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Abstract—Due to the different imaging mechanisms between
optical and polarimetric synthetic aperture radar (PolSAR) im-
ages, determining how to effectively use such complementary in-
formation has become an interesting and challenging problem.
Convolutional neural networks (CNNs) and other deep neural net-
works have achieved good experimental results in remote sensing
land-cover semantic segmentation. However, the CNN convolution
structure can extract only the features within the receptive field in
the spatial dimension without focusing on the relationship between
multiple channels; therefore, it is impossible to realize fusion and
complementarity between multiple channels. In this article, we
propose a novel spatial dense channel attention fusion network
(SDCAFNet), which takes optical and PolSAR images as different
inputs and completes feature fusion and semantic segmentation
within a neural network. First, SDCAFNet uses a two-stream
siamese CNN network to realize the preliminary feature coding
of optical and PolSAR images. Then, a spatial dense channel
attention module (SDCAM) is proposed. The channel activation
values obtained at different positions are combined in the spatial
dense matrix, which can describe the attention in the feature fusion
process. Finally, we introduce the fused features into the symmetric
skip-connection decoder composed of multiple symmetric decoder
blocks to realize end-to-end land-cover semantic segmentation.
Experimental results show that SDCAFNet can effectively learn
the correlation between optical and PolSAR channels and has a
better segmentation accuracy than other methods.

Index Terms—Channel attention, feature fusion, land-cover
semantic segmentation, optical image, polarimetric synthetic
aperture radar (PoLSAR).
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I. INTRODUCTION

LAND-COVER semantic segmentation has long been a fun-
damental but challenging research topic in geoscience and

remote sensing (RS). At present, many RS semantic segmenta-
tion tasks use data from a single sensor. Many studies use optical
RS images for semantic segmentation, but the corresponding
effect is poor due to unitary spectral information and cloud cover
[1], [2]. Other studies use polarimetric synthetic aperture radar
(PolSAR) images for semantic segmentation [3], [4], but the
corresponding semantic segmentation effect is also poor because
of speckle noise, which affects the performance of pixel-based
polarimetric decomposition features. With the development of
artificial intelligence, many advanced deep or machine learning
methods, such as GCNs [5] and transformer mechanisms [6],
have been applied in single-modal RS classification, which
can achieve more robust optimum and better detailed spectral
representations.

Additionally, studies [7] have shown that the ability to identify
materials on the surface of the Earth remains limited due to
the lack of rich and diverse information, particularly in chal-
lenging scenes where certain categories are similar and cannot
be accurately classified by only single modalities [8], [9], [10].
Different imaging technologies in RS are capable of capturing
a variety of properties from the Earth’s surface [11], such as
spectral radiance and reflectance, height information, texture
structure, and spatial characteristics. The joint exploitation of
multiple modalities enables us to characterize the scene at a more
detailed and precise level unachievable using single modality
data [12].

With the rapid development of RS technology, such as satellite
constellations and satellites with multiple sensors, it is possible
to obtain images in the same area from a variety of sensors. It is
possible to improve the segmentation accuracy by fusing multi-
source image data. There are great differences in the geometric
and radiation characteristics between PolSAR images and opti-
cal images. The accuracy of land-cover semantic segmentation
can be improved by fusing high spatial resolution optical and
PolSAR images [13], [15]. Therefore, designing a suitable deep
or machine learning model to complete the advantages comple-
mentary to optical and PolSAR images is an urgent problem to
solve [16], [17].
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There are three issues to be solved in land-cover semantic
segmentation with the fusion of PolSAR and optical, namely,
the selection of semantic segmentation methods, the feature ex-
traction methods of optical and PolSAR and the fusion methods
of multimodal features.

In terms of semantic segmentation algorithm selection, there
are two mainstream methods: the classification method based
on image patches [18] and the end-to-end segmentation network
[19]. The first method requires the division of the RS image into
patches, and each patch needs to be classified separately. There
are already some good methods to improve the classification
accuracy of each patch by designing a new neural network
structure [7], [20], which effectively improves the classification
results of multimodal fusion.

