

is frozen (earliest fall freeze).

3) The first month after the cold season in which each pixel

is thawed (earliest spring thaw).

First, we introduce the selected datasets in Section II. Then,
the different target areas are described in detail in Section III.
A summary of the STA and the specific considerations for this
study are presented in Section IV. The results are presented
in Section V, including the interpretation of the maps over the
freezing and thawing periods. Final discussions are included in
Section VI. Finally, Section VII concludes this article.

II. DATASETS

A. CYGNSS GNSS-R Data: Properties

CYGNSS Earth’s surface sampling properties are determined
by the GNSS-R multibistatic radar geometry, which is encourag-
ing for the purpose of remote sensing. In the CYGNSS scenario,
this geometry is defined by 32 Global Positioning System (GPS)
transmitters and 8 GNSS-R receivers, with an orbital height of
~20 000 km and ~520 km, respectively. CYGNSS is an 8-
microsatellites single-plane GNSS-R constellation. Each single
on-board GNSS-R instrument is connected to two down-looking
antennas, which point to opposite sides of the ground track with
anincidence angle of ~28°. Each of these receivers is configured
to collect scattered GPS signals along four specular directions
simultaneously. As such, CYGNSS enables to study the Earth
system along 32 tracks simultaneously with a wide range of
satellite’s incidence angles ~[0 70]°.

The CYGNSS v3.0 product is selected for this study. This
version of the CYGNSS family products incorporates dynamic
monitoring of transmitted GPS power [22]. This strategy is
required to afford the calibration challenge given by the variable
power mode of the GPS Block IIF and IIR-M satellites. As such,
this product represents an important improvement as compared
to the CYGNSS v2.1 version. The selected temporal window
for this study is 31 months, which includes two complete full
F/T cycles along 2019 and 2020, and the first 7 months of 2021.
This window is long-enough so as to enable the evaluation of
the capability of our retrieval algorithm in determining temporal
changes of the F/T surface state.

B. Topographic Features: Elevation and Roughness

Given the CYGNSS latitudinal coverage, this F/T study is
performed over high-elevation areas because of the higher prob-
ability to find F/T transitions as compared to low-elevation
terrain. The reference surface elevation is derived from the
Global Multiresolution Terrain Elevation Data (GMTED 2010)
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Fig. 1. Global surface elevation map at 5 km resolution derived from the
GMTED 2010. High elevation areas within CYGNSS coverage are the Tibet
Plateau, the Andes Mountains, and the Rocky Mountains.

[23]. GMTED 2010 uses 11 different input elevation datasets.
The main one is that provided by the Shuttle Radar Topography
Mission. The quality of the GMTED 2010 product is higher
than the older Global 30 Arc-Second Elevation (GTOPO 30).
The GMTED 2010 digital elevation model (DEM) is available
at three different spatial resolutions: 1000 m, 500 m, and 250 m.
In this study, the 250 m version is selected. Surface elevation
and topographic roughness index (TRI) are derived from this
product, and results are up-scaled to 5 km spatial resolution.

While surface elevation (see Fig. 1) is an important parameter
for the selection of the target areas, TRI [24] is also relevant for
the analysis over these areas. TRI is zero over flat surface, while
positive TRI values appear over mountainous areas with steep
slopes. TRI is estimated as the mean of the absolute differences
of the surface elevation of a center-cell and the neighboring 8
cells as follows:

S N i n [Hg) — Higo)l

T =
RI =)

ey

where H is the surface elevation given by the GMTED 2010
DEM, N = (n —1)/2, and n is any odd integer smaller than
the number of cells in the shortest edge of the raster.

