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Identifying Oceanic Eddy With an Edge-Enhanced
Multiscale Convolutional Network

Renlong Hang , Member, IEEE, Gang Li, Mei Xue, Changming Dong, and Jianfen Wei

Abstract—Identifying oceanic eddy from remotely sensed sea
surface height (SSH) data is challenging, mainly because of its
large-size variations. This article proposes an automatic identifi-
cation model upon convolutional neural networks for dealing with
this issue. The proposed network is comprised of two branches:
an eddy identification branch and an edge extraction branch. Both
of them adopt encoder–decoder frameworks, and the encoder is
shared with each other. The eddy identification branch simulta-
neously uses multiscale convolution modules in the encoder and
skip-layer connections between the encoder and the decoder to
learn multiscale features, thus effectively identifying eddies with
different sizes. Differently, the edge extraction branch is designed
to learn the edge information of eddies, which is not fully cap-
tured by the eddy identification branch. To sufficiently evaluate the
identification performance of our proposed model, several experi-
ments are conducted on a public eddy identification dataset named
SCSE-Eddy, and the results indicate that the proposed model is
capable of achieving higher performance than those of the existing
identification models.

Index Terms—Convolutional neural network, eddy
identification, edge extraction, multiscale features.

I. INTRODUCTION

OCEANIC eddy is a pervasive phenomenon in global
ocean currents, which has an important impact on the

primary production of the ocean [1], [2], [3], [4]. It has variable
translational and rotational speeds, and its shape is usually
asymmetric [5], [6]. According to the direction of rotation,
oceanic eddy can be classified as cyclonic eddy and anticyclonic
eddy. The top-down vertical mixing and dispersion motion of
cyclonic eddy can transport nutrients from the seafloor to the
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surface, which enhance phytoplankton photosynthesis [7], [8],
[9]. In contrast, the sinking motion of anticyclonic eddy can
reduce nutrients at the surface, which weaken phytoplankton
photosynthesis. Meanwhile, the primary production enhanced
by oceanic eddy can also affect the distribution of higher level
marine populations (e.g., marine fishes) [10]. This suggests that
oceanic eddy is of great importance in local ecosystems. Hence,
accurately identifying oceanic eddy is beneficial to the study of
the physical properties of ocean and is also important to marine
science.

In the past few decades, numerous approaches have been
designed to identify oceanic eddy. For instance, Isern-Fontanet
et al. [11] first used Okubo Weiss (OW) parameters for iden-
tifying eddies on the basis of their physical properties, which
assumed that the OW of the oceanic eddies is less than a
specific threshold. Subsequently, Chelton et al. [12] optimized
the calculation of OW by using the geostrophic current velocity
component. Based on different physical parameters adopted,
many methods have emerged, such as Q-criterion [13], Ω-
criterion [14], Δ-criterion [15], and λ2-criterion [16]. Similarly,
these methods need to set thresholds in advance and calculate
relevant physical parameters to identify oceanic eddies. Doglioli
et al. [18] got their inspirations from [17], and proposed a
wavelet analysis-based identification model, which decomposes
the relative sea surface vorticity into orthogonal wave packets.
The method has been successfully applied to identify eddies in
the Cape Basin. However, it is also constrained by the threshold
value and difficult to be applied to all sea areas.

In addition to the aforementioned physical models, another
popular kind of methods is dependent on the geometric proper-
ties of eddies. Chaigneau et al. [19] were the first to propose
a winding angle (WA) method for identifying eddies, which
defines the WA as the rotation angle of the streamline with
respect to the eddy center. This method is mainly dependent
on the global topological property of the flow field and does
not depend on the parameter settings. Compared with the OW
parameter methods, the WA method is more capable of iden-
tifying eddies [19]. However, its computational complexity is
high; thus, the identification efficiency is relatively low. Dong
et al. [20] used the vector geometry (VG)-based algorithm to
identify eddies. The VG algorithm calculates the eddy center
based on the motion patterns of the velocity vector, and the eddy
size is calculated from the closed contours of the stream function.
Similar to the WA method, although the VG algorithm improves
the accuracy of eddy identification, its computation efficiency
also needs to be improved. In [11] and [21], the researchers
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considered the advantages of physical and geometric hybrid
approaches to improving the performance of eddy identification.