The representative of the second method is the full con-
volution neural network, which was proposed by Long et al.
[21]. The segmentation results with the same size as the input
image can be directly obtained through a deconvolution op-
eration. The full convolutional neural network (CNN) and its
deformation networks, such as UNet [22] and DeepLab [23],
have gradually become mainstream in semantic segmentation
tasks because of their ability to input images of any size and
achieve high-precision classification results. At present, most
of the existing fully CNNs only support single-mode image
classification. In this article, we creatively propose an end-to-end
semantic segmentation network spatial dense channel attention
fusion network (SDCAFNet), which can support both inputs of
optical and PolSAR images and complete semantic segmenta-
tion efficiently.

In terms of the feature extraction methods selection, the ex-
isting feature extraction method for image fusion mostly adopts
the method based on multimodal deep learning models. There
are two mainstream multimodal model methods. One method is
that each model uses the same network to extract features [24],
and the other method is that their feature networks are designed
for different modalities [25]. The first method cannot extract
the optimal features according to the imaging characteristics of
multisource images because the feature extraction networks are
the same, which reduces the feature diversity and description
power. The second method can design the most appropriate
network structure to extract features according to the image
characteristics of different modes; this structure is better than
that of the first method. In this article, we used a two-stream
siamese feature encoder in SDCAFNet, which is used as the
feature extraction network for optical and PolSAR images with-
out weight sharing. It is worth mentioning that to maximize the
feature extraction ability of each stream encoder, we use a large
number of optical images and PolSAR images to pretrain each
stream encoder separately.

In terms of the multimodal feature fusion method, the
attention mechanism, especially the channel attention mech-
anism, has been applied to the field of computer vision in
recent years [26]. In the image classification task, the channel
attention mechanism aims to obtain the contribution relation-
ship between multiple channels and enhance the final classifi-
cation efficiency by activating or suppressing different chan-
nels. A squeeze-and-excitation network (SENet) [27], which

is the most representative method, converts the global spatial
information extracted through the global average pool into a
multilayer perceptron and finally generates an attention map to
describe the relationships between channels. However, different
from the image-wise classification task, the land-cover classifi-
cation task belongs to the domain of pixel-wise segmentation,
and the relationships between channels in each local range of
the image are different. The global attention obtained by SENet
cannot describe the local differentiated attention. To solve the
abovementioned problems, we propose the spatial dense channel
attention module (SDCAM) in SDCAFNet, which can record the
local correlation between channels in the spatial dense matrix
and introduce a refined local attention mechanism in disguise.

In conclusion, this article proposes a new deep learning
model, SDCAFNet, to realize end-to-end land-cover semantic
segmentation through the fusion of optical and PolSAR images.
SDCAFNet consists of three components: a two-stream siamese
feature encoder, feature fusion with SDCAM and symmetric
skip-connection decoder. First, we propose a two-stream CNN
feature encoder and pretrained encoders of each stream with a
large number of labeled PolSAR and optical images to improve
the feature extraction ability in multimodal RS images to the
greatest extent. Then, the SDCAM is proposed. The nonlinear
relationships of the optical and PolSAR channels at each local
position are extracted through the spatial dense matrix, and the
local attention map is obtained. The attention map is combined
with the multimodal features of the encoder output to realize
the nonlinear optimization of the features. After that, we realize
the feature fusion of optimized features through convolution. Fi-
nally, we propose a symmetric skip-connection decoder to obtain
semantic segmentation in an end-to-end manner. Additionally,
the decoder can skip-connect the fused features with the shallow
features of the optical and PolSAR images. By making full use
of the original spatial information in the optical and PolSAR
images, the upsampling precision is improved to the greatest
extent.