C. ECMWF ERA5-Land Surface Temperature

In this study, the reference surface temperature in the first
layer of the soil (0-7 cm) is given by the ECMWF ERAS5-Land
[see Fig. 2(a) and (b)] [25]. The first layer of the soil is selected
because GNSS L-band signals can penetrate the top ~5 cm
of the soil. ERAS5-Land is a reanalysis dataset that enables a
reliable understanding of several land variables from the last
7 decades. The land surface model used in ERA5-Land is the
Carbon Hydrology-Tiled ECMWF Scheme for Surface changes
over Land (CHTESSEL) [26]. ERAS5-Land corresponds to the
improved version of the ERAS products. It uses atmospheric
variables (air temperature and air humidity) to control the model-
based estimates, but these data are not directly assimilated to
generate the products. ERA5-Land products have been suc-
cessfully cross-compared with a significant number of in situ
measurements (2001-2018), models, and space-borne reference
datasets [27].
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Fig. 2. ECMWF ERAS5-Land global surface temperature in the first layer of
the soil (0-7 cm) at 0.1° x 0.1° grid size. (a) February 2019. (b) July 2019.

III. TARGET AREAS

Three different high-altitude targets areas have been selected
for this study (see Figs. 3-5): The Tibet Plateau (Lat = [25
37.5]°, Lon = [70 102]°), the Andes Mountains (Lat = [—37.5
—25]°, Lon = [—75 —65]°), and the Rocky Mountains (Lat =
[35.537.5]°, Lon = [—109 —103]°).

A. Tibet Plateau

The Tibet Plateau is also known as the “Third Pole” of the
Earth. It is the largest high-altitude (~4000 m) area on the
planet [28], [29]. It has a great impact in water storage and
supply in Asia. Both permafrost and seasonal frozen ground can
be found over the Tibet Plateau. The dominant International
Geosphere Biosphere Program (IGBP) land cover types are
grassland, barren, and shrublands. The TRI is high (>70) over
the Himalayan Mountains and low (<20) over the central part
of the Tibet Plateau [see Fig. 3(a)]. The ECMWF ERAS5-Land
surface temperatures are also shown in winter [see Fig. 3(b)] and
summer [see Fig. 3(c)]. There is a strong temperature gradient
between both seasons, with extended permafrost areas over
high-altitude terrain.

During the last decades, the extent of permafrost is being
reduced due to global warming induced by climate change [30].
On the other hand, recent studies indicate that, because of global
warming, shrublands, open forests, grasslands, and water bodies
are growing in the area, while the extension of evergreen and
deciduous broadleaf forests, and barrens is reducing [31].

B. Andes Mountains

The length of the Andes Mountains is ~8000 km along the
west coast of South America. This area is quite heterogeneous
in terms of topography and climate. It is mostly covered by
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Fig. 3. This target area corresponds to the Tibet Plateau (Lat = [25 37.5]°,
Lon = [70 102]°). Auxiliary information. (a) TRI derived from the
GMTED 2010. (b) EECMWF ERAS5-Land surface temperature February 2019.
(c) ECMWF ERAS5-Land surface temperature July 2019.
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Fig. 4. This target area corresponds to the Andes Mountains (Lat = [—37.5
—25]°, Lon = [=75 —65]°). Auxiliary information: (a) TRI derived from the
GMTED 2010. (b) ECMWF ERAS-L and surface temperature February 2019.
(c) ECMWF ERAS5-Land surface temperature July 2019.
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Fig. 5. This target area corresponds to the Rocky Mountains (Lat =
[35.5 37.5]°, Lon = [—109 —103]°). Auxiliary information: (a) TRI derived
from the GMTED2010. (b) ECMWF ERAS5-Land surface temperature February
2019. (c) ECMWF ERAS5-Land surface temperature July 2019.

extensive seasonally frozen ground [32]. The dominant IGBP
land cover types are barren and shrublands. The TRI is high
(>70) over the Andes Mountains and low (<20) over the Ar-
gentinian Pampas [see Fig. 4(a)]. The ECMWF ERAS5-Land
surface temperatures are also shown in summer [see Fig. 4(b)]
and winter [see Fig. 4(c)]. There is a strong surface temperature
gradient between both seasons, without permafrost areas over
the temporal window of this study i.e., from January 2019 to
July 2021. A major part of studies for the detection of potential
permafrost over this region were based on models because of
the difficult access to these remote and high-altitude mountains.
In 2012, a non-negligible permafrost probability in the latitude
range Lat = [—36 —23]° was reported [33].

