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Orientation Estimation of Rotated Sonar Image
Targets via the Wavelet Subimage Energy Ratio

Peng Zhang , Jinsong Tang , Heping Zhong , Haoran Wu , Han Li , and Yue Fan

Abstract—Precise orientation information facilitates target
recognition of sonar images. Traditional orientation estimation
methods, including the Hough transform method, have poor anti-
noise abilities, so they cannot achieve high estimation precision for
sonar images, which usually have low signal-to-noise ratios. The
convolutional neural network (CNN) regression method is sensitive
to image affine transformations and requires extensive computa-
tion, so it cannot achieve strong robustness or high speed. To achieve
high-precision, high-speed, and robust orientation estimation of
sonar image targets, we present a novel orientation estimation
method via the wavelet subimage energy ratio (WSER). The WSER
varies with the rotation angles of images and has the highest value
when the long axes of targets are vertical. It is translational and
scale invariant and does not need supervised training. Therefore, we
propose estimating orientations of sonar image targets by finding
the max of the WSER to achieve high precision, high speed, and
strong robustness to the translation and scale transformations of
images. The results of experiments on a self-made sonar image
dataset show that the mean absolute error (MAE) of the proposed
method is 7.9°, while the MAEs of the CNN regression method and
traditional methods are 10.1 and 22.9°, respectively. In addition,
the proposed method is six times faster than the CNN regression
method. The proposed orientation estimation method has also been
applied to align the orientation of sonar images and CNN can
achieve state-of-the-art performance for rotated target recognition
using the aligned images. Data and codes are publicly available.

Index Terms—Automatic target recognition, orientation
estimation, rotated targets, sonar image, wavelet subimage energy.

I. INTRODUCTION

SONAR images are a powerful tool for underwater target
recognition [1], [2]. Rotated target recognition of sonar

images has attracted increasing interest [1], [3], [4], [5], [6], [7],
[8], [9], because existing target recognition algorithms of images
have been found to have difficulty to recognizing arbitrarily
rotated targets of sonar images. However, current studies on
rotated target recognition are limited to target detection [7],
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[8], [9] and classification [2], [4], [5], [6], and far too little
attention has been paid to orientation estimation. In fact, the
precise orientation information of rotated targets can not only
be used in pose estimation tasks but also in improving rotated
target recognition [10].

The orientation estimation of rotated targets on sonar images
is similar to the orientation estimation of general optical images,
which is also referred to as tilt detection, or tilt estimation. Ex-
isting orientation estimation methods of general optical images
can be divided into two categories, traditional methods that use
manually designed features, and deep learning methods that
use automatically learned features. In traditional methods, the
Hough transform method [11] was the earliest approach for es-
timating orientation, it uses the edge features of images to detect
lines, and uses the slopes of lines to estimate the orientation of
targets. The Radon transform method [12], sometimes called the
projection method, projects a gray image from different angles,
and takes the angle with the maximum projection value as the
orientation of targets. The Fourier transform method [13] uses
frequency domain features, and takes the angle of the maximum
spectral density as the orientation of targets.

The advantage of traditional methods is that the calculation
speed is fast, and the image features do not need to be learned.
However, one of the disadvantages is that the features extracted
by traditional methods are sensitive to noise. Hence, they cannot
achieve high orientation estimation precision for sonar images,
which usually have lower signal-to-noise ratios (SNRs) than
general optical images.

To achieve high orientation estimation precision, researchers
have developed deep learning methods. The convolutional neu-
ral network (CNN) regression method [10], [14], [15], [16] is
the most effective deep learning orientation estimation method.
It models the orientation estimation task as an angle regres-
sion problem. Therefore, the orientation labels of rotated target
images are learned in the training stage, and can be directly
predicted in the test stage.

The advantage of CNN regression methods is that they can
achieve high precision of orientation estimation, as long as there
is a sufficient quantity of training data. However, their disad-
vantages are as follows: 1) Deep convolutional features need to
be learned through end-to-end supervised learning. Supervised
learning requires many sonar images to have orientation labels,
while labeling orientations of images is time-consuming and
easily introduces to introduce bias. In addition, owing to the
lack of sonar images of underwater targets, there are usually
not enough training data with labels to train a well-generalized
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CNN [1]. 2) Because the targets detected from sonar images
usually have different sizes, and center locations, the orientation
estimation task for real sonar images faces the challenge of scale
and translation transformation. However, CNN has been proved
to have poor robustness to scale and translation [17]. 3) The in-
ference speed of CNN is slower than that of traditional methods.
CNN has a large amount of calculation when calculating deep
convolutional features. In addition, because the size of a sonar
image is often larger than that of a general optical image, CNN
models for sonar images requires more cost greater computation
than CNN models for optical images [18].

From the abovementioned review, it can be concluded that
the existing orientation methods cannot simultaneously achieve
high precision, high speed, and strong robustness in the orienta-
tion estimation task of sonar images. Therefore, how to construct
an orientation estimation method with high precision, speed,
and robustness for sonar images remains unclear. To address
this question, this article presents a novel orientation estimation
method of rotated sonar image targets via the wavelet subimage
energy ratio (WSER).

The WSER is defined as the ratio of the energy of wavelet
subimages to the energy of the input images. We find that
WSER varies with the rotation angle of input images and
achieves the highest value when the long axis of targets is
normal oriented. Thus, we propose using the max of WSER to
estimate the orientation of the arbitrarily rotated target inside
an image. Moreover, we prove that the WSER is invariant to
both the translation and scale transformation, and has a strong
antinoise ability. Therefore, the proposed method can precisely
predict the orientation of rotated sonar image targets, and is
robust to the translation and scale transformations of the targets.
Furthermore, it is slightly slower than the traditional methods
significantly faster than the CNN regression method.

Moreover, based on the proposed orientation estimation
method, we investigate applying orientation information to
facilitate rotated target classification. We align the arbitrarily
rotated orientation to the same orientation based on the targets’
orientations estimated by the proposed method, and achieve
state-of-the-art performance in rotated target classification using
the aligned images.