With its fast advancement recently, deep learning technology
has been successfully employed in remote sensing data analysis,
such as urban planning [22], [23] and land-cover and land-use
classification [24]. Thus, many scholars attempted to apply it to
identify oceanic eddies. For example, Franz et al. [25] proposed
an encoder–decoder network with several convolutional layers
to identify eddies. Liu et al. [26] designed a fully convolu-
tional network (FCN) using eight convolutional layers and one
upsampling layer for eddy detection. However, different from
other objects, the size of eddies ranges largely. Specifically, its
diameter often changes from a few hundred meters to hundreds
of kilometers. The individual use of convolutional layers is not
enough to simultaneously identify different-size eddies. To deal
with this issue, some work tried to extract multiscale features.
Lguensat et al. [27] got their inspirations from UNet [28] and
proposed Eddynet for eddy identification. Similarly, Fan and
Zhong [29] proposed a SymmetricNet, which also drew on the
idea of UNet. The SymmetricNet not only uses the sea surface
height (SSH) data as input, but also combines sea surface tem-
perature data and other related information. Inspired by ResNet,
Santana et al. [30] introduced the residual structure into UNet to
deepen the network while obtaining better identification results.
All of these models adopt skip-layer connections to combine
different-scale features from different layers. Different from
them, Xu et al. [31] used PSPnet [32] to extract multiscale
features in a single layer through the pyramid pooling operator.
Similarly, Liu et al. [33] also used a pyramid pooling struc-
ture to learn the multiscale features of eddies. Sun et al. [34]
employed a modified Deeplabv3+ network proposed in [35] to
learn multiscale features. Although these networks are capable
of identifying most eddies, they often lose the detailed edge
information of eddies caused by the adopted pooling and con-
volutional operations.

To address the above issues, this article proposes a two-
branch convolutional neural network (TBCNN) for identifying
oceanic eddies. It mainly consists of an eddy identification
branch and an edge extraction branch (EEB). The former one
aims to identify eddies with different sizes, while the purpose
of the latter one is enhancing the eddy edges, which is not
well captured by the former one. Both of these two branches
employ the encoder–decoder frameworks, and the encoder is
shared by each other. For the eddy identification branch, we
adopt multiscale convolutional layers [36] in the encoder and
skip-layer connections between the encoder and the decoder
to learn multiscale features. Considering the existence of re-
dundancy information between the encoder and the decoder, a
difference enhancement module (DEM) is designed during the
skip-layer connections. Such a simultaneous use of single-layer
and multiple-layer method can extract more effective features,
benefiting the identification of eddies with different sizes. For
the EEB, the skip-layer connections are also applied to transfer
the spatial information between the encoder and the decoder,
thus helping the extraction of detailed edge information. To sum
up, the primary contributions of this article can be summarized
as follows.

1) For effectively identifying the oceanic eddies with differ-
ent sizes, we propose a two-branch identification network,
which decomposes the whole process into an EEB and
an eddy identification branch. The edge extraction one is
capable of enhancing the edge information of identified
eddies.

2) Different from most existing eddy identification networks,
we use single-layer and multiple-layer feature fusion
methods simultaneously to learn multiscale features more
effectively. For fusing multiple-layer features, DEMs are
designed to reduce redundancy information between dif-
ferent layers.

3) Comprehensive experiments are performed upon a pub-
licly available dataset named SCSE-Eddy, and the ex-
perimental results indicate that the proposed network is
capable of achieving higher performance than those of
several existing models, which certifies the effectiveness
of it.

The rest of this article is organized as follows. Section II
presents the detailed network structure of our eddy identification
model. In Section III, the adopted dataset for our experiments
and the obtained results of different identification models are
introduced. Finally, Section IV concludes this article.

II. METHODOLOGY

A. Overall Structure

Fig. 1 demonstrates the flowchart of our proposed TBCNN
model. It is comprised by two parallel branches. Assume that
X ∈ Rw×h, where h and w denote the height and the width
of X , respectively, is the input SSH data. It is simultaneously
fed into the two branches. The upper branch is designed for
identifying oceanic eddies with different sizes. To achieve this
goal, an encoder–decoder structure is employed. The encoder is
equipped with three multiscale convolution modules (MCMs)
to learn multiscale features from X:

F i = MT(F i−1) (1)

where i ∈ {1, 2, 3}, F 0 = X , and MT denotes the multiscale
convolutional operator, which will be presented in Section II-
B. After that, F 3 is enhanced by a convolution block, which
contains two successive convolutional layers, to derive the final
feature representation.