The impact of climate change is expected to be stronger on
the arid Andes, significantly reducing the amount of available
water for millions of people [34], [35]. This is a clear example of
how climate change will have negative socio-economic impacts
on some countries. On the other hand, over different regions
such as the Tibet Plateau (China), Canada, and Siberia (Russia),
climate change could transform cold deserts into extended areas
suitable from agriculture, which is currently one of the major
needs, e.g., in China.

C. Rocky Mountains

The length of the Rocky Mountains is ~4800 km from western
Canada to the southwestern United States of America (USA).
There is a wide range of climates in the Rocky Mountains,
from semiarid shortgrass prairies to alpine tundra. The domi-
nant IGBP land cover types are grassland, evergreen broadleaf
forest, and deciduous needleleaf forest. The TRI is from high-to-
moderate (>50) over the Rocky Mountains and low (<20) over
the prairies [see Fig. 5(a)]. The ECMWF ERAS-Land surface
temperatures are also shown in winter [see Fig. 5(b)] and summer
[see Fig. 5(c)]. There is a strong temperature gradient between
both seasons.
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Climate change is reducing snowpack levels in the Rocky
Mountains, which is the main water storage for the central part
of USA, including highly populated areas such as Colorado, with
its important industrial/technological hub.

IV. METHODOLOGY

A. Fundamental Observable

The fundamental observable used in this study is the CYGNSS
v3.0 power DDM after radiometric calibration. Power DDMs
are the true power as measured by an ideal analog sensor
without additional postprocessing. This selection enables a more
accurate and focused estimation of the surface reflectivity than
using data products such as the signal-to-noise ratio or pro-
cessed observables such as the normalized bistatic radar cross
section, which depend on external algorithms and scattering
assumptions.

B. Metadata and Quality Flags

CYGNSS products are dynamically improving in perfor-
mance and are increasing the number of available metadata and
quality flags. In this study, the following metadata are used:
1) transmitter equivalent isotropically radiated power
(EIRP);

2) transmitter and receiver antenna gains (G and G..);

3) distance between each CYGNSS spacecraft and the nom-
inal specular points (D;);

4) distance between each GPS satellite and the nominal
specular points (D,.);

5) geographical coordinates of the nominal specular point.

The equivalent overall quality flag over land surfaces is ap-
plied to select the highest-quality dataset: large attitude con-
trol error, black body DDM, GNSS-R instrument reconfigured,
invalid cyclic redundancy check, test antenna pattern DDM,
channel idle, confidence in DDM noise floor is low, big gap
in noise floor, big gap in low noise amplifier temperature,
reflected DDM containing direct signal, low confidence in EIRP
estimation, radio frequency interference is detected, bistatic
radar cross-section (BRCS) DDM specular point bin delay error,
BRCS DDM specular point bin Doppler error, GPS positioning
velocity time SP3 propagator error, specular point nonexistent
error, BRCS look up table (LUT), antenna data LUT range
error, baseband framing error, flight software compensation shift
error, spacecraft attitude out of nominal mode, sampling period
error, invalid roll state, GNSS-R instrument not valid antenna
selection, specular point is in antenna sidelobe, and low gain in
zenith antenna.