The contributions of this article include as follows.
1) This article presents a novel orientation estimation method

via the WSER. The WSER is found to be rotation symmet-
rical, which means that it varies with the rotation angles
of input images and achieves the max value when the
long axis is vertical. Moreover, the WSER is proven to
be invariant to both translation and scale transformation.
The proposed method can precisely estimate orientations
of arbitrarily rotated targets on sonar images.

2) This article advances the understanding of wavelet de-
composition. This article uses wavelet subimage energy
as an orientation descriptor for the first time, while the
existing orientation estimation methods only use wavelet
decomposition as an edge detector.

3) This article demonstrates that precise orientation informa-
tion can be applied to improve the performance of rotated
target recognition. The proposed orientation estimation

Fig. 1. Calculation process of 2-D DWT of an image.

method via the WSER is successfully applied to align
the orientation of rotated sonar images. Using the aligned
images, we can achieve state-of-the-art classification per-
formance for rotated target recognition.

II. METHOD

A. Image Wavelet Decomposition

Image wavelet decomposition refers to 2-D orthogonal dis-
crete wavelet transform (DWT) [19], which entails performing
1-D transform along the rows and columns successively. The
calculation process of 2-D DWT of an image f(x, y) is shown
in Fig. 1, where the size of f(x, y) is N ×N . The calculation
process is divided into two steps.

First, apply 1-D DWT to f(x, y) along the x-axis.
Given the scale function φj(x) and the wavelet function
ψj(x) at resolution2j(j ∈ Z), the 1-D DWT result Cj+1

L ,
Cj+1

H
can be written as Cj+1

L = 〈f(x, y), φj(x)〉and Cj+1
H =

〈f(x, y), ψj(x)〉, respectively.Cj+1
L , Cj+1

H
are called subim-

ages. They have a size of N/2×N . Cj+1
L contains the low

frequencies of the rows of f(x, y). Cj+1
H contains the high

frequencies of the rows of f(x, y).
Second, apply 1-D DWT to Cj+1

L and Cj+1
H

along the y-axis.
Given the scale function φj(y) and the wavelet function ψj(y)
at resolution 2j(j ∈ Z), the 2∗D DWT result of f(x, y) can be
finally written as

Cj+1
LL =

〈
f(x, y), φj(x) · φj(y)〉 (1)

Cj+1
HL =

〈
f(x, y), ψj(x) · φj(y)〉 (2)

Cj+1
LH =

〈
f(x, y), φj(x) · ψj(y)

〉
(3)

Cj+1
HH =

〈
f(x, y), ψj(x) · ψj(y)

〉
(4)

Cj+1
LL , Cj+1

LH , Cj+1
HL , and Cj+1

HH are subimages with a size of
N/2×N/2. Cj+1

LL contains the low frequencies of both the
rows and columns of f(x, y) and depicts the f(x, y) at a lower
resolution. Cj+1

LH contains the low frequencies of the rows of
f(x, y) and the high frequencies of the columns of f(x, y) and
depicts the vertical components of f(x, y). Cj+1

HL depicts the
horizontal components of f(x, y) andCj+1

HH depicts the diagonal
components of f(x, y).

Fig. 2 shows the single-level 2-D DWT of four images, which
are composed of white geometric figures (rectangle, square, el-
lipse, and circle) against black backgrounds. The Haar orthonor-
mal wavelet basis [21] is chosen to compute the DWT. Owing
to its single-level DWT, j is taken as 0, and four subimages are
denoted asC1

LL,C1
LH ,C1

HL, andC1
HH . As it is shown in Fig. 2,
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Fig. 2. DWT of images of geometric figures. (a) Rectangle. (b) Square.
(c) Ellipse. (d) Circle.

C1
LHandC1

HL extract the vertical and horizontal components of
the geometric figures. Applying DWT to C1

LL, two-level DWT
will be obtained. Analogously, multilevel DWT will be obtained.
In this article, only the single-level DWT is used in the estimation
process of image orientation.

B. Wavelet Subimage Energy Ratio

1) Definition: Let the energy of the input image f(x, y) and
its single-level DWTCj+1

LL ,Cj+1
LH ,Cj+1

HL ,Cj+1
HH beEraw andE1

LL,
E1

LH ,E1
HL,E1

HH . According to the energy conservation law of
DWT [19], [20], Eraw can be written as

Eraw = E1
LL + E1

LL + E1
LH + E1

HL + E1
HH . (5)

Denote the value of each subimage at (m,n), 0 ≤ m,n ≤
N/2, as C1(m,n). Then, according to the standard orthogo-
nality of the wavelet basis, the energy value of each wavelet
sub-band image in (5) can be calculated by

E1 =
∑
m

∑
n

∣∣C1(m,n)
∣∣2. (6)

Define the ratio of E1
LH and Eraw to be the LH wavelet

subimage energy ratio, denoted as RLH

RLH =
E1

LH

Eraw
=

E1
LH

E1
LL + E1

LH + E1
HL + E1

HH

. (7)

Similarly, RHL can be obtained by calculating the ratio of
E1

HL and Eraw.
2) Rotation Symmetry: This section summarizes the prop-

erties of the WSER varying with the rotation angle of image
targets.

By rotating geometric figures in Fig. 2 by [−180◦, 180◦],
performing DWT on the rotated images, and calculating RLH ,
the changes of RLH over the rotation angles are obtained, as
shown in Fig. 3. As it can be seen,RLH is sensitive to the change

in the rotation angle of the geometric figures except for circles.
For the rectangle and ellipse, which have 180-degree rotation
symmetry, the RLH has the same two peak values, located at
0◦ and 180◦; For the square and circle, which have 90-degree
rotation symmetry, the RLH has the same four peak values,
located at −180◦, −90◦, 0◦, and 180◦.

As can be seen from Fig. 3, the change of RLH over the
rotation angle of input images also has rotation symmetry, which
corresponds to the rotation symmetry of geometric figures.