In contrast with the encoder, the decoder aims at progressively
extracting high-resolution features for eddy identification. It
contains three DEMs, each of which is followed by a convo-
lutional block. The DEM is able to incorporate the shallow
features from the encoder to the decoder, thus fusing different
scale features effectively. Specifically, for the ith module, its
output Di is formulated as

Di = DE
(
ConvB

(
Di−1

)
, F 4−i

)
(2)

whereConvB represents the two convolutional operators in the
convolutional block, D0 = F 3, and DE denotes the difference
enhancement operator, which will be presented in Section II-C.
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Fig. 1. Flowchart of our proposed TBCNN for oceanic eddy identification.

Besides the upper branch, there also exist a bottom branch
in Fig. 1. Similarly, it is built upon the encoder–decoder frame-
work. The encoder has the same network structure to extract
features, i.e., three MCMs and a convolutional block. Consid-
ering that the shallow features usually have powerful gener-
alization ability across different tasks, we make the encoder
share parameters between the upper and the bottom branches,
thus reducing the network parameters to train. For the decoder,
three deconvolutional layers are applied to learn high-resolution
features sequentially. Following each deconvolutional layer, a
convolutional block is used to fine-tune the learned features.
Since the purpose of the bottom branch is outputting an eddy
edge map, its high-resolution features should contain discrim-
inative information for eddy edges. Therefore, we incorporate
the final feature into the upper branch via a summation operator
to obtain an edge-enhanced eddy identification result.

The detailed configuration of our proposed TBCNN is sum-
marized in Table I, where the kernel size, the number of con-
volutions or deconvolutions in each module, and the output size
after each operator are demonstrated. Take the first MCM as
an instance, the operator “[Conv3× 3]× 5” means that there
are five convolutional layers in the module and each one has a
kernel size of 3× 3. In addition, their stride is set to 1 because
S = 1 in the “Stride” column.

B. MCM

As discussed in Section I, existing eddy identification net-
works often employ single-layer or multiple-layer fusion meth-
ods to extract multiscale features. Our proposed TBCNN differs
from them by using both fusion methods at the same time. Fig. 2
presents the architecture of our MCM to extract multiscale fea-
tures in a single layer. Specifically, for an input feature mapF i−1,
we first apply a convolutional layer, whose kernel size is 3× 3
to increase its channel number by four times. Then, we equally
divide the new feature map into four feature subsets, denoted as
xj , j ∈ {1, 2, 3, 4}. They will undergo different operators. For
the first subset x1, we directly forward it to the next layer. For
the other subsets, we sequentially adopt convolutional operators,

Fig. 2. Detailed structure of the MCM.

whose kernel size is 3× 3, to extract features. Assume that
the corresponding output feature of xj is yj , the computation
process can be expressed as

yj =

⎧⎪⎨
⎪⎩

xj , j = 1

Conv(xj), j = 2

Conv(Cat(yj−1, xj)), j = {3, 4}
(3)

where Conv is a convolutional operator, and Cat represents a
concatenation operator along the channel dimension. Since yj

has different receptive fields when j changes, multiscale features
are derived after (3). To fuse these features, a concatenation
operator and a convolutional layer are used in sequence. Thus,
the final feature after the MCM is

MT(F i−1) = Conv(Cat(y1, y2, y3, y4)). (4)

It is worth noting that for each convolutional operation in the
MCM, a padding operator is followed to ensure the size of
outputs not changed.

C. DEM

In order to combine multiscale features from different layers,
skip-layer connections are adopted across the encoder to the
decoder. Traditional methods often directly fuse them together
via concatenation or summation operators. However, such oper-
ators will contain redundant information because the features in
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TABLE I
DETAILED CONFIGURATION OF OUR PROPOSED TBCNN

Fig. 3. Detailed structure of the DEM.

the decoder are progressively extracted from the corresponding
shallow ones in the encoder. To deal with this issue, we propose
a DEM, shown in Fig. 3. Take ith module as an instance, a de-
convolutional layer is first designed to extract a high-resolution

feature D̃i from the input, which can be described as

D̃i = DeConv
(
Conv

(
Di−1

))
(5)

where DeConv denotes a deconvolutional operator. Then, a
subtraction operator between D̃i and F 4−i in the encoder is
employed to obtain a complementary feature. Such feature is
enhanced via a convolutional layer. Finally, a concatenation
operator is used to get the output feature Di. The computation
procedure of the DEM can be formulated as

Di = Cat
(
D̃i,Conv

(
D̃i − F 4−i

))
. (6)