C. Processed Observable

Final DDMs are obtained after the interpolation of the im-
proved 1700 x 1100 bins DDMs. In so doing, a spline method
is used. This improves the quality of the original 17x11 bins
fundamental DDMs. This improvement is implemented to min-
imize the potential impact of topography in the tracking of the
peak of the DDMs, which is used for the estimation of the surface
reflectivity.
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D. Reflectivity Estimation

The reflectivity is estimated as it follows:

(47)? (P — N) (D, + D)?
212G, EIRP

() = 2
where A is the signal wavelength, P is the peak value of the power
DDMs, and N is the noise floor, which are calculated from the
power DDMs. Several previous F/T studies [16], [17], [18], [19]
have applied this reflectivity estimation, which is based on the
Friis transmission formula [36], [37]. Pioneering investigations
discussed the influence of topography and up-welling biomass
cover [38], [39], [40], [41]. The main parameter is the vegetation
optical depth (VOD), which causes the attenuation of the re-
flected signal. Over the three selected case-studies in this study,
VOD levels are low (<0.2) and can be neglected, especially
in the winter season. Over the highest-interest target area in this
study, i.e., the central part of the Tibet Plateau [see Fig. 3(a)], the
topographic roughness is low (<20). All of these considerations
triggered our decision to use the reflectivity estimation method
shown in (2).

There is a relationship between the reflectivity and the Fresnel
reflection coefficient, which depends on the soil permittivity €.
When the soil surface changes from frozen to thawed, the per-
mittivity increases. The ability of CYGNSS to measure surface
reflectivity is high because of the strong sensitivity of L-band
GNSS signals to the permittivity, which depends on the phase of
the water, and because of the higher biomass penetration depth
as compared to higher frequencies, starting at C-band.

E. Surface Gridding Strategy

CYGNSS surface sampling properties are pseudorandom.
Surface gridding and spatio-temporal averaging strategies are
needed to generate continuous land surface spatial information
[42], [43]. The size of the grid is a tradeoff between the required
spatial resolution for the study of a specific surface variable
(soil moisture, biomass, inland waters) and the temporal res-
olution associated with the dynamics of the specific variable.
The temporal resolution depends on the CYGNSS revisit time.
The size of the grid should account for the available number
of CYGNSS measurements within the required time interval.
Additionally, a smoothing approach is needed to account for the
pseudorandom nature of the surface sampling and the impact of
the incidence angle on the spatial resolution of each individual
CYGNSS measurement. This is especially important in areas
with rough topography, so as to minimize the impact of indi-
vidual multiangle topographic samples by averaging across the
range of angles seen during the averaging time.

Inthis study,a0.1° x 0.1° grid is used and a moving-averaging
filter of 0.1° x 0.1° is applied at steps of 0.1°. The rationale
behind this selection is to increase the number of measurements
per pixel so as to generate a statistically significant population.
Additionally, regarding this respect, the temporal averaging is
set to 1 month to enable the generation of the required number of
measurements, and because this is a long term study focused on
the yearly evolution of the F/T cycle. Because of the pseudoran-
dom sampling properties, the grid size is larger than in [19] to
reduce the differences between the three different target areas.
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E. Seasonal Threshold Algorithm

The retrievals are based on our previously validated F/T STA
[19]. This algorithm evaluates the relationship between time
series of CYGNSS-derived reflectivity I" and seasonal reference
frozen and thawed states. For a measurement at time t, the
seasonal scale factor A(t) is defined as follows [19]:

D@ =Ty
A0 =T~ 3)

where T'(t) is the reflectivity measurement estimated at time ¢,
and I'y,. and I'y, are reflectivity measurements corresponding to
frozen and thawed reference states, respectively. The frozen and
thawed references states are calculated as the 10% and the 90%
points in the cumulative distribution function of the reflectivity
at each pixel, during winter (I'f,.) and summer (I';y,). Different
F/T surface states correspond to different observation times.

Two threshold levels Ty, and T}, are used for the F/T clas-
sification. The surface state is frozen when A(t) > Ty,. The
surface state is thawed when A(t) < T}y,. Both threshold levels
T't, and T}y, are selected at the optimum operating points of the
receiver operating characteristic (ROC) freeze and thaw curves,
using ERAS5-Land surface temperatures as proxy data. In this
study, the optimum operating points of the ROC freeze and thaw
curves are defined at the points of inflection when the slope of
the curve crosses from above to below unity. This point marks
the transition from more true than false detections to more false
than true.