Similarly, RHL has rotation symmetry. However, for geo-
metric figures like rectangles and ellipses, which have different
lengths of the long axis and short axis, the peak value of RHL

exhibits a 90◦ shift from that of RLH .
3) Translation Invariance and Scale Invariance: This sec-

tion theoretically derives the characteristics of the WSER
RLHchanging with the translation and scale transformation of
the image. To simplify the derivation, we assume that the pixel
value of the target area in the input image f(x, y) is constant,
and the pixel value of the background area is 0. The reason for
such an assumption is that the target area on the sonar image
is a usually a strong echo, and the background area near the
target area is usually a weak echo. The geometry figures shown
in Fig. 2 meet such an assumption. Because the RLH used in
this article is the ratio of the energy of a single-level subimage
C1

LH to the total energy, only the single-level DWT is considered
in the theoretical derivation process.

Performing single-level DWT on f(x, y), the subimage C1
LH

can be obtained. Denote the wavelet basis corresponding toC1
LH

as ψ0,m,n
LH (x, y). According to (3), ψ0,m,n

LH (x, y) = φ0,m,n(x) ·
ψ0,m,n(y). Then, the value of C1

LH at (m,n) as C1,m,n
LH can be

represented as

C1
LH(m,n) =

〈
f(x, y), ψ0,m,n

LH (x, y)
〉
. (8)

On the basis of (8), E1
LH andRLH can be calculated through

(6) and (7).
First, we derive the characteristics of the WSERRLH chang-

ing with the translation transformation of images. If we translate
the image by a and b along the x-axis and y-axis, respectively,
the subimage of the translated image f(x− a, y − b) can be
denoted as C ′1

LH(m,n), which can be written as

C ′1
LH(m,n) =

〈
f(x− a, y − b), ψ0,m,n

LH (x, y)
〉

=
〈
f(x′, y′), ψ0,m,n

LH (x′ + a, y′ + b)
〉

=
〈
f(x′, y′), ψ0,m−a,n−b

LH (x′, y′)
〉

= C1
LH(m− a, n− b). (9)

This result implies that when the image is translated, the
corresponding subimage is also translated. If displacements a
and b still enable the translated geometric figures to fall within
the image boundary, then the target area on the subimage is
also within the subimage boundary. We denote the energy of the
subimage corresponding to the translated image as E ′1

LH , and
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Fig. 3. Changes of RLH over the rotation angle of input images. (a) Rectangle. (b) Square. (c) Ellipse. (d) Circle.

then

E ′1
LH =

∑
m

∑
n

∣∣C ′1
LH(m,n)

∣∣2=
∑
m

∑
n

∣∣C1
LH(m,n)

∣∣2=E1
LH .

(10)
This demonstrates that if the geometric figures are still within

the image boundary after shifting a and b pixels, the energy
E ′1

LHof the shifted subimage is the same as E1
LH . Because the

shapes of the geometric figures inside images do not change
before and after translation, Erawdoes not change before and
after the image translation. Therefore, the WSER RLH has a
certain translation invariance.

Then, we derive the characteristics of the WSERRLH chang-
ing with the scale transformation of images. Let the length of a
target on the input image along the x-axis be Δx, and the length
of the target on the subimage along the m-axis be Δm. If we
enlarge the target area sx times along the x-axis, the image of
the enlarged target can be denoted as f(x/sx, y), and the length
of the target on f(x/sx, y) is sx ·Δx. We denote the subimage
of f(x/sx, y) as C ′′1

LH , and then

C ′′1
LH(m,n) =

〈
f(x/sx, y), ψ

0,m,n
LH (x, y)

〉
. (11)

Because only the length of the target on the input images
increases by sx ·Δm times, the pixel values of f(x/sx, y) does
not change. Therefore, only the length of the target area on the
subimage changes to sx ·Δm, the pixel values in the target area
of the subimagesC ′′1

LH andC1
LH do not change. Thus, the energy

E ′′1
LH of the subimage C ′′1

LH can be derived as

E ′′1
LH =

∑
sx·Δm

∑
Δn

∣∣C ′′1
LH(m,n)

∣∣2

= sx ·
∑
Δm

∑
Δn

∣∣C ′′1
LH(m,n)

∣∣2

= sx ·
∑
Δm

∑
Δn

∣∣C1
LH(m,n)

∣∣2

= sx · E1
LH . (12)

In other words, when the target of f(x, y) enlarges sx times
along the x-axis, the energy E′′1

LH of the subimage C ′′1
LH also

increases sx times. Because the image is only enlarged by sx
times in the x-axis direction and the pixel value of the target
area remains unchanged, the total energy Eraw of the enlarged
image also increases sx times. Therefore,RLH does not change.
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Fig. 4. Calculation flow of the proposed orientation estimation algorithm via
the WSER.

Moreover, by a similar derivation process, we can draw the
conclusion that RLH also does not change if the target area is
enlarged by sy times along the y-axis.

In summary,RLH andRHL have certain translation and scale
invariance. Such translation and scale invariance can ensure that
the rotation symmetry of RLH and RHL does not change when
the positions or sizes of the targets inside the images change
within a certain range.

C. Orientation Estimation Algorithm of Rotated Targets via
the WSER

Rotation symmetry is the basis of using RLH or RHL to
estimate the orientation of image targets. If the image target
rotates to a new orientation, the position of the maximum value
ofRLH orRHL also shifts accordingly. Based on this property, a
novel orientation estimation algorithm for rotated image targets
via the WSER is proposed, as shown in Fig. 4.

The calculation flow of the proposed algorithm is divided into
three main steps.

Step 1: Image preprocessing. Preprocessing is done as fol-
lows:

1) convert image into grayscale image;
2) resize the image to N ×N ;
3) denoise the image;
4) add a circle mask with the diameter N to the image, and

set the values of the pixels outside the mask to 0.
Step 2: Calculation of {RLH(ϕ)}. The calculation is done as

follows:
1) rotate the input image by ϕ, bilinear interpolation is used

in the rotation operation;

2) perform DWT to the rotated image, Harr wavelet is chosen
as the wavelet basis;

3) calculate RLH(ϕ) through (6) and (7);
4) gradually increase ϕ at a sampling interval of Δϕ, and

repeat (a), (b), and (c) until theRLH(ϕ) corresponding to
all the ϕ is calculated. All the RLH(ϕ) values form the
{RLH(ϕ)}.