The main contributions of this article are as follows.
First, we propose a new network structure called SDCAFNet,

which can better complete the end-to-end land-cover segmenta-
tion task with the fusion of optical and PolSAR features. Unlike
the patch-wise multimodal fusion networks, SDCAFNet can
output the classification results of the original image size without
patch-by-patch calculations. We design the network structure
using some full convolution networks for reference.

Second, we propose a feature selection and fusion module
called SDCAM, which can obtain the local relationships be-
tween channels by applying a reasonable compression ratio to
the spatial dense matrix structure. Additionally, through channel
selection at different locations, the dense fused features of
optical and PolSAR images are obtained by SDCAM, which
can effectively solve the feature space inconsistency problem of
multimodal images.

Third, we also propose a symmetric decoder block that is
suitable for end-to-end semantic segmentation tasks with mul-
tisource fusion. This block can simultaneously introduce the
high-resolution contour features of optical and PolSAR in the
decoding process, which can combine the rich spatial location
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information in the low-level features with the rich semantic
information in the high-level features.

II. RELATED WORK

A. Land-Cover Semantic Segmentation Based on Optical and
PolSAR Fusion

There are several methods for improving the performance of
land-cover classification by fusing SAR and optical images [28],
[29]. However, there are great differences in the geometric and
radiometric characteristics between optical and SAR images.
In particular, PolSAR images contain more information than
single-band SAR images [30], [31], [32]. At present, there is
no better method for realizing the effective feature fusion of
optical and PolSAR images. Many studies [33], [34] attempt to
solve the land-cover classification task through a fusion strategy
after differential feature extraction for optical and SAR data. The
most important part of this process is the feature extraction of
multimodal data and classifier design. The Siamese CNN [25],
[35] uses the powerful CNN function to derive the high-level
features of multimodal datasets and then concatenates these
features for classification. Specifically, concatenation, which
is an effective and simple method, is the main strategy for
fusing PolSAR and optical data thus far. In essence, SDCAFNet
also draws lessons from the strategy of feature concatenation.
However, the difference is that we introduce the local attention
mechanism into the concatenation process so that the fused
features are more suitable for semantic segmentation tasks.

B. Attention and Gating Mechanisms

Recently, attention mechanisms have received great attention.
Attention is a method for concentrating computing resources on
the most valuable part of the network for classification tasks.
The effectiveness of attention has been proven in many kinds
of applications [36], [37], [38], [39]. Chen et al. [40] proposed
a multiscale feature attention mechanism for semantic segmen-
tation tasks. Wang et al. [41] introduced a powerful bottom-up,
top-down feedforward attention mechanism based on hourglass
modules that are inserted into deep residual networks. Hu et al.
[27] proposed a channel attention graph to identify the global
relationship between channels through convolution. In contrast,
our proposed SDCAM can be considered a denser local attention
mechanism.

III. METHODOLOGY

We propose a network structure SDCAFNet, which can
improve the land-cover semantic segmentation result through
the selection and fusion of the feature channels of optical
and PolSAR images. The architecture of SDCAFNet is shown
in Fig. 1, which consists of three components: a two-stream
siamese feature encoder, SDCAM, feature fusion and symmetric
skip-connection decoder. Different from previous fusion net-
works, such as the M3 [42] and binary complex neural network
[43], SDCAFNet is an end-to-end fusion network for semantic
segmentation, and the input of the network is the original image
rather than the segmented patches. First, the original optical

and PolSAR images obtain the corresponding initial features
X ∈ RC×H×W and Y ∈ RC×H×W through the two-stream
siamese feature encoder. Then, X and Y are used as the inputs of
the SDCAM to obtain the optimized features U ∈ R2C×H×W

through local attention channel selection. Finally, we fuse the
optimized features through a convolution operation and directly
obtain the classification result graph with the same input size
through a symmetric skip-connection decoder.

