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Abstract—Cross-modal text-image retrieval in remote sensing
(RS) provides a flexible retrieval experience for mining useful
information from RS repositories. However, existing methods are
designed to accept queries formulated in the English language
only, which may restrict accessibility to useful information for non-
English speakers. Allowing multilanguage queries can enhance the
communication with the retrieval system and broaden access to the
RS information. To address this limitation, this article proposes a
multilanguage framework based on transformers. Specifically, our
framework is composed of two transformer encoders for learning
modality-specific representations, the first is a language encoder
for generating language representation features from the textual
description, while the second is a vision encoder for extracting
visual features from the corresponding image. The two encoders
are trained jointly on image and text pairs by minimizing a bidirec-
tional contrastive loss. To enable the model to understand queries
in multiple languages, we trained it on descriptions from four dif-
ferent languages, namely, English, Arabic, French, and Italian. The
experimental results on three benchmark datasets (i.e., RSITMD,
RSICD, and UCM) demonstrate that the proposed model improves
significantly the retrieval performances in terms of recall compared
to the existing state-of-the-art RS retrieval methods.

Index Terms—Contrastive loss, cross-modal retrieval, language
transformer, remote sensing, vision transformer.

I. INTRODUCTION

R EMOTE sensing (RS) data play a substantial role in ana-
lyzing geographic phenomena and forecasting the future

state of the earth’s surface. In the last several years, RS tech-
nology has advanced at a breakneck pace [1]. This combined
with the increasing number of the launched earth observation
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satellites that are constantly monitoring the earth has led to a
significant growth in the RS image archive.

To make full use of such big data, the development of ap-
propriate and efficient retrieval methods that can deal with RS
archives in a manageable way is becoming urgently needed.
The task of image retrieval, which aims to study how to extract
a specific image out of a massive amount of data, has received
a great deal of attention recently. The core idea is to narrow
the search for the targeted image and retrieve the image that
matches a particular query. This task has important value in
many practical applications including deforestation detection,
visual navigation, and urban planning.

The common approach in RS retrieval is the single-modal
retrieval [2], which accepts an image as a query to match its
content against all the images in the archive. This process
involves extracting representative features from the set of images
and then, applying a certain measure to quantify the similarity
between the query image and the images in the archive to retrieve
a list of candidate images. Early single-modal methods have
adopted hand-crafted features to represent the visual content of
images [3], [4]. However, these manually designed features are
inefficient at describing the rich semantic information contained
in RS images. On the contrary, the developments of deep-
learning models such as convolutional neural networks (CNNs),
have brought crucial achievements in boosting the accuracy of
retrieval systems [5] duo to its ability to automatically learn
high-level features from complex RS scenes.

Although single-modal retrieval has been extensively studied
in the RS domain, it still suffers from a fundamental problem
in terms of usability. Single-modal retrieval requires the user to
formulate the query using a preexisting image. This constraint,
in many cases, can be problematic and impractical as the avail-
ability of an exemplar query is not always guaranteed. Allowing
the user to formulate a spoken, written, or even drawn query
can give the user more flexibility to describe the content of the
targeted image. Hence, developing cross-modal retrieval models
has become increasingly important for enhancing the retrieval
experience.

Cross-modal retrieval basically aims to let the user search for
data in one modality by a query in another modality. Today, as
we are witnessing the era of big data, data from various sources
(e.g., optical, radar, or laser) and a growing number of domains
(e.g., image, text, and sound) have become available. As a result,
a new category of multimodal applications has emerged, and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4467-650X
https://orcid.org/0000-0001-9287-0596
https://orcid.org/0000-0003-2815-3255
https://orcid.org/0000-0003-1846-1131
https://orcid.org/0000-0001-9745-3732
mailto:mmalrahhal@ksu.edu.sa
mailto:ybazi@ksu.edu.sa
mailto:441202939@student.ksu.edu.sa
mailto:lailabashmal@outlook.com
mailto:lailabashmal@outlook.com
mailto:najlan@ksu.edu.sa
mailto:melgani@disi.unitn.it
mailto:melgani@disi.unitn.it


9116 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

researchers have started to pay more attention to the interpreta-
tion tasks that involve multimodality interactions, such as image
captioning [6], [7], [8] and visual question answering [9], [10].

Motivated by this, RS image retrieval has been explored using
queries of different modalities such as images from different
sources or sensors [11], [12], [13], [14], sketches [15], [16],
speech [17], [18], [19], [20], [21], and text [22], [23], [24], [25],
[26], [27]. Among these modalities, textual descriptions repre-
sent the most intuitive way of communicating with machines.
It can exhaustively describe the vast and complex content of
the scene with a few concise words. Therefore, using textual
information for querying RS images can enhance the retrieving
experience and bring more flexibility in terms of the query de-
scription, but at the same time, expressing RS scene using natural
language introduces new challenges due to the visual-semantic
discrepancy between language and vision worlds.