Step 3: Orientation estimation. Find the maximum value of
{RLH(ϕ)}, and take the corresponding rotation angle as the
estimation of orientation. That is

ϕ̂ = argmax
ϕ

{RLH(ϕ)} . (13)

The ϕ̂ estimated byRLH is the orientation of the long axis of
the target. In addition, the ϕ̂ can also be estimated by RHL, and
the estimation is the orientation of the short axis of the target.

In terms of computational complexity, the two main factors
that affect the computational load of the proposed algorithm
are the input image size N and the rotation times M . When
using the fast wavelet transform algorithm [20], [21] to calcu-
late the wavelet decomposition coefficients of the input image,
the computational load is proportional to N ×N . Because the
calculation flow in Fig. 4 needs M times of DWT to the in-
put image, the computational complexity can be expressed as
O(M ×N ×N). This shows that given a fixed input image
size N , the computational complexity or computational time
is linearly related to the rotation times M . And M is linearly
related to 1/Δϕ when the rotation angle interval of the input
image is given. Therefore, computation timeT is linearly related
to 1/Δϕ. That is

T ∝ 1

Δϕ
. (14)

In terms of robustness, it is known from the translation and
scale invariance of RLH that, the proposed algorithm has the
robustness to scale and translation transformations of image
targets. Such robustness implies that the proposed method can
be used to estimate the target orientation after a practical target
detection task, in which the targets in the detected image area are
usually of different sizes and usually have different translations.

III. RESULTS AND DISCUSSIONS

A. Dataset Preparation for Orientation Estimation of Rotated
Sonar Image Targets

On the basis of target detection results from actual sonar
images, this section describes the production of an orientation
estimation dataset of sonar image targets. The dataset consists
of detected rotated target images, and the rotation orientation
labels of targets. The orientation is manually labeled as the
rotation angle of the long axis of targets, and the function of
the orientation labels is to evaluate the precision of orientation
estimation algorithms.

The process for making the dataset is shown in Fig. 5, and is
divided into three steps.

1) Predict a rectangular bounding box of rotated targets from
the original large-size sonar image. Fig. 5(a) shows how
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Fig. 5. Dataset creation process for the orientation estimation of sonar im-
age targets. (a) Image in SCTD dataset. (b) Preprocessed image of target.
(c) Orientation labeling.

Fig. 6. Examples of labeled orientations of various sonar image targets (the
labeled orientations are shown as green arrows).

faster R-CNN [22] was applied to detect targets in the
sonar common target dataset [1]. The green rectangular in
Fig. 5(a) shows the bounding box of rotated targets. The
detection process simulates the process of predicting the
target bounding box in the actual rotating target recog-
nition task. In addition to using the faster R-CNN, other
region recommendation or detection algorithms [23] can
also be applied to predict the bounding boxes of targets.

2) Extract the rotated targets according to the predicted
bounding box and perform preprocessing. The preprocess-
ing follows the image preprocessing steps in Fig. 4. In
this article, N was set as 224, and the average denoising
algorithm with a kernel size of 11 was applied to denoise
the image. The preprocessed image is shown in Fig. 5(b).

3) Label the orientation of rotated targets. As shown in
Fig. 5(c), the positive direction of the y-axis is taken as,
the angle between the 0° and the long axis of targets is
labeled as ϕ, and the symbol of ϕ is set as negative if the
long axis of targets is in a clockwise direction and positive
if the long axis is in a counterclockwise direction. Finally,
a self-made orientation estimation dataset composed of
rotated target images I and the corresponding orientation
labelsϕwas obtained. The self-made dataset includes 124
“ship,” 19 “aircraft,” and 27 “dummy” targets. Some ex-
amples of the labeled orientations of various sonar image
targets from the self-made dataset are shown in Fig. 6.

B. WSER of Sonar Rotated Targets

The WSER of “aircraft,” “dummy,” and “ship” images shown
in Fig. 6, was calculated according to the process shown in Fig. 4,
ϕ is sampled within [−180◦, 180◦], and the sampling intervalΔϕ
is set to 1◦. The calculated {RLH(ϕ)} is shown in Fig. 7.

By comparing Fig. 7 with Fig. 3, we can find that the overall
shape of the RLH curves of the sonar image targets is similar
to that of the geometric figures in Fig. 3. The RLH of these
sonar image targets have approximately 180-degree rotation
symmetry. When the value of ϕ is in [−90◦, 90◦],RLH has only
one peak point when the long axes of targets are vertical.

However, unlike theRLH curves of the geometric figures, the
RLH curves of the sonar image targets are likely to have more
local maximum points. This is because the shape of the target
on the actual sonar image is irregular. For example, although
both Fig. 5.3(c) and (d) shows the RLH curves of “dummy”
targets, the poses of the targets are different, which causes a great
difference in the shapes of these twoRLH curves. In addition, the
RLH curves of the sonar image targets are likely to have stronger
noise, this is because the real sonar images have stronger noise
than the geometric figures in Fig. 2.

In summary, this section has demonstrated that: 1) The RLH

of actual images have rotational symmetry to the rotation of
sonar images. Based on the rotational symmetry, the proposed
orientation estimation algorithm shown in Fig. 4 can be applied
to estimate the rotation orientation of the sonar image targets.
2) The RLH curves of the sonar image targets are likely to have
more local maximum points and stronger noise, soΔϕ should
be small enough to sample the true maximum of RLH and
accurately estimate the long axis of the target. However, the
smaller Δϕ is, the slower the proposed algorithm is. To make a
tradeoff between precision for orientation estimation and speed
for orientation estimation, Sections III-C and III-D will evaluate
the precision, and speed of the proposed orientation estimation
algorithm under different Δϕ.

C. Precision for Orientation Estimation

This section evaluates the orientation estimation precision for
the algorithm proposed in Fig. 4. The experimental process to
calculate orientation estimation precision is shown in Fig. 8,
which is divided into three steps as follows.

1) Input an image Ii from the self-made dataset.
2) Set Δϕ = 1, calculate {RLH(ϕ)} according to Fig. 4,

and estimate the orientation of the target inside the input
image.