The performance of the STA is directly related to the esti-
mation of the surface reflectivity I'. This justifies the selection
of the fundamental observable and the methodology used to
generate the improved observable. The reflectivity I" depends
on the Fresnel reflection coefficient, and thus, on the surface
permittivity €. As such, the scale factor A(¢) is directly related
to transitions from frozen to thawed soil.

A(t) is computed at each pixel over the target areas. Thus, the
STA accounts for the vegetation and land cover type heterogene-
ity with a spatial resolution given by the grid size. Since A(t) is
a relative factor based on differential measurements, the impact
of the per pixel land cover type is mitigated. Consequently, the
two threshold levels T's,. and T}, can be used independently of
the characteristics of each pixel.

V. RESULTS

In this section, the results over the selected target areas, i.e., the
Tibet Plateau (see Fig. 3), the Andes Mountains (see Fig. 4), and
the Rocky Mountains (see Fig. 5), are presented. Fig. 6 maps the
total number of months in 2019 for which the surface was frozen
and thawed in each of the three target areas. The assessment is
done pixel-by-pixel in order to allow the effects of geographic
features to be resolved. Seasonal frozen ground is located within
the Tibet Plateau, while permanent thawed soil is mainly located
at the south of the Himalayas. Additional maps for the year 2020
have also been generated and difference between from year to
year can used to examine longer term climatic trends.

For each of the three target areas, Fig. 7 maps the first month
of the year in which each pixel is thawed, which marks the
beginning of the spring season, together with the first month
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GNSS-R based F/T annual surface state duration for 2019 over the Tibet Plateau (a)—(b), Andes Mountains (c)—(d), and Rocky Mountains (e)—(f). Total

number of frozen months in the year is shown in (a), (c), (e). Total number of thawed months in the year is shown in (b), (d), (f). Similar results have also been
generated for 2020. Difference between these statistics from year to year can be examined for long term climate trends.

after summer in which each pixel is frozen, marking the be-
ginning of the winter season. The freezing and thawing periods
strongly determine the flow of soil water over the surface. This
movement has an impact on vegetation growth, as well as on
changes in land cover type, which in turn has an influence on the
frequency of the F/T cycle [44]. Monitoring these changes could
influence agriculture development plans, which is a fundamental
economic concern.

In the case of the Tibet Plateau, it is found that the beginning
of the winter season appears sooner over areas with a higher
altitude (see Fig. 1) than in the central part of the Plateau.
On the other hand, the beginning of the spring season appears
later over the Himalayas than over the central part of the Tibet
Plateau, because of the decreasing temperatures with increasing
altitude.

The thawing of soils during the thawing period triggers the
delivery of organic carbon and acceleration of soil respiration.
These results indirectly suggest that CO2 and CH4 emissions are
dynamically being geo-distributed [45], [46]. Future long-term
sustainable GNSS-R datasets could enable to further understand
the effects of climate change on a global scale [47].

A similar methodology for the analysis is performed over the
Andes and the Rocky Mountains. Seasonal frozen regions are

found in these target areas because of the high temperatures
in summer [see Fig. 4(b) and Fig. 5(c)], which prevent the
existence of permafrost. Both target areas have a lower altitude
than the Tibet Plateau and a smaller surface extension, but the
geographic variability of the altitude is stronger. The central part
of the Tibet Plateau has a roughly constant altitude of ~4000 m,
while the highest altitudes are clustered over the Himalayas
~8000 m.

Over the Andes Mountains, the number of frozen months is
relatively low ~3—4. It is worth commenting that the complete
Andes region within the CYGNSS coverage was evaluated, but
F/T cycling was only found in the selected target area Lat =
[—37.5 —25]°. It appears that in this target area, the F/T cycling
also depends on the latitude, being higher at lower latitudes
because of the longer duration of the cold season, although
the highest elevations are towards to northern part of the target
area (see Fig. 1). These results, and the overall methodology
presented in this study could help to complement and revisit
the few model-based studies [32] that have been performed in
this region.