In the literature, only few works have been developed for
text-image retrieval [22], [23], [24], [25], [26]. All of these works
have been designed to allow English as the primary language of
the query. However, the use of English as the sole language
may create a barrier for those who are non-English speakers.
Thus, developing a retrieval model that can cross language
boundaries and process queries in the user’s mother tongue is
highly desirable.

Moreover, although the prior methods of RS text-image re-
trieval have achieved promising results, most of the proposed
models rely on CNN for encoding the visual data and recur-
rent models for encoding the textual data. Yet, these models
have shown some limitations in capturing global dependencies
within the input and have been gradually replaced by a self-
attention-based model known as a transformer. The transformer
is now considered the state-of-the-art model in natural lan-
guage processing (NLP), due to its ability to handle long-range
interrelationships within the data and hence, providing better
representations. In addition, transformer-based retrieval models
have shown promising results in the context of computer vision
[28], [29].

With these considerations in mind, in this article, we propose a
multilanguage text-based retrieval model for RS images where
the textual query can be of any of the following languages—
English, Arabic, French, and Italian. To the best of our knowl-
edge, no work has addressed the use of multilanguage text for
querying RS images. To fully extract representative features
from the vision and language domains, the model employs two
transformers, one for visual features and the second for textual
features. The model aims at exploiting the semantic relation
between the image and the corresponding textual description to
learn their representation in a joint embedding space.

The main contributions of this article are summarized as
follows.

1) To the best of our knowledge, this is the first study in
RS community that incorporates multilanguage queries to
perform cross-modal text-image retrieval.

2) This article proposes a dual transformer-based model for
better learning of the visual and linguistic features from
the image and the corresponding captions, respectively.
The model is trained with bidirectional contrastive loss
to encourage the model to correctly align the features of

the image and the corresponding text into the same cross-
modal space, and thereby improving the performance of
the retrieval task.

3) The proposed model was extensively evaluated on three
RS text-image datasets using single-language and multi-
language training settings. The results show that it can
achieve better performance compared to state-of-the-art
methods based on recurrent networks.

The rest of this article is organized as follows. Section II
presents an overview of the state-of-the-art works in the cross-
modal RS retrieval. Section III describes the methodology of
the multilanguage text-image retrieval model. The experimental
results on three benchmark datasets are presented in Section IV.
Finally, Section V concludes this article.

II. RELATED WORK

Many efforts have been dedicated by the RS community to
automate information retrieval from large repositories. The ex-
isting techniques can be roughly divided into two main streams:
single-modal and cross-modal retrieval methods depending on
the type of the query. The single-modal retrieval methods take
a query image as an input and retrieve a list of images that
are mostly similar to the content of the query image. The other
approach is cross-modal retrieval, in which the query can be of
any type of data (e.g., speech or a descriptive sentence). In this
case, the semantic concept of the query is extracted and matched
against the visual content of all images in the archive to find the
most relevant ones. In the following, we present a review of
existing works related to cross-modal image retrieval.

A. Cross-Modal Image-Image Retrieval

As a result of the rapid development of RS technologies, the
number of RS images captured by different types of sensors has
increased. Consequently, cross-model image-image retrieval has
received widespread attention in recent years.

Cross-modal image-image retrieval allows retrieving the tar-
get RS imagery by using a query image from different sources
[11], different sensors [12], [30], or even a sketch image [15],
[16].

For example, Li et al. [11] introduced a cross-source image
retrieval approach, which utilizes deep hashing CNNs to perform
image retrieval. Xiong et al. [13] proposed a cross-source dis-
criminative distillation network to elevate the effect of data drift.
In [14], a model based on cycle-GAN is proposed to translate
the image from one source to the other.

Chaudhuri et al. [12] proposed a method for performing cross-
modal retrieval between panchromatic (PAN) and multispectral
imagery. Xiong et al. [30] proposed a cross-modal hashing
network for retrieving optical images from synthetic aperture
radar (SAR) images. The method transforms the optical image
into a single channel image and pairs it with the corresponding
SAR image to train the model.