3) Calculate the estimation error. Let the labeled value and
estimated value of the orientation of the ith image be ϕi

and ϕ̂i, respectively. The mean absolute error (MAE) of
orientation estimation is calculated by

MAE =
1

NI

NI∑
i=1

|ϕi − ϕ̂i| (15)

where NI is the number of images in the self-made dataset.
The lower the value of MAE is, the higher the precision of
orientation estimation is.

Following the calculating process in Fig. 8, we show the MAE
of orientation estimation for “aircraft,” “dummy,” “ship,” and the
average value of MAE are shown in Table I. For comparison,
Table I also gives the MAE of three traditional methods and the
CNN regression method. The Hough transform method uses the
Canny operator to extract edges. The CNN regression method
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Fig. 7. Wavelet subimage energy ratio of sonar targets. (a) Aircraft 1. (b) Aircraft 2. (c) Dummy 1. (d) Dummy 2. (e) Ship1. (f) Ship2.

TABLE I
MAE FOR ORIENTATION ESTIMATION OF DIFFERENT METHODS
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Fig. 8. Calculating process of MAE of orientation estimation.

Fig. 9. Curve of average MAE under different Δϕ.

uses a ResNet50 network, which has two output neurons, to
predict the sine and cosine of the rotation angle. Because the
CNN regression model needs to be trained, the self-made dataset
made was divided into training and validation data subsets in
a ratio of 1:1. Moreover, owning to the small sample amount
inside the self-made sonar image dataset, ImageNet pretrained
weights are used to initialize the training of CNN regressor. After
20 epochs of training, the trained CNN regressor is applied to
calculate the average MAE on the validation dataset.

The MAE for orientation estimation of different methods is
shown in Table I. The proposed orientation estimation method
achieves a very low average MAE, which is only 7.9719°. As a
comparison, the lowest MAE achieve by traditional methods
is 22.9797, and the MAE of the CNN regression method is
10.1144. Therefore, the orientation estimation precision of the
proposed method is not only significantly better than that of
traditional methods that do not rely on supervised learning, but
also better than that of the CNN regression method that uses
deep supervised learning. This demonstrates that the proposed
method can achieve higher orientation estimation precision for
sonar images.

In addition, comparing the bottom two rows of Table I, it can
also be found that if the circular mask is not used, the MAE of
the proposed method slightly increases to 9.6971. This validates
that adding a circular mask is helpful to improve the orientation
estimation accuracy of the proposed method.

Table I gives the MAE of the proposed method under Δϕ =
1◦. The input images are rotated 360 times to calculate the
RLH(ϕ), so this may require excessive computations. The most
direct acceleration trick is to increase Δϕ, but how to choose
Δϕ or how the Δϕ affects the average MAE is still unknown.
To answer this question, Δϕwas set to {1, 2, 3, . . . , 30} in turn,
and the average MAE is calculated under each Δϕ. The curve
of the average MAE under different Δϕ is shown in Fig. 9. For
clear comparison, the MAE of Fourier transform method and
CNN regression method are plotted as horizontal dash lines in
Fig. 9. As it can be seen, with the increase of Δϕ, the average
MAE shows an increasing trend, i.e., the average MAE of this
method is positively related to the value ofΔϕ. WhenΔϕ ≤ 5◦,
the MAE of proposed method is lower than that of the CNN
regression method; When Δϕ ≤ 23◦, the MAE of the proposed
method is lower than the Fourier transform method. This implies
that it is possible to achieve orientation estimation precision
higher than the existing methods using a higher Δϕ. Increasing
Δϕ is beneficial for reducing the computations of the proposed
method.

It can also be found from Fig. 9 that the MAE curve exhibits
instability if Δϕ > 13◦. The reason can be explained using the
characteristics of theRLH curve of real sonar images. Owing to
the large difference of the pose of underwater targets and image
noise, the RLH curves of sonar image targets have multiple
local maximum values and obvious noise. When the sampling
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Fig. 10. Examples of estimated orientation and tilt correction using the proposed method (watch https://www.bilibili.com/video/BV1er4y1V7j3/ for more results).
(a) Sonar images and estimated orientations. (b) Tilt correction of sonar images using the estimated orientation.

interval Δϕ is small, the points near the maximum of RLH can
be easily sampled, so the orientation estimation error is small. In
addition, when Δϕ is small, changing Δϕ by a small angle does
not greatly change the shape of sampled RLH(ϕ). So, a small
change of Δϕ is not likely to significantly affect the orientation
estimation error. This result implies that the MAEcurve does not
fluctuate greatly. However, when the sampling interval Δϕ is
large, the points near the maximum ofRLH are hardly sampled,
so the orientation estimation error is large. In addition, when
Δϕ is large, the change in Δϕ greatly changes the shape of
sampled RLH(ϕ). This result implies that the MAEcurve may
fluctuate greatly. The abovementioned analysis is consistent with
the results of Fig. 9.

When Δϕ = 5, the estimated orientations of the sonar im-
age targets are shown in Fig. 10(a). The proposed orientation
estimation method can precisely estimate the orientations of the
long axes of the rotating targets. Moreover, using the estimated
target orientations, the arbitrarily rotated targets can be aligned
to a unified orientation. As it was shown in Fig. 10(b), the target
orientations of the aligned images are close, and the similarities
between two images of the same category are stronger. One
of the applications of the aligned images is to improve the
performance for rotated target classification. To demonstrate
this, a CNN classification model is trained and tested on the
aligned sonar images. The results are shown in in the appendix
of this article, which shows that the rotated target classification
performance can be improved through the aligned images. This
demonstrates that precisely orientation information can facilitate
the recognition of arbitrarily rotated targets.

D. Speed for Orientation Estimation

Section III-C has analyzed the orientation estimation preci-
sion of the proposed method under different Δϕ, this section
analyzes the calculation speeds of the proposed method under
different Δϕ. For fair comparison, all methods are implemented
on an Intel(R) Core (TM) i7-8550U@1.80 GHz CPU. The CNN
Regression method is implemented by the Pytorch torchvision
library, and the other methods were implemented by MATLAB.