D. Loss Function

There are two branches in the proposed TBCNN. They are
responsible for different tasks. In order to train them effectively,
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we design two loss functions. One is Leddy for the eddy identifi-
cation branch, and the other one is Ledge for the EEB. Since the
entire network is trained via an end-to-end way, the final loss
function L needs to combine these two loss functions together:

L = Leddy + λLedge (7)

where λ is a hyperparameter to tradeoff the effects of different
losses. Assume Yeddy and Ỹeddy are the groundtruth eddies and
the predicted ones from the upper branch, we adopt the widely
used dice loss [37] to build the loss function, which is described
as

Leddy =
2|Yeddy

⋂
Ỹeddy|

|Yeddy|+ |Ỹeddy|
(8)

where Yeddy

⋂
Ỹeddy computes the intersection between Yeddy

and Ỹeddy, and | · | represents the sum of elements in the matrix.
The value of Leddy is between 0 and 1, and the larger value
corresponds to the greater correlation. Similarly, we can derive
the Ledge. Note that during the computation of Ledge, the edge
groundtruth for eddies is derived from Yeddy via a widely used
canny edge detection algorithm.

Considering that there often exist different categories of ed-
dies (e.g., cyclonic eddies and anticyclonic eddies) to identify
and the available eddy numbers change a lot between them, we
further design a class weighted loss function across different cat-
egories to alleviate this issue. Therefore, Leddy can be replaced
by

Leddy =
∑
i

γiLi
eddy (9)

where Li
eddy and γi represent the dice loss and the category

weight for the ith category, respectively. The weight γi is ex-
pressed as

γi =
1/|Y i

eddy|∑
i 1/|Y i

eddy|
(10)

where Y i
eddy is the groundtruth for the ith category eddies.

Similar toLeddy, we can also design a weighted loss function for
Ledge because the numbers of edge and nonedge are distributed
unbalanced.

III. EXPERIMENT

A. Data Introduction

In order to evaluate the identification performance of TBCNN,
we perform experiments upon a public eddy identification
dataset named SCSE-Eddy [34]. As demonstrated in the red
box of Fig. 4, SCSE-Eddy covers the entire South China Sea
as well as its eastern sea areas (SCSE), ranging from 105.5◦ to
150◦ in east longitude and 4◦ to 30◦ in north latitude [34]. The
whole dataset spans 17 years, i.e., from September 23, 2003,
to September 23, 2018, with a total of 5480 pairs of images.
Each pair consists of SSH data and the corresponding eddy data.
Fig. 5 shows three examples of pairs of images, where the yellow
and blue colors correspond to anticyclonic and cyclonic eddies,
respectively. All the pairs are separated into two different sets,

Fig. 4. Spatial extent (i.e., the red box) covered by the SCSE-Eddy dataset.

including a training set and a testing set. The former one is
comprised of 4750 image pairs acquired in the first 15 years,
while the latter one is made up of 730 image pairs collected
in the last two years. To better train the proposed model, we
choose 20% data (i.e., 950 image pairs) from the training set
as a validation set to avoid overfitting. As exhibited in Fig. 5,
most of the eddies are concentrated on the side away from the
coastline. To improve the training speed and be consistent with
the work in [34], we select the region away from the coastline
to conduct experiments. The spatial resolution and size of each
image are 0.25◦ and 168× 200 pixels, respectively.

B. Evaluation Metrics

In the experiments, we choose three widely employed met-
rics [38], namely precision, recall, and F1-score, to quantita-
tively test the identification performance achieved by TBCNN,
which are computed as

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(13)

where TP and TN denote the numbers of correctly identified
eddies and background samples, respectively, FP and FN
describe the numbers of misidentified eddies and background
samples, respectively, Precision indicates the proportion of cor-
rectly identified ocean eddies among all identified eddies, Recall
represents the proportion of correctly identified eddies numbers
to the total numbers of eddies in the groundtruth, F1-score
considers both the Precision and Recall of the model, and is
used to indicate the comprehensive evaluation value of the eddy
identification model.

C. Experimental Setup

In addition to our TBCNN model, we also conduct experi-
ments on some state-of-the-art deep learning models for eddy
identification to compare their performance. They are Eddynet,
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Fig. 5. Visualizations of some examples in the SCSE-Eddy dataset. (a) Input SSH data. (b) Groundtruth data.

FCN-8s, PSPnet, Segnet, and Deeplabv3+. In the following, we
provide some descriptions about these comparative models.