In [15], a multiscale model consisting of CNNs and fully
connected layers is proposed for retrieving RS images using
a coarse sketch. Another work [16] proposed a sketch-based
retrieval model that learns domain-invariant representations by
adversarial training.
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B. Cross-Modal Sound-Image Retrieval

The goal of cross-modal sound-image retrieval is to leverage
sound to retrieve relevant RS images. Indeed, using speech as
a query can be efficient in practice as it has a broad range of
application scenarios. Some notable works have been published
very recently for sound-image retrieval. For example, the authors
in [18] proposed a triplet network containing a branch for the
image, another one for the positive sound, and a branch for the
negative sound. Then, the model parameters were learned by
optimizing a triplet loss. The model integrated hash code learn-
ing to reduce storage costs. In another work [19], a CNN with
an inception dilated convolution [31], [32] module layer was
introduced to extract multiscale contextual information from
both images and voices. The model also learns hash code for
faster retrieval and lower storage. The authors in [21] proposed
a model that extracts high-level features from the images using
a CNN and extracts high-level voice features using a 1-D dilated
convolutional model. To find the similarity between the two
different modalities, the consistency loss and the classification
loss are minimized jointly to learn the representations needed for
the RS image–voice retrieval. Guo et al. [20], proposed an RS
speech-image retrieval model which uses a 1-D convolutional
network to extract high-level semantic features of the spoken
query, and a CNN to extract high-level visual features from each
RS image. A multimodal fusion layer was added on the top for
fusing both modalities.

C. Cross-Modal Text-Image Retrieval

Over the last two years, only a few studies have been proposed
for RS image retrieval using a textual query. This is mainly
due to the challenging nature of the problem and the special
characteristics of RS images. The first work in text-based RS
image retrieval [22] proposed a deep bidirectional triplet net-
work to match natural language descriptions to images. The
triplet network is composed of a long short term memory
(LSTM) and a pretrained CNN. On top of this architecture,
an average fusion strategy was used to fuse the features per-
taining to different sentences. Hoxha et al. [23] developed a
text-based image retrieval system that combines a CNN with
a recurrent neural network. The textual query can be directly
given or generated by captioning the query image. Rahhal et al.
[24] proposed an unsupervised learning method for text-image
retrieval. The model used a CNN for encoding the image and
a bidirectional LSTM for encoding the text description. The
authors in [25] introduced a semantic alignment module in order
to discover the semantic relationships between image and text
in the joint embedding space. The module employed attention
and gate mechanisms to extract discriminative visual and textual
feature representations. Specifically, the attention mechanism
was utilized to optimize the corresponding relationships between
visual and textual features, and the gate function was employed
to filter the unnecessary information to obtain the discriminative
features. Yuan et al. [26] designed an asymmetric network to
solve the target redundancy and multiscale scarcity problems in
RS retrieval tasks. This method filters redundant features and
adapt to multiscale feature inputs by using a multiscale visual

self-attention module. The authors also addressed the problem
of high intraclass similarity in RS images by designing a triplet
loss function to train the model. In [27], the authors proposed a
text-image retrieval model and applied two methods to improve
retrieval performance—a knowledge distillation-based method
and a semisupervised optimization method based on contrastive
learning.

III. METHODOLOGY

In this section, we introduce the multilanguage transformer
method that we propose in detail. Since the transformer is
a central model in our method, we first describe the general
architecture of the language transformer encoder, and then we
describe the vision transformer encoder.

First, we assume having a set of image-text pairs denoted
as D = {Xi, ti}Ni=1, where Xi represents an image, and ti
represents the corresponding sentence in one of the following
languages—English, Arabic, French, and Italian. In the text-to-
image retrieval task, given a text query, the goal is to search for
the most relevant image Xi to the given text query. Similarly, in
the image-to-text retrieval task, the goal is to retrieve the most
similar sentence ti to the query image. To achieve that, we adopt
two transformers one for image encoding and the other for text
encoding. The vision encoder accepts a mini-batch of b images,
while the language encoder accepts a set of tokens of b sentences.
The outputs of each encoder are injected into the global average
pooling (GAP) layer to obtain a global feature representation
for each modality. The output features are then normalized with
L2-normlization to obtain the visual features {fvi}bi = 1 and the
textual features {fti}bi = 1. Afterward, a similarity matrix of size
b× b is constructed between all the text-image pairs in the mini-
batch. The model learns the weights by optimizing text-image
and image-text contrastive classification loss using a stochastic
gradient descent (SGD) optimizer.

In this article, we are particularly interested in investigating
two learning paradigms as shown in Fig. 1. In the single-
language learning paradigm, the text encoder is trained on each
language independently so that it accepts a query from one
language only. In the second paradigm, the text encoder is trained
on sentences from multiple languages jointly, so the model can
accept a query formulated in any of these languages. Detailed
descriptions of the proposed model are provided in the following
sections.

A. Language Transformer Encoder

The first step in processing the textual description for language
transformer encoder [33] is sentence tokenization, in which the
sentence is represented as word tokens ti = (w1, w2, . . . wm),
where m is the length of the sentence. Then, this word vector is
projected into an embedding space using a learnable embedding
layer Et, that converts these tokens into a sequence of textual
features of dimension dt.