TABLE II
AVERAGE CALCULATION TIME OF DIFFERENT METHODS

Δϕ is set to {1, 2, 3, . . . , 30} in turn, and the total calculation
time is counted for each Δϕ. Then, the average calculation
time can be obtained by dividing the total calculation time by
the number of the images in the self-made dataset, i.e., NI . The
curve of average calculation time under different Δϕ is shown
in Fig. 11. As it is shown, the curve has the shape of an inverse
proportional function, which is consistent with the theoretical
analysis of (9).

Fig. 11 also shows the calculation time for the orientation
estimation of existing methods. For a clear comparison, the
average calculation time of the Fourier transform method and
CNN regression method are plotted as horizontal dash lines in
Fig. 11. As it can be seen, when increasing Δϕ, the average
calculation time of the proposed method is always lower than
that of the CNN regression method, and gradually approaches
the average calculation time of the Fourier transform method.
From Fig. 9, we know that the orientation estimation precision
of the proposed method is better than the existing method when
Δϕ ≤ 5. Therefore, the average calculation time of the proposed
method at Δϕ = 5 is quantitatively compared with existing
methods, and the results are shown in Table II. At this time,
the average calculation time of the proposed method is about
4.34 times that of the Fourier transform method and one-sixth
of the CNN regression method.

According to the results in Fig. 11 and Table II, we know
that the orientation estimation time of the proposed method
has an inverse proportional relationship with Δϕ. To achieve
the orientation estimation precision that is higher than existing

https://www.bilibili.com/video/BV1er4y1V7j3/


ZHANG et al.: ORIENTATION ESTIMATION OF ROTATED SONAR IMAGE TARGETS VIA THE WAVELET SUBIMAGE ENERGY RATIO 9029

Fig. 11. Curve of average calculation time under different Δϕ.

methods, Δϕ should be smaller than or equal to 5°. In this case,
the proposed method is slightly slower than traditional methods
but six times faster than the CNN regression method.

E. Robustness to Translation and Scale Transformation

From the conclusions of (10) and (12), we know that WSER
RLH has some translation and scale invariance. Translation and
scale invariance can ensure that the rotational symmetry ofRLH

and RHL does not change when the position and size of the
image targets change within a certain range. Therefore, the pro-
posed method is robust to translation and scale transformation
of image targets.

In order to examine the translation invariance of WSER, a
“ship” target is randomly selected from the self-made sonar
image dataset and is translated along the horizontal direction
by 5, 20, 15, 20, and 25 pixels. The RLH curve under different
translation pixels is shown in Fig. 12(a). As it is shown, theRLH

curves under different translations are highly overlapped. This
demonstrates that a certain degree of translation transformation
does not affect the values of WSER. Such a result is consistent
with the conclusion of (10) thatRLH has translation invariance.
Translation invariance implies that small translations to the input
image do not affect the orientation estimation performance of
the proposed methods.

To evaluate the orientation estimation performance under
different translations of input images, all the sonar images are
translated along the horizontal direction by Δx pixels, and then
the MAE is calculated using the process in Fig. 8. Changing Δx
in {−30,−25, 20, 15, 10, 5, 0, 5, 10, 15, 20, 25, 30}, the MAE
curve under different translations can be plotted as the black
dashed line in Fig. 12(b). For comparison, the MAE curve
under different translations of the CNN regression method is
plotted as the red dashed line in Fig. 12(b). It can be seen from

Fig. 12. RLH and MAE under different translations. (a) RLH curves under
different translations. (b) MAE under different translations.

the figure that the MAE of the proposed method is relatively
stable when image targets are translated, while the MAE of
the CNN regression method is sensitive to minor translations.
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Fig. 13. Orientation estimation for an image target under different translations.

Fig. 14. RLH and MAE under different target scales. (a) RLH curves under
different target scales. (b) MAE under different target scales.

Other existing methods are not chosen because their MAE is
significantly higher than that of the proposed method, so it does
not make much sense to examine their robustness.

In brief, the orientation estimation performance of the pro-
posed method is robust to sonar image translations, and the
robustness is stronger than that of the CNN regression method.
Translation invariance means that when the detected target is not
located at the center of the image, i.e., targets are under different
translations, the proposed method can still precisely estimate the
orientation of sonar image targets, as shown in Fig. 13.

In order to examine the scale invariance, a “ship” target was
randomly selected from the self-made dataset and was enlarged
by 0.9, 0.8, 0.7, 0.6, and 0.5 times. The enlarged image was
padded with 0, and the padded image has a size of 224×224.
After such preprocessing, the size of the targets can be changed
while the input image size of orientation estimation algorithms
is unchanged. The RLH curve under different target scales is
shown in Fig. 14(a). As it is shown, the RLH curves under
different scales are highly overlapped, which is consistent with
the conclusion of (12) and demonstrates that RLH has scale

Fig. 15. Orientation estimation for an image target under different scales.

invariance. Such scale invariance implies that small-scale trans-
formation to the targets of the input image does not affect the
orientation estimation performance of the proposed methods.

To evaluate the orientation estimation performance under
different scale transformations to image targets, sonar image
targets are enlarged by s times, and then the MAE is cal-
culated using the process in Fig. 8. s is named the target
scale in this article. By adjusting s in {1, 0.95, 0.9, 0.85, 0.8,
0.75, 0.7, 0.65, 0.6, 0.55, 0.5}, the MAE curve under different
target scales can be plotted as the black dashed line in Fig. 14(b).
For comparison, the MAE curve under different target scales of
the CNN regression method is plotted as the red dashed line in
Fig. 14(b). As it is shown, the MAE of the proposed method
is relatively stable when image targets are on different scales,
while the MAE of the CNN regression method is sensitive to
merely small-scale transformations to targets.

The orientation estimation performance of the proposed
method is robust to sonar image scale transformations of sonar
image targets, and the robustness is stronger than the CNN re-
gression method. Scale invariance means that no matter whether
the predicted bounding box is too large or small, the proposed
method can still precisely estimate the orientation of sonar image
targets, i.e., targets are under different scales, which is shown in
Fig. 15.

This section has used real sonar images to demonstrate that
the WSER is translational and scale invariant to some extent.
Such invariance makes the proposed orientation method via the
WSER robust to both the translation and scale transformations of
sonar images, which implies that it can achieve robust orientation
estimation for targets detected from sonar images.