1) Eddynet: The same as the work in [27], Eddynet adopts
the encoder–decoder structure like UNet. The encoder
consists of six convolutional layers as well as three max-
pooling layers, and the decoder contains three deconvolu-
tional layers and six convolutional layers.

2) FCN-8s: As in the work of [39], FCN uses VGG16 [40] as
the backbone, and selects bilinear interpolation to recover
the output to their original size.

3) PSPnet: The same as the work in [31], we adopt ResNet50
as the backbone of PSPnet, which uses a pyramid pooling
structure to fuse the multiscale features of different layers.

4) Segnet: As in the work of [41], the encoding module of
Segnet uses the first 13 convolutional layers of VGG16.
Each encoding layer corresponds to a decoding layer.

5) Deeplabv3+: The same as the work in [34], Xception [42]
is used as a backbone and Deeplabv3 is adopted as an
encoder to extract features, which are then fused with
the corresponding features in the backbone, and finally
upsampled again to restore the original size.

For implementing the aforementioned identification models,
we adopt the widely used Keras framework. The optimizer for
them is Adam with default parameters. They are deployed on an
NVIDIA TITAN XP GPU. The batch size is chosen as 8. The
training inputs have a size of 168× 200. The basic learning rate
is set to 0.01, and the model is trained by 300 iterations.

D. Analysis on TBCNN

1) Effects of hyperparameters λ: There is a regular-
ization parameter in (7). To validate its effects on the
identification performance, we predefine a candidate set
{10−2, 10−1, 0, 0.5, 1, 10, 100}, and choose values from it to
conduct experiments. Fig. 6 shows the identification perfor-
mance of TBCNN using different λ values. It can be observed
that when λ = 0.01, the highest precision value is obtained.

Fig. 6. Eddy identification performance with different λ values.

However, the corresponding recall value is worse. Similar phe-
nomenon occurs for the recall value. The best recall value
appears when λ = 10, but the precision value is not good.
In comparison with precision and recall, F1-score is a better
indicator to balance the precision and recall values. Since the
highest F1-score is acquired when λ = 0.5, it is reasonable to
choose this value for the following experiments.

2) Effects of the MCMs: To explore the effects of numbers
of MCMs, we conduct four experiments by modifying the
module numbers from 1 to 4. As shown in Fig. 7, the F1-score
varies when the module number changes. Specifically, when the
number changes from 1 to 4, the F1-score first increases and
then decreases. The highest value is obtained when the module
number is 3. Therefore, three MCMs are selected to extract
multiscale features in the encoder of TBCNN.

3) Effects of different components: Compared to the
existing encoder–decoder identification framework, our
TBCNN has three new components. They are the EEB,
the DEM, and the MCM. In order to test their effects on the
identification performance, we conduct ablation studies. Table II
demonstrates the detailed identification performance with
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Fig. 7. Eddy identification performance with different numbers of MCMs.

TABLE II
EFFECTS OF DIFFERENT COMPONENTS ON THE EDDY IDENTIFICATION

PERFORMANCE

different components. In this table, “�” and “−” represent with
and without the corresponding component, respectively. For the
first row, a baseline network without any components achieves
93.31% F1-score. By adding the EEB, we get 93.83% F1-score
with an improvement of 0.52%. By adding the DEM, we get
93.70% F1-score with an improvement of 0.39%. Additionally,
adding the MCM improves the F1-score with 0.22%. More
interestingly, the F1-score obtained by the combination of any
two components is greater than 94%. The best combination is
EEB and DEM, whose F1-score is 94.41%. Finally, we fuse the
three components together, and the F1-score is further improved
to 94.58%. All these improvements show the effectiveness of
each component in our proposed TBCNN for eddy identification.

E. Performance Comparisons

Table III shows the detailed identification performance
achieved by different models with three indicators. For each row,
the bold font indicates the best value. From this table, we can
observe several conclusions. First of all, the traditional FCN-8s
model is capable of achieving satisfactory results, whose preci-
sion, recall, and F1-score are higher than 0.85. It indicates the
huge potential of deep learning models, especially FCN-based
models, to modeling the complex relationships between SSH
and eddies. Second, although FCN-8s already sets up a strong
baseline, Eddynet, PSPnet, and Deeplabv3+ can still outperform
it due to the exploit of multiscale features. To be specific, almost
all the identification indicators are above 0.9. Among these
three models, Eddynet obtains the best performance, whose

precision, recall, and F1-score are 0.9247, 0.9417, and 0.9331,
respectively. Nevertheless, in comparison with Eddynet, our
proposed TBCNN further improves the performance in all three
indicators. In particular, the precision, recall, and F1-score are
increased to 0.9460, 0.9457, and 0.9458, respectively. Such
results are capable of certifying the superiority of our proposed
identification model.