Before feeding the sequence into the encoder, a learnable
positional embedding is appended to supply the sequence with
information about the order of each word. In addition, two
special tokens CLS and SEP are added to the input tokens to
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Fig. 1. Difference between the single-language (left) and multilanguage (right) retrieval models. In the single-language model, the query text can be formulated
in only one language. In the multilanguage model, the query can be formulated in any of the four considered languages. For training the network, we sample a
mini-batch of b images-text pairs and feed them to the vision and language transformer encoders to generate L2-normalized visual {fvi}bi=1 and textual {fti}bi=1
features. Then, we generate a similarity matrix of size b× b by computing the similarity between all possible visual and textual pairs in the mini-batch. We learn
the model weights by optimizing text-to-image and image-to-text contrastive classification loss Ltotal = λ1Lv→ t + λ2Lt→ v using an SGD optimizer.

Fig. 2. Language transformer layer.

mark the start and end of the sequence. Thus, the sentence
representation zt0 is expressed as

zt0 = [wclass; w1Et;w2Et; . . . ; wmEt] + Epos (1)

where wclass is a special classification token that provides a
general representation of all the tokens, andEpos ∈ R(m+1)×dt is
the positional embedding. The initial representation zt0 is fed as
input through multiple identical layers of the encoder to generate
the final representation ztL at the last layer L. Each layer in
the encoder contains a multihead self-attention (MSA) block
followed by a multilayer perceptron (MLP) block. Which is a
simple feed-forward network consisting of two fully connected
layers with GELU activation function in between as shown in
Fig. 2. The MSA and MLP blocks are connected by residual
skip connections and each layer is followed by a normalization

layer (LN ):

z′� = MSA (LN (zt�−1)) + zt�−1, � = 1 . . . L (2)

zt� = MLP (LN (z′t�)) + z′t�, � = 1 . . . L. (3)

The main goal of the MSA is to manage the complex rela-
tionships within the sequential data by modeling the long-range
dependencies between a specific token and all other tokens in the
sequence. It comprises multiple independent self-attention heads
operating in parallel, each head computes a different attention
score using the scaled dot-product similarity between the queries
(Q), keys (K) and values (V ) expressed by

Attention = softmax

(
QK√
dK

)
V (4)

wheredK is the dimension of the key. The outputs of all heads are
concatenated and then projected with learnable weights matrix
to the desired dimension.

B. Image Transformer Encoder

After the tremendous success of transformer in NLP [34], they
have been extended recently to computer vision tasks leading
to the so-called ViT [35]. This last showed competitive results
compared to CNN for several image processing tasks, thanks
to the self-attention mechanism. In vanilla ViT, the sequence
of word tokens is replaced with a sequence of image patches.
The input image Xi of size 224×224×3 pixels is first divided
into N nonoverlapping patches (x1

p; x
2
p; . . . ; x

N
p ). Each patch
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in the sequence has the dimension of (3p2), where p represents
the width/height of the patch and N is the total number of
patches N = (224× 224)/p2. This sequence of patches is
flattened and projected via a linear projection layer Ev , to the
encoder dimension dv . Then, in a way similar to the language
transformer, position embeddings are added to keep the position
information. Also, xclass token is appended to the patch repre-
sentations. The resulting image representation zv0 that is then
fed into the encoder

zv0 =
[
xclass; x

1
pEv; x

2
pEv; . . . ; x

N
p Ev

]
+ Epos (5)

where Ev ∈ R(p2. c)×dv. is the linear embedding layer and
Epos ∈ R(N +1)×dv. is the positional encoding. Finally, by ap-
plying the same operations as in (2) and (3), we obtain the
final image representation zvL at the last layer L. It is worth
recalling, that the architecture of the vision encoder is similar to
the language encoder. Except that the normalization layer comes
before the MSA and the MLP blocks.

C. Network Optimization

In order to learn the weights of the model, we apply global
average pooling to the representation matrices ztL ∈ R(m+1)×dt

and zvLR(N+1)×dv obtained from the text and the image en-
coders, respectively, yielding a feature ft ∈ Rdt and fv ∈ Rdv ,
with wclass and xclass tokens representing the whole sentence
and image representations ignored. Then, the visual features
are further mapped using a linear projection layer to the same
dimension of the textual feature. We note that the dimension
of the visual and textual features are dv = 768, dt = 512.
Afterward, we apply L2-normalization to the resulting textual
and visual features.