Over the Rocky Mountains, the number of frozen months is
also relatively low ~3—4. The surface elevation is a parameter
with an important influence in the number of frozen months.



CARRENO-LUENGO AND RUF: MAPPING FREEZING AND THAWING SURFACE STATE PERIODS

70.0° . . . . g y
O E 750" 800°k 850 £ 90.0'E 950 E1000 E

(a)
Jul-Dec 19. Months Each Pixel Thav«%ed
250 S

275 S

300'S

325'S

350 S

375'S

780" W 700°W

(©)

Jan-Jun 2019. Months Each Pixel Thawed

. 0
650 w

375 N
37.0°N
365 N
36.0° N
355 | —

105.0° W

107.0°W

(©)

109.0°W

Fig. 7.

9949

375" NSept-Dec 19. Months Each Pixel Frozen
35.0" W\ 30 --_‘ "
° N e = 3
325N e
30.0°N 12
’ 1

70.0° C . . . . y
O°E 750°€ 800k 85.0'E 900 E 950 E1000 F

(b)
Mar-Jun 19. Months Each Pixel Froz“en
250 S

275 S
300 S
325 S

350 S

1
Io.s
375 S N
650 W

750 W 700 W

(d)

Sept-Dec 2019. Months Each Pixel Frozen

375N T EEEEEEE ¢
37.0°N 8
365 N 2
360 N 1
355 \ Tessssss———SNNEES W

109.0°W

107.0°W 105.0° W 103.0° W

(®
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(e)—(f). First month of spring with a thawed surface state is shown in (a), (c), (e). First month of fall with a frozen surface state is shown in (b), (d), (f). Similar
results have also been generated for 2020. Difference between these statistics from year to year can be examined for long term climate trends.

The freezing period indicates that the first month when a frozen
pixel can be found is closer to the end of the year than over the
Tibet Plateau and the Andes Mountains.

Finally, Fig. 8 is included for a comparison among the three
target areas. This figure shows the temporal evolution of the
extension of the total frozen area over each target region. A
repeatable seasonal variability is found with periodic changes
from summer to winter. Over the Tibet Plateau, the extension of
the frozen area does not decrease down to 0 km?, which indicates
the existence of permafrost [see Fig. 8(a)], in agreement with
Fig. 2. On the other hand, both the Andes [see Fig. 8(b)] and the
Rocky [see Fig. 8(c)] Mountains are thawed during the warm
seasons. The extension of the thawing period is longer in the
Andes than in Rocky Mountains.

Additionally, a clear trend is found that shows how the
extension of the frozen area is gradually reducing from 2019 to
2021, except for the peak in 2021 over the Rocky Mountains.
This is due to a quite cold winter season in the region [48],
and the greater susceptibility to annual fluctuations because of
the lower extension as compared to the Tibet Plateau and the
Andes. Although the moderate length of the time-period under
study 2019-2021 prevents making conclusive remarks about the
impact of climate change, these results demonstrate the potential
of our F/T retrieval algorithm for future long term studies using
GNSS-R.

VI. FINAL DISCUSSIONS

Passive microwave multichannel and high-frequency sensors
such as, e.g., Special Sensor Microwave/Imager (SSM/I) [49],
Advanced Microwave Scanning Radiometer-Earth (AMSR-E)
[50], and AMSR-2 [51] have been used to study F/T surface
state. The fundamental operating principle is the different emis-
sion properties observed by the different channels. L-band mi-
crowave missions such as Soil Moisture Ocean Salinity (SMOS)
[52] and SMAP [53] have also been considered for F/T mapping
because of the enhanced sensitivity to the soil surface permit-
tivity at L-band. Additionally, synthetic aperture radar (SAR)
missions such as, e.g., C-band ERS-1 [54], L-band Phase Array
type L-band SAR (PALSAR) [55], dual-pol C-band Sentinel-1
[56], and airborne P-band [57], as well as C-band Meteorological
Operational (MetOp) Advanced Scatterometer (ASCAT) [58]
have been operated for F/T detection using backscattered signals
properties.