In this section, we describe the implementation process of the
proposed SDCAFNet in detail. In Section III-A, we introduce
the network structure of the two-stream siamese feature encoder
and the pretraining method in detail. Then, in Section III-B, we
introduce the structure and principle of the SDCAM in detail.
Finally, we introduce the network structure of the symmetric
skip-connection decoder and the training process of SDCAFNet
in Section III-C.

A. Two-Stream Siamese Convolution Feature Encoder

Due to the different imaging mechanisms for optical and
PolSAR images, the visual effects of the two types of images
are quite different, and the internal features are not in the same
feature space. To achieve effective fusion, different modal image
features need to be transformed into the same feature space
through differentiated feature encoding. A neural network can
obtain the abstract expression of input data in high dimensional
space. Different network parameters represent different feature
mappings. We use two full convolution networks that do not
share parameters to extract independent features from optical
and PolSAR images and map them to the same high-dimensional
feature space to provide a spatial basis for the subsequent fusion
process.

The network structure of the two-stream siamese convolution
feature encoder is shown in Fig. 2. PolSAR and optical images
are encoded through a series of convolution layers, in which we
use the smaller scale 3×3 instead of using a larger convolution
filter. Considering that a small convolution filter increases the
nonlinearity inside the network, the network has a relatively
strong discrimination ability [25]. The 3×3 convolution filter
is the smallest kernel for capturing different directional modes,
such as center, up and down, left and right, so we choose a
3×3 convolution filter to complete the encoding process. Max
pooling is performed over 2×2 pixel windows with a stride
of 2. All layers in the network are equipped with a nonlinear
linear unit (ReLU) as an activation function. The last layer of
the encoder is connected by a series of deconvolution networks
in the pretraining process and will be connected by the SDCAM
in the following training process.

To improve the training efficiency of SDCAFNet, we propose
a reasonable pretraining method for the encoder. By maximizing
the quantity of pretrained image data, the encoder can max-
imize the differential feature extraction ability in optical and
PolSAR images. By referring to the UNet [22], we propose
two decoders for each of the two-stream encoders, which form
two independent UNets, PolSAR-UNet and optical-UNet. Then,
the pretraining task of the encoder in SDCAFNet is converted
into the training tasks of PolSAR-UNet and optical-UNet. It is
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Fig. 1. Flowchart of SDCAFNet.

worth mentioning that the training process of PolSAR-UNet and
optical-UNet is independent, so the data available for training
are not limited to optical and PolSAR images with overlapping
areas. This will greatly reduce the constraints on the available
data for training.

Most of the existing image classification studies use ImageNet
as the pretraining dataset [44]. However, ImageNet is mostly
normal photos, which are quite different with respect to the
observation angle and imaging performance of RS images, and
the network parameters pretrained by ImageNet are not optimal.
In this article, we first make full use of ImageNet to preliminarily
train the optical-UNet and PolSAR-UNet network parameters so
that the network can obtain the basic image semantic extraction
ability. Then, a large number of optical RS images are used
for further migration training based on the preliminarily trained
optical-UNet so that the network can obtain a feature extraction
ability that is suitable for the characteristics of optical images.
Through the abovementioned method, the trained optical-UNet
encoder can be used as the pretraining result of the optical-stream
encoder in SDCAFNet. Similarly, the PolSAR-stream encoder
in SDCAFNet can also be obtained in the above way. The
advantage of this is that it can make maximum use of the current
massive amounts of open-source photos and RS image data,

ensure that the network parameters of the encoder are more
suitable for the characteristics of RS images, and provide a better
network parameter basis for further training optical and PolSAR
fusion parameters for SDCAFNet.

B. Spatial Dense Channel Attention Module

As a new attention mechanism module, our SDCAM can
obtain the dense relationship between channels at different
local positions based on a spatial dense matrix. SDCAM is a
computing block based on the feature output of the two-stream
siamese convolution feature encoder. In the notation that follows,
we take X ∈ R(H×W×C) to be the PolSAR-stream feature and
Y ∈ R(H×W×C) to be the optical-stream feature. We can then
copy and concatenate X and Y by channels asU ∈ R(H×W×2C),
which are directly applied as the input to the subsequent feature
compression and channel relation extraction. SDCAM consists
of two steps: feature compression by local information embed-
ding and channel relation extraction of local spatial information.
A diagram illustrating the structure of SDCAM is shown in
Fig. 3.