If we consider Bk = {Xi, ti}bi=1 as the kth mini-batch of
size b sampled from the archive D(l). Feeding this mini-batch
as input to the model yields the following normalized visual
and textual feature representations {fvi}bi = 1 and {fti}bi = 1.
The main learning objective is to jointly train the image and
text transformer encoders to maximize the similarity of truly
corresponding image-text features pairs while simultaneously
minimizing the similarity of mismatched image-text features
pairs within the kth mini-batch. To achieve this objective, we rely
on contrastive loss, which is a popular loss in self-supervised
learning that has shown an excellent performance in pairwise
similarity measurement tasks [36], [37].

In our context, we compute this loss in both textual and visual
domains, respectively. In the visual domain, we aim at making
the textual feature closer to its corresponding visual feature
while being away from other visual features in the mini-batch.
Similarly, in the text domain we aim at making the visual feature
closer to its corresponding textual feature while pushing away
other textual features in the mini-batch. This problem can be
viewed as a multiclass classification problem with b classes,
where b refers to the size of the mini-batch. Basically, we learn
the weights of the model by minimizing the cross-entropy loss
over the similarity matrix of size b× b in the horizontal and
vertical directions. The text-to-image classification loss is given

Fig. 3. Sample images from the three datasets used in the experiments with
of their textual annotations.

as follows:

Lt→ v = −1

b

b∑
i = 1

log
exp

(
fT
ti fvi/τ

)
∑b

j = 1 exp
(
fT
ti fvj/τ

) (6)

and likewise, the image-to-text classification loss is computed
as

Lv→ t = −1

b

b∑
i = 1

log
exp

(
fT
vifti/τ

)
∑b

j = 1 exp
(
fT
viftj/τ

) (7)

where the learnable temperature parameter τ is set to 0.07 to
control the sharpness of the distribution. Finally, the total loss
function to optimize is

Ltotal = λ1Lv→ t + λ2Lt→ v (8)

where λ1 and λ2 are two hyper-parameters controlling the con-
tributions of both losses. In all experiments, we set them to the
value 0.5.

IV. EXPERIMENTAL RESULTS

In this section, Section A describes the three text-image
datasets used in the experiments and the evaluation metrics.
Section B introduces the details of the implementation and
Section C presents the experimental results.

A. Datasets Description and Evaluation Metrics

1) Datasets: To validate the proposed multilanguage re-
trieval model, three RS cross-modal datasets were exploited to
train and evaluate our model. All the datasets are annotated with
five English textual descriptions. We used an online software
to translate the descriptions from English to three different
languages—Arabic, French, and Italian. Fig. 3 shows some im-
ages from the datasets with examples of their textual annotations
in English, Arabic, French, and Italian, respectively, and Table I
shows a comparison between the datasets. More details on the
datasets are provided in the following.

a) RSICD [38]: This is the largest text-image dataset that
contains 10921 images with various resolutions that belong to
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TABLE I
TEXT-IMAGE RS DATASETS

30 different classes. Images were collected from various sources
including Google Earth, MapABC, Baidu Map, and Tianditu.
Each image in the dataset has 224×224 pixels and is described
with five sentences, where each sentence is at least six words in
length. In RSICD, the total number of captions is 24 333, which
implies that not all images have five sentences. For consistency,
captions have been duplicated for images with less than five
sentences.

b) RSITMD [26]: This dataset consists of 4743 images be-
longing to 30 classes. The images were collected from the
RSICD dataset and Google Earth. Each image has the size
256×256. Five different sentences were given to describe every
image with a total of 23 715 captions. In addition to one to five
keywords, the dataset was designed to have fewer images but
more diverse captions compared to the RSICD datasets.

c) UCM [39]: This dataset comprises of 2100 images, each
image with the size of 256×256 pixels with a spatial resolution of
30 cm. The dataset is based on the well-known Merced Land-use
dataset [40] for scene classification that categorizes the 2100
images into 21 classes. Each image in this dataset is described
with five different captions, resulting in 10 500 descriptions in
total. Yet, there is a high similarity between the sentences of
images that belong to the same class.

2) Evaluation Metrics: In this article, we present the results
in terms of Recall@K (R@K) as it is the most adopted evaluation
metric for cross-modal retrieval. The recall is a measure that
represents the ratio of the correctly retrieved items to the total
number of existing relevant items to the given query, and it is
defined as follows:

R@k =
TP@k

TP@k + FN@k
(9)

where TP is the true positive and FN is the false negative. We
utilized the R@k indicator with different values of k (1, 5, and
10) to measure the retrieval performance.

In addition, we provide the result in terms of mean recall
(mR) to evaluate the overall performance of the model. The
mR represents the average of R@1, R@5 and R@10 for both
the text-to-image and image-to-text retrieval tasks. Besides the
numerical metrics mentioned above, subjective metrics are also
used to better understand the performance of models in retrieving
the relevant images on different datasets.

B. Experimental Setup

Given the constraints that the current RS text-image datasets
are of a small-scale type, we propose to transfer knowledge
from backbones pretrained on a large-scale text-image dataset.