Besides the quantitative results in Table III, Figs. 8 and 9 also
demonstrate visualization results on some instances. In Fig. 8, it
is obvious to see that FCN-8s often oversegments eddies, making
neighboring eddies easily connected together. On the contrary,
Segnet generates undersegmentation results, which segment the
complete eddy into multiple pieces. Therefore, its identification
performance is relatively low, shown in Table III. For the other
models, most of eddies are identified correctly and our proposed
TBCNN achieves the most consistent results in comparison with
the groundtruth. In Fig. 9, we crop some patches from the images
to show the identification results in two typical situations: the
sparsely distributed case in the first two columns and the densely
distributed case in the last two columns. Overall, our proposed
TBCNN model identifies almost all eddies in these situations,
including the smallest and largest eddies, while the other models
often lose or wrongly identify some eddies. Despite the good
performance of our TBCNN, there also exist some drawbacks.
For example, in the first column, TBCNN identifies an eddy in
the bottom-right corner, which does not exist in the groundtruth
data.

The radius, which reflects the critical characteristic of oceanic
eddies, can also be considered as an indicator of identification
performance. Fig. 10 demonstrates the radius distributions of
identified eddies by different models. When compared to the
groundtruth in this figure, it can be observed that the eddy radius
is unevenly distributed, and most of eddies have radius of less
than 100 km. For the identification models, FCN-8s works bad
when the radius is less than 75 km or larger than 200 km;
Segnet does not perform good in most situations, especially
when the radius is less than 50 km. The other four models
perform relatively well, and our proposed TBCNN achieves the
closest number of eddies to the groundtruth in all kinds of eddy
radius, which further validates the effectiveness of it.

F. Computational Time

In Table III, the computational time of different models for
identifying eddies at both training and testing stages are recorded
at the last two rows. Note that we do not use any accelerating
strategy during the experiments. Unsurprisingly, the test time of
each model is far less than their training time, which indicates
that these models run quickly once trained. Owing to the rela-
tively simple structure, FCN-8s takes a minimal amount of time
for both training and testing stages, but it gets an F1-Score of
only 87.57%. Besides, our proposed TBCNN takes the second
least time. The training and testing time are 258.59 and 1.64
s, respectively. Although both values are larger than those of
FCN-8s, the F1-score is improved significantly from 87.57% to
94.58%. Therefore, it is valuable to spend more time to train and
test our proposed TBCNN.
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Fig. 8. Visualization of eddy identification results on an instance with different models. (a) SSH. (b) Groundtruth. (c) Eddynet. (d) FCN-8s. (e) PSPnet. (f) Segnet.
(g) Deeplabv3+. (h) TBCNN.

Fig. 9. Visualization of eddy identification results in different situations using different models. (a) SSH. (b) Groundtruth. (c) Eddynet. (d) FCN-8s. (e) PSPnet.
(f) Segnet. (g) Deeplabv3+. (h) TBCNN.
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TABLE III
EDDY IDENTIFICATION PERFORMANCE ACHIEVED BY DIFFERENT MODELS

Fig. 10. Sample distribution of identified eddies obtained by different models.

IV. CONCLUSION

In this article, we proposed a TBCNN for oceanic eddy iden-
tification. Unlike the existing deep learning models, TBCNN
decomposed the complex eddy identification process into an
eddy identification branch and an EEB. For the former branch,
we adopted single-layer and multiple-layer feature fusion meth-
ods simultaneously to identify different sizes of eddies. For the
latter branch, it focused on enhancing the edge information of
identified eddies, which was not fully explored in the former
branch. To evaluate the identification performance of TBCNN,
we constructed experiments on a publicly available dataset
named SCSE-Eddy and compared it with several eddy identifica-
tion models. Through quantitative and qualitative comparisons,
the effectiveness of TBCNN was demonstrated. In addition, a
comprehensive analysis of TBCNN was also provided. Specif-
ically, the effects of different components in TBCNN, different
hyperparameter values, and different numbers of MCMs were
evaluated. However, based on the SSH data, we can only analyze
eddies in the 2-D space. It is difficult to explore the characteris-
tics of eddies under the sea surface. Therefore, in the future, we
will collect data and design networks for 3-D eddy identification.
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