1) Feature Compression by Local Information Embedding:
Generally, the relationship between the channels at each location
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Fig. 2. Network structure and pretraining process of the two-stream convolution feature encoder.

Fig. 3. Details of the SDCAM.

is not only related to the channels at that location but is also
affected by the channel information in the surrounding adja-
cent area. Therefore, it is necessary to make effective use of
contextual information in calculating the relationship between
channels within a local location. To effectively extract the dense

relationship between the channels, we intend to compress the
features locally by embedding local information and use the
statistical feature to represent the features of the area. Addition-
ally, the land-cover distribution of RS images is continuous, and
most of the land cover in the local spatial area is approximate.
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In other words, in the local area, the statistical features and
the relationships between channels are similar. Therefore, on
the premise of reasonable selection of the compression ratio,
the compression of local features will not cause the problem in
which the calculation results of the statistical features and the
local relationships between channels are not representative. In
summary, using feature compression by local information em-
bedding can not only effectively introduce contextual informa-
tion to make the calculation between channels more reasonable
but also effectively reduce the parameter dimension and improve
the calculation efficiency without introducing more errors.

To compress the local spatial information of the image, we
design an operation Fcomp, which takes the statistical average
pixel as the descriptor of the region to describe the local spatial
information in the channel. A reasonable feature compression
ratio t in Fcomp should be set according to the size of the input
image. When the input image is larger, the compression ratio
t can be appropriately increased. By constantly adjusting the
value of t, we can realize the local description with the most
reasonable granularity. The local spatial information descriptor
at the (m, n) position in Z can be obtained in the following way:

Z(m,n) = Fcomp(U,m, n)

=

∑m∗H
t

i=1+(m−1)H
t

∑n∗W
t

j=1+(n−1)H
t

U(i, j)

H
t ∗ W

t

. (1)

In Fig. 3, the compression ratio t = 4, which can compress
U ∈ R(H×W×2C) to Z ∈ R(4×4×2C).

2) Local Spatial Channel Relationship Extraction: The ul-
timate goal of SDCAM is to capture the relationships between
channels and apply them to feature channel selection. In the first
step, we compress the information to the feature descriptor of
each local region. In this step, we need to make full use of the fea-
ture descriptor for further training to learn the complex nonlinear
relationship between channels at different local positions. We
design a gating mechanism to learn the nonlinear relationship
between channels by imitating long short-term memory [45],
gated recurrent units [46], and other recurrent neural network-
related networks [47]. The formula is defined as follows:

V = Fex(Z,Wfc1 ,Wfc2) = Wfc2(sigmoid(Wfc1Z)) (2)

where Wfc1 ∈ R( 2C
r ×2C) and Wfc2 ∈ R(2C× 2C

r ). We parame-
terize the gating mechanism by forming two fully connected
layers (fc1 and fc2) and a nonlinear activation function (sig-
moid), which can not only reduce the network complexity but
also flexibly learn the nonlinear relationship between channels.
Through gating mechanism training, we can obtain the spatial
dense matrix. Then, the spatial dense matrix is upsampled, and
its size is set equal to U before feature compression. Finally, the
spatial dense matrix is taken as the Hadamard with U to complete
the feature channel selection. The formula is as follows:

Ū = Fhad(U, V ) = V̄ × U = Upsampling(V )× U. (3)

The overall processing of the proposed SDCAM is shown in
Algorithm 1.