IV. CONCLUSION

Rotated target recognition is a crucial issue of sonar image
recognition, but little attention has been paid to orientation
estimation. The orientation information of sonar image targets
is beneficial to the automatic target recognition of sonar images,
but is also a challenging area.

To achieve high-performance orientation estimation for sonar
image targets, this article has proposed a novel orientation
estimation method via the wavelet subimage energy ratio. By
analyzing the properties of the WSER varying with the rotation
angle of image targets, the energy ratio of the wavelet subimage
is derived and demonstrated to have rotation symmetry, transla-
tion invariance, and scale invariance. Rotation symmetry is the
basis of the proposed method to estimate target orientations, and
translation and scale invariance can enhance the robustness of
the proposed method.
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Because of these excellent properties, the proposed method
has outperformed existing methods in estimation precision. It
has achieved a strong orientation estimation MAE of 7.9°. To
achieve strong estimation MAE, the proposed method needs
to use a relatively small rotation interval Δϕ. As a result, the
proposed method has been found to be six times faster than the
CNN regression method while slightly slower than traditional
methods. In addition, the proposed method has been found to
be robust to both the translation and scale transformations of
sonar images, which implies that it can achieve robust orientation
estimation for targets detected from sonar images. In addition,
it is important to emphasize that this method does not require
the use of supervised training.

The proposed orientation method via WSER is the first to
use wavelet subimage energy as an orientation descriptor, while
the existing orientation estimation methods only use wavelet
decomposition as an edge detector tool. Therefore, the proposed
method not only enriches the orientation description method, but
offers a new view to advance the understanding of wavelet de-
composition and expands the application scenario of the wavelet
decomposition.

The proposed orientation estimation method can be applied
to orientation estimation tasks of other types of images, such
as remote sensing images or medical images, which have to
tackle the problem of arbitrary target orientations. Besides, the
proposed orientation estimation method has been demonstrated
to be beneficial for rotated target recognition (see Appendix).

Future studies should integrate the proposed orientation esti-
mation method into a unified rotated target recognition frame-
work, which can simultaneously output the positions, categories,
and orientations of image targets.

APPENDIX

Existing rotated target classification algorithms without using
orientation information are shown in Fig. 16. At the training
stage, existing algorithms use rotated data augmentation (RDA)
to train CNN. RDA actively rotates the training images into
various orientations. At the test stage, CNN trained with RDA
can directly classify arbitrarily rotated targets.

To demonstrate that this article can facilitate the recognition
of arbitrarily rotated targets, we present a rotated target classifi-
cation algorithm that uses the orientation information of rotated
targets, and compare it with existing rotated target classification
algorithms without using orientation information. The proposed
rotated target classification algorithm is shown in Fig. 17, and
has the same workflow of the training and testing. The workflow
has three steps.

1) First, precisely estimate targets’ orientations by the pro-
posed orientation estimation method via the WSER.

2) Second, align the arbitrarily rotated image targets to the
same orientation based on the estimated orientation.

3) Finally, train CNN classification models on the aligned
training sonar images, or use the trained CNN to classify
rotated targets via aligned images.

We apply these two algorithms to the rotated sonar images
produced in Section III-A. Because the number of samples is
small, the ImageNet pre-trained model is applied to initialize the

Fig. 16. Existing rotated target classification algorithm without using orien-
tation information.

Fig. 17. Proposed rotated target classification algorithm via aligned images.

TABLE III
CLASSIFICATION ACCURACIES

training of CNNs. The classification accuracies for test images of
these two methods are shown in Table III. As it is shown, the aver-
age classification accuracy of the proposed algorithm is 13.28%
higher than that of the existing RDA method. Moreover, the ex-
isting RDA method requires ResNet152 CNN, which has a larger
number of parameters, to achieve high classification accuracy.
By contrast, the proposed rotated target classification algorithm
via aligned images can achieve higher classification accuracy
through the ResNet18 CNN, which has fewer parameters.

In terms of calculation time, the total calculation time of the
proposed rotated target classification algorithm consists of the
orientation alignment time and CNN inference time. The total
calculation time of the data augmentation method only includes
the CNN inference time. However, because the proposed al-
gorithm requires CNNs with fewer numbers of parameters, the
inference time of the CNNs is also shorter than that of CNNs used
by the existing RDA method. As a result, the total calculation
time cost by the proposed algorithm is lower than that of the
existing RDA method (see Table IV).

In summary, compared with existing RDA methods, the pro-
posed rotated target classification algorithm via aligned im-
ages can achieve higher classification accuracy than existing
methods, and cost less inference time. This demonstrates that
precise orientation information can facilitate the recognition of
arbitrarily rotated targets.
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TABLE IV
AVERAGE CALCULATION TIME

REFERENCES

[1] P. Zhang, J. Tang, H. Zhong, M. Ning, D. Liu, and K. Wu, “Self-Trained
target detection of radar and sonar images using automatic deep learn-
ing,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–14, Jul. 2021,
doi: 10.1109/TGRS.2021.3096011.

[2] D. P. Williams, “On the use of tiny convolutional neural net-
works for human-expert-level classification performance in sonar im-
agery,” IEEE J. Ocean. Eng., vol. 46, no. 1, pp. 236–260, Jan. 2021,
doi: 10.1109/JOE.2019.2963041.

[3] Z. Peng, J. Tang, H. Zhong, M. Ning, and Y. Fan, “Rotated target recog-
nition of sonar images via convolutional neural networks with rotated
inputs,” in Proc. 14th Int. Conf. Digit. Image Process., Wuhan, China,
2022, pp. 1–7.

[4] I. D. Gerg and V. Monga, “Structural prior driven regularized deep learning
for sonar image classification,” IEEE Trans. Geosci. Remote Sens., vol. 60,
pp. 1–16, Jan. 2021, doi: 10.1109/TGRS.2020.3045649.

[5] M. Valdenegro-Toro, “Object recognition in forward-looking sonar im-
ages with convolutional neural networks,” in Proc. OCEANS MTS/IEEE
Monterey, 2016, pp. 1–6.