To this end, we use the vision language model proposed in
[36], which was trained on 400 million general text-image pairs.
This model built upon two transformers for visual and textual
feature representations. Specifically, ViT32 is adopted as the
vision transformer, and a BERT-like model as the language
transformer. ViT32 consists of L = 12 encoder layers. It divides
the image of dimension 224×224×3 pixels into n = 49 patches
each of dimension (p, p) = (32× 32) pixels. These patches are
flattened and mapped to the dimension dv = 768. ViT32 has
about 86M parameters. The language transformer encoder is a
BERT-like model it has 63M parameters; and L= 12 layers. The
vocabulary size is equal to 49,408. To facilitate batch processing,
it provides a sequence with a fixed length equal to m = 77.
Then, it uses a word embedding layer to embed the sequence
into features of dimension dt = 512. The resulting visual fvi
and textual fti feature representations after the GAP operation
will be equal to 768 and 512, respectively. The visual features
are further mapped using a linear projection layer to the same
dimension as the textual feature, which is 512. Both visual and
textual features are normalized using L2-Noramlization.

For data augmentation, we apply standard operations such as
random crops, horizontal and vertical flips with 50% probability,
and ColorJitter. For comparison purposes, we use the same split
as in previous works. For RSICD and Merced, we consider
80% of the image-text pairs as training while 10% are left for
validation and 10% for testing. For RSTIMD, we use 80% for
training and 20% for testing.

Since each image is described by five sentences, in the
single-language learning setting, we randomly select one of the
five sentences for learning. For training the model on multiple
languages, we pick each time a sentence from one of the four
considered languages, which are English, Arabic, French, and
Italian. It is worth-recalling that, we have used online transla-
tions tools from Google to generate the Arabic, French, and
Italian captions from English sentences followed by manual
correction.

As an optimizer, we use the SGD optimizer with Nesterov
momentum. We set the initial learning rate to 0.1, and the
momentum to the default value of 0.9. During training, we
decrease the learning rate to 0.01 after 40 epochs, and to 0.001
for the last 20 epochs. For numerical stability, we found that
it is useful to apply gradient clipping with a max norm of the
gradients set to 0.1. The model is trained for 60 iterations with
a mini-batch size set to b = 120.

The model was implemented in PyTorch and all the experi-
ments were implemented on a station with a RAM of 32 GB and
an NVIDIA GeForce GTX 1080 Ti Graphical Processing Unit
(GPU) (with 11 GB GDDR5X memory).

C. Experimental Results

To evaluate the effectiveness of the proposed model, we report
the results of two learning scenarios: the single-language and
the multilanguage. In the first scenario, the model is trained on
sentences in English language only to compare its performance
with state-of-the-art methods. In the latter scenario, it is trained
with sentences from multiple languages either independently
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TABLE II
RETRIEVAL RESULTS USING ENGLISH LANGUAGE COMPARED TO

STATE-OF-THE-ART METHODS

or jointly to verify the retrieval performance on multilanguage
settings.

1) English Language Retrieval: Table II presents a compar-
ison between the proposed transformer-based model and the
state-of-the-art retrieval methods published recently, namely,
VSE++ [41], SCAN [42], MTFN [43], AMFMN [26], and
three models of LW-MCR [27]. For reliable comparison, our
model is trained and tested on descriptions in English language
only. The results are shown for three RS text-image datasets
where the best results are represented in bold. As shown in the
Table II, for all metrics, the proposed model outperforms the
current state-of-the-art results on all datasets in both text and
image retrieval tasks by a considerable margin. Specifically, it
achieves an improvement of 11%, 11.66%, and 8.04% on the mR
indicator over the AMFMN, which is the second-best method
on the RSICD, RSITMD, and UCM datasets, respectively.

By comparing the results of the three datasets, we observe
that the results of the RSICD, which is the largest dataset, are
lower compared to the other two datasets, and the results of
UCM are the higher. This seems natural as it is easier for the
retrieval model to find the relevant item in a smaller dataset.
It is also interesting to notice, that the retrieval performance in
both the text retrieval and image retrieval tasks are very close,
which indicates that the matching is effective in both directions.
Moreover, the recall shows a significant increase from R@1 to

TABLE III
RETRIEVAL RESULTS FOR SINGLE LANGUAGE AND MULTIPLE LANGUAGE

TRAINING

R@5 and from R@5 of R@10. This is because the retrieval task
is very challenging that it is difficult to find the best match in the
first retrieved results.

Generally, this experiment demonstrates the powerful expres-
sive ability of transformer encoders for image and text and how
they are effective in boosting the retrieval performance of RS
data.