The spatial and temporal resolution of SAR observational
systems is ~100 m and ~7-14 days, respectively. On the other
hand, the spatial and the temporal resolution of microwave
radiometers is ~25 km and ~3 days, respectively. Both types of
sensors are well suited remote sensing options for F/T studies.
However, at present, there are still limitations generating F/T
products with adequate spatio-temporal sampling and spatial
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Fig. 8. Extension of frozen area over: (a) Tibet Plateau, (b) Andes Mountains,
and (c) Rocky Mountains. A repeatable seasonal behavior is found with periodic
changes from summer to winter.

resolution simultaneously to understand the dynamics of F/T
transition periods. GNSS-R offers a promising addition to the
existing estimates of the F/T state because of the expected
significant increase in number of missions in the coming years,
including the current constellation of private satellites operated
by Spire [59] and the upcoming Hydrology using GNSS reflec-
tions (HydroGNSS) mission by European Space Agency [60].
Future activities could include the study of F/T daily-fluctuations
to explore the dynamics of the F/T cycle. GNSS-R, SAR, and
microwave radiometry mission F/T products could be used in a
synergistic manner to enhance these studies.

The expected impact of this scientific-technological develop-
ment is high because of the influence on climate change actions
and socio-economic aspects, including crop production and
geopolitics. China has ~8% of the Earth’ land surface suitable
for agriculture, but the ~25% of the world’s population. USA
has ~15% of the Earth’ land surface suitable for agriculture,
but the ~4% of the world’s population. China is the major
customer of USA agriculture exports. The ~60% of China’s
trade is by sea. Thus, the economic security of China strongly
depends on the control of South China Sea. In the near future,
warmer temperatures will significantly increase the available
land extension suitable for agriculture in the Tibet Plateau. This
could have an important influence on the world’s international
relationships.
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VII. CONCLUSION

Soil F/T transition monitoring is essential for quantifying
climate change and hydrologic dynamics over cold regions.
F/T cycling is a key-parameter for the evolution of ecosystems.
The F/T changes of seasonally frozen ground are an important
indicator of climate change. This article is performed using 31
months of CYGNSS data over three different high-altitude target
areas: the Tibet Plateau, the Andes, and the Rocky Mountains.
These regions are selected based on global surface elevation data
from the GMTED 2010 DEM. TRI and ERAS-Land surface
temperature are also used to improve the interpretation of the
results. Our F/T STA is applied to evaluate the yearly number of
frozen and thawed months at each pixel, the first month after the
warm season (earliest fall freeze) in which each pixel is frozen as
well as the first month after the cold season (earliest spring thaw)
in which each pixel is thawed. Results show the capability to
capture interannual changes in these parameters and to generate
maps of their spatial variation. Extensive permafrost areas are
found over the Tibet Plateau. Over the Andes and the Rocky
Mountains, only seasonal frozen ground is detected. From 2019
to 2021, the loss of the maximum extension of frozen area in the
Tibet Plateau and the Andes Mountains is ~100 000 km? and
~15 000 km?, respectively.

We demonstrate the potential of GNSS-R to further under-
stand the geo-distribution and long term temporal variability
of CO2 and CH4 at a global scale. The higher spatio-temporal
sampling of GNSS-R as compared to more traditional remote
sensing techniques could open new insights in monitoring highly
dynamic F/T surfaces processes. Future high-inclination orbit
GNSS-R missions, e.g., [59], [60] will enable the application of
our retrieval algorithm over higher latitude regions. Within the
new space era, the number of SmallSats and constellations of
SmallSats will significantly increase the number of data sources
as well as both the surface temporal sampling and the latency
time. This will enable real climate change action, and it will
increase the relevance of GNSS-R and remote sensing in future
geopolitics.
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