[6] X. Wang, J. Jiao, J. Yin, W. Zhao, X. Han, and B. Sun, “Underwater sonar
image classification using adaptive weights convolutional neural network,”
Appl. Acoust., vol. 146, pp. 145–154, 2019.

[7] D. Karimanzira, H. Renkewitz, D. Shea, and J. Albiez, “Object detection
in sonar images,” Electronics, vol. 9, no. 7, 2020, Art. no. 1180.

[8] Y. Yu, J. Zhao, Q. Gong, C. Huang, G. Zheng, and J. Ma, “Real-time
underwater maritime object detection in side-scan sonar images based on
transformer-YOLOv5,” Remote Sens., vol. 13, no. 18, pp. 1–28, 2021.

[9] G. Neves, M. Ruiz, J. Fontinele, and L. Oliveira, “Rotated object detection
with forward-looking sonar in underwater applications,” Expert Syst.
Appl., vol. 140, 2020, Art. no. 112870.

[10] H. Penedones, R. Collobert, F. Fleuret, and D. Grangier, “A document skew
detection method using run-length encoding and the hough transform,” in
Proc. 10th Int. Conf. Pattern Recognit., 1990, pp. 464–468.

[11] K. Jafari-Khouzani and H. Soltanian-Zadeh, “Radon transform orien-
tation estimation for rotation invariant texture analysis,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 27, no. 6, pp. 1004–1008, Jun. 2005,
doi: 10.1109/TPAMI.2005.126.

[12] G. S. Peake and T. N. Tan, “A general algorithm for document skew angle
estimation,” in Proc. Int. Conf. Image Process., 1997, pp. 230–233.

[13] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, “Spatial
transformer networks,” in Proc. Adv. Annu. Conf. Neural Inf. Process. Syst.
28, Montreal, Quebec, Canada, 2015, pp. 2017–2025.

[14] F. Massa, R. Marlet, and M. Aubry, “Crafting a multi-task CNN for
viewpoint estimation,” in Proc. Brit. Mach. Vis. Conf., York, U.K., Sep.
19–22, 2016, pp. 1–12.

[15] Z. Peng, J. Tang, H. Zhong, M. Ning, and Y. Fan, “Pre-rotation only at
Inference-time: A way to rotation invariance,” in Proc. 14th Int. Conf.
Digit. Image Process., Wuhan, China, 2022, pp. 1–10.

[16] A. Azulay and Y. Weiss, “Why do deep convolutional networks generalize
so poorly to small image transformations,” J. Mach. Learn. Res., vol. 20,
no. 184, pp. 1–25, 2019.

[17] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient CNN architecture design,” in Proc. Eur. Conf.
Comput. Vis., 2018, pp. 116–131.

[18] S. G. Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11,
no. 7, pp. 674–693, Jul. 1989.

[19] T. Yao and H. Sun, Advanced Digital Signal Processing, 2nd ed. Wuhan,
China: Huazhong Univ. Sci. Technol. Press, 1999.

[20] I. Daubechies, “Ten lectures on wavelets,” in Proc. SIAM, 1992, pp. 56–58.
[21] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: Towards

real-time object detection with region proposal networks,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017,
doi: 10.1109/TPAMI.2016.2577031.

[22] L. Liu et al., “Deep learning for generic object detection: A sur-
vey,” Int. J. Comput. Vis., vol. 128, no. 2, pp. 261–318, 2020,
doi: 10.1007/s11263-019-01247-4.

Peng Zhang received the B.S. degree in radar engi-
neering and the M.S. degree in signal and informa-
tion processing in 2016, and 2018, respectively, from
the Naval University of Engineering, Wuhan, China,
where he is currently working toward the Ph.D. degree
in underwater acoustical engineering.

His research interests include deep learning and
its application in pattern recognition and signal
processing.

Jinsong Tang received the Ph.D. degree in electronic
engineering from the Nanjing University of Aeronau-
tics and Astronautics, Nanjing, China, in 1996.

He is currently a Professor with the Naval Uni-
versity of Engineering, Wuhan, China. His current
research interests include synthetic aperture sonar
(SAS), Interferometric SAS, and underwater acoustic
communication.

Dr. Tang was honored in the list of the “100 Tal-
ents Programme” issued by the Chinese Academy of
Science in 1999.

Heping Zhong received the B.S. and M.S. degrees
in computer science and technology and the Ph.D.
degree in underwater acoustical engineering from
the Naval University of Engineering (NUE), Wuhan,
China, in 2005, 2007, and 2011, respectively.

He is currently an Associate Professor with NUE.
His current research interests include synthetic aper-
ture radar (sonar) interferometry software develop-
ment, interferometric signal processing, and parallel
computing.

Haoran Wu received the B.S. degree in radar engi-
neering, and the M.S. and Ph.D. degrees in underwa-
ter acoustical engineering from the Naval University
of Engineering (NUE), Wuhan, China, in 2012, 2014,
and 2018, respectively.

He is currently an Associate Professor with NUE.
His current research interests include synthetic aper-
ture radar (sonar), and radar (sonar) signal processing,
and automatic target recognition.

Han Li received the B.S. degree in radar engineering
in 2018 from the Naval University of Engineering
(NUE), Wuhan, China, where he is currently working
toward the M.S. degree in information and commu-
nication engineering.

He was doing research on SAR image processing in
Tsinghua University from 2016 to 2018. His current
research interests include computer vision and its
application in radar (sonar) interferometry.

Yue Fan received the M.S. degree in electronic en-
gineering in 2009 from Central China Normal Uni-
versity, Wuhan, China, where he is currently working
toward the Ph.D. degree in radio physics.

She is currently an Associate Professor with the
Naval University of Engineering, Wuhan, China. Her
current research interests include synthetic aperture
sonar image processing and automatic target recog-
nition.

https://dx.doi.org/10.1109/TGRS.2021.3096011
https://dx.doi.org/10.1109/JOE.2019.2963041
https://dx.doi.org/10.1109/TGRS.2020.3045649
https://dx.doi.org/10.1109/TPAMI.2005.126
https://dx.doi.org/10.1109/TPAMI.2016.2577031
https://dx.doi.org/10.1007/s11263-019-01247-4


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