2) Multilanguage Retrieval: To assess the validity of the
retrieval model on the multilanguage retrieval task, we trained
it independently on sentences from each of the following lan-
guages: English, Arabic, French, and Italian. In addition, we
train it jointly on sentences from the four considered languages.
Table III shows the retrieval results in terms of R@k and mR on
the three datasets. The first part of each table shows the results
of the model trained on a single language, and the second part
presents the results of learning on multiple languages.

By comparing the results of Tables II and III, it can be
seen that the performance of the model trained using single or
multiple languages yields better than all of the state-of-the-art
methods. In most of the cases, the results show that the best
retrieval performance is achieved with the model trained on
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multiple languages. Specifically, in the RSICD dataset, the best
results are achieved using an English query on the multilanguage
model. The same observation can also be noticed on RSITMD,
where the best results are achieved by using the English and
French queries. The text retrieval task on the UCM dataset is
an exception to this, where the results of the multilanguage
model is lower than the single-language model trained on French
language only. However, the mR of the image retrieval task for
the UCM dataset shows slightly better performance over the
single language model.

Next, we compare the performance of each language when
the model is trained independently on this language and when
the model is trained jointly with other languages. As shown
in Table III, for English language, we can clearly see that
the retrieval performance has increased using English queries
when the model is trained on multiple languages compared to
a model trained on English language only. For example, on
RSICD and RSITMD datasets we can see an improvement in all
metrics. However, on the UCM dataset, there is a slight decrease
in multilingual performance compared to the single language
model for R@1 image retrieval. One possible reason for this is
the high similarity between the descriptions given to the images
that belong to the same class in this dataset. In general, English
has the highest scores on most indicators compared to other
languages. This could be explained by the fact that the model is
basically pretrained on English language and then finetuned on
the other languages.

For the French language, the results on the RSICD dataset
show an improvement in all metrics when the model is trained on
multilanguage. However, the results of RSITMD dataset show a
slight decrease in R@1 and R@5 of the text retrieval. For UCM
dataset, the French single-language model has the highest scores
in all metrics on the text retrieval. Yet, Table III shows a decrease
in the performance in all metrics when the model is trained on
multiple languages, especially in the R@1 text retrieval score,
where the performance decrease is significant from 20.00% to
12.85%.

The Arabic language has relatively the lowest scores on most
indicators in all datasets. The reason could be attributed to the
uniqueness of its alphabets, and it is script direction as it is
the only Semitic language in the group. The multiple languages
model obtained an improved performance over the single lan-
guage model, when given an Arabic query. In particular, the
improvement of the multiple languages model in mR indicator
are 1.76%, 4.32%, and 2.87% on the RSICD, RSITMD, and
UCM datasets, respectively. On the UCM dataset, the Arabic
multiple languages model has improved all the text retrieval, and
the image retrieval indicators except the R@10 image retrieval
score.

The Italian language has the second-best overall performance
on the RSICD dataset for the single and the multiple lan-
guages models. The multiple languages model has improved
the performance of all metrics compared to the single language
model, except the mR and the R@10 text retrieval score. On
RSITMD dataset, the Italian language has the highest improved
performance on multiple languages learning with an increase
of 4.78%, in the mR metric. On the UCM dataset, the single

language model outperformed the multiple languages model
except for R@5 and R@10 image retrieval.

Generally, the English and French languages have the highest
results on the three datasets, and the RSITMD dataset shows
the highest improvement percentage compared to other datasets
when the multiple language model is used. UCM dataset which
is the smallest dataset shows a decrease in multilingual perfor-
mance compared to the single language model. The possible
reason could be the high similarity between the dataset sen-
tences.

To get an intuition of how the image and the text are aligned
in the joint embedding space, Fig. 4 shows the features of both
the image and text obtained from the two encoders projected
into the 2-D space using the t-distributed stochastic neighbor
embedding (t-SNE) method. We can observe that the model is
able to aggregate data from each modality into well-separated
clusters. Furthermore, it attempts to align the embedding of the
images and their corresponding texts from the four considered
languages to form larger clusters.

Aligning between two different modalities is challenging as
we observe a slight shift between the image representations and
their corresponding texts and some overlaps between the formed
clusters. This is clearer in the RISTMD and the RSICD datasets,
which are relatively larger datasets compared to the UCM. We
recall that a good alignment is essential to retrieve an image
that matches a given query text, and also to retrieve an image
that matches a given query text, and also to retrieve the textual
description that describes a given image.

D. Visual Explainability

In addition to the quantitative results, we performed another
qualitative experiment to better understand the behavior of the
attention mechanism employed by the transformer encoders.
Fig. 5 shows some examples of textual queries and the retrieved
images from RSITMD and RSICD datasets.

On the left, Fig. 5 shows the input query with the textual
attention map, and on the right the ground truth image and the
retrieved images with the associated visual attention maps. The
textual attention highlights the important words that the model
pays attention to retrieve the image, and the visual attention maps
show the spatial areas of the image that the model focuses on to
make the retrieval. It is worth noting that both the textual and
visual attention maps are generated by using attention rollout
technique [44] on the attention scores for the top layers (form
layer 8 up to the last layers of the encoder).

We can initially notice from Fig. 5 that the model can high-
light the important keywords in the sentence no matter which
language we use for the query. In addition, the visual attention
maps of the retrieved images show high responses at the area
related to the semantic meaning of the query.

To further analyze the retrieved results, Table IV shows the
ground-truth images that match the queries in Fig. 5 and the
images retrieved by the model. For the first case of the RSITMD
dataset, the model failed to retrieve the “airport_3” image in the
first ten results. However, all the retrieved images are from the
“airport” category. The textual attention shows a high response
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Fig. 4. t-SNE representation of image and text embedding features. (a) RISTMD, (b) RSICD, and (c) UCM datasets.

Fig. 5. Visualization of attention on image and query text. (a) RSITMD and (b) RSICD datasets.
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TABLE IV
RANKS OF THE RETRIEVED IMAGES OBTAINED FOR RSITMD AND RSICD DATASETS

on the words “planes” and “airport.” The visual attention maps
focus on an area containing airplanes, which indicates that there
is some confusion duo to the high similarity within the samples
of the “airport” category. The second case shows a successful
retrieval where the image “baseballfield_26” is predicted in the
first rank using an Arabic query with the meaning “six tennis
courts besides a baseball field”. The corresponding attention
maps are in line with the semantic meaning of the query as we
see the model paying high attention to the baseball diamond and
the tennis courts area, and to the words “six,” “tennis courts,”
and “baseball” in the query. The third example shows another
failure case in retrieving the image “bridge_55” with a query
given in Italian language. The query which means “A bridge
built on a river,” shows a high attention to the words “sul”
and “fiume” which means “on the river.” The model wrongly
retrieved an image of a river in the first rank and retrieved other
images from categories that have similar visual features to the
“bridge” category, such as “river,” “port,” and “railway station.”
This is also confirmed by the attention maps of the retrieved
images that show a high response in the river and railway areas
which look similar to the bridge. The last case shows another
successful retrieval of the “parking_235” image with a query
given in French. The query has the meaning of “There are a
number of colored cars in the parking.” The target image is
correctly retrieved in the fourth rank and all the matched images
are from the “parking” category.

For the RSICD dataset, Table IV shows three examples of
accurate retrieval of the “denseresidential_60,” “desert_52,” and
“storagetanks_36,” where the target image is correctly retrieved
in the first rank. In the first example, which shows a query in
English, the model retrieved the “denseresidential_60” in the
first rank, but the results show some confusion with images from
the “playground” category in the second and tenth ranks. The
possible reason for this is that many dense residential images
contain playground areas. The second example shows a query
in Arabic with the meaning “There is a small lake in the desert.”
This example shows that the model was successful in retrieving
the target image and that all the matched images are from the

category of the “desert.” The textual attention map shows high
responses to the words “desert” and “lake” in Arabic, which is
consistent with the visual attention maps of the retrieved images
that show high focus on the lake areas.

The third example shows the result of a query given in French
in which the model retrieved the “farmland_38” image in the
sixth rank, but all the retrieved images are from the same
“farmland” category. This is because in the RSICD dataset, there
is a high intraclass similarity which can be the reason for this
confusion. Finally, the last example shows a successful retrieval
for a query given in Italian with the meaning “two blue storage
tanks in a rectangular field near a factory.” Both the textual and
the visual attention maps show that the model highlights the
information that is relevant to the prediction.

According to the above observations, it can be seen that
the model is generally effective in retrieving RS images using
queries from different languages. Even though the model fails
to retrieve the targeted images in some cases, in many of the fail
cases it retrieves images that belong to the same category or a
very relevant category. In addition, the model can successfully
capture the keywords in the query text and the fine-grained
details areas on the retrieved images as well.

V. CONCLUSION

In this article, we have proposed an approach for multilan-
guage RS text-image retrieval based on language and vision
transformers. We used vision and language transformer encoders
for generating visual and textual representations, respectively.
We have aligned these representations by optimizing a bidirec-
tional contrastive loss related to text-to-image and image-to-text
classification. In contrast to previous retrieval methods, which
restrict the language of the query to English, the model allows
queries to be formulated in English, Arabic, French, and Italian.
The qualitative and quantitative results on three RS datasets
show that the model is capable of dealing with multilanguage
queries while still achieving better performances than the current
state-of-the-art methods.
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