Algorithm 1: The Overall Processing of SDCAM.
Input: The feature maps X and Y extracted by the

two-stream convolution encoder;
Output: The feature maps weighted by the spatial dense

matrix;
1. Concatenate the feature maps X and Y as a whole

feature map U;
2. Compress feature map U to embedded feature map Z

based on Eqs. (1);
3. Extract the channel relationship descriptor V, also

called the spatial dense matrix, by the gating
mechanism based on Eq. (2);

4. Upsample the V into V , which is the same size as U;
5. Weight U into U by V based on Eq. (3), which can

introduce the spatial channel-wise attention
operation into the feature maps.

It can be determined from the above steps that SDCAM can
obtain spatial local attention through training and optimize the
features of optical and PolSAR images. Next, a feature fusion
block, which is represented by (4), is used to fuse the weighted
features of optical and PolSAR images to obtain the fused feature
Q

Q = W2δ(W1 ∗ Ū) (4)

where W1 symbolizes the first convolution operation, W2 sym-
bolizes the second convolution operation, and δ illustrates the
ReLU function.

C. Symmetric Skip-Connection Decoder

To realize the end-to-end land-cover classification network
after obtaining the fused features, we need a decoder to convert
the features into land-cover classes. Considering that the input
consists of optical and PolSAR images and the detailed infor-
mation in both image modalities is useful for recovering spa-
tiotemporal information and improving resolution, we propose
the symmetric skip-connection decoder, which can connect the
fused features with the low-level features of optical and PolSAR
images. The symmetric skip-connection decoder is composed of
multiple decoder blocks. The detailed structure of the decoder
block is shown in Fig. 4.

The first layer of the decoder block is a concatenated feature
map named Ck

Ck = [Xk, Yk, Zk] (5)

where k refers to the serial number of the decoder block, Xk

is the feature from the PolSAR-stream encoder, and Yk is the
feature from the optical-stream encoder. Zk is the output of the
previous decoder block. It is worth mentioning that when k = 1,
Zk is equal to the fused feature Q.

In addition to the concatenated feature map Ck, the decoder
block also contains two convolutional layers and an up-conv
layer. In the last decoder block, we remove the up-conv layer
and directly take the output of two convolutional layers as the
final classification result.
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TABLE I
SUMMARIZED STATISTICS OF THE BAIYANGDIAN DATASET

Fig. 4. Details of the symmetric skip-connection decoder block.

In summary, the detailed structure of SDCAFNet is provided
in Fig. 5.

IV. EXPERIMENT EVALUATION

In this section, we conduct several experiments to evaluate the
land-cover semantic segmentation performance of SDCAFNet.
First, the datasets and experimental settings used in the experi-
ment are introduced in Section IV-A. The comparison methods
are introduced in Section IV-B. The configuration of important
hyperparameters, such as input size and compression ratio, is
introduced in Section IV-C. In Section IV-D, we compare the
experimental results for two datasets between SDCAFNet and
the comparison methods. Section IV-E shows the validation
curves of the two datasets. Section IV-F shows the computational
time. Finally, Section V concludes this article.

A. Dataset and Experimental Settings

The Xiong’an New Area is a special economic zone that
has been established in China in recent years. Its land-cover
distribution and change are of greater concern to society and have
high RS Earth observation value. Additionally, the land-cover

classes in Xiong’an New Area are complex, including cities and
wetland rivers, which can effectively verify the universality of
the algorithms. Therefore, we conduct several experiments to
evaluate the land-cover semantic segmentation performance of
SDCAFNet on two datasets that can cover different geomorphic
features of the Xiong’an New Area.

The first coregistered optical and PolSAR image datasets are
located in the Baiyangdian Wetland Nature Reserve, which has
typical wetland coverage; the dataset size is 5812 × 5225, with
a spatial resolution of 3.2 m. Table I lists the pixel numbers of
training, validation, and testing samples for each class in the
Baiyangdian dataset.

The second coregistered optical and PolSAR image dataset
are located in Rong County, Hebei Province, where typical urban
land cover exists; the dataset size is 3449 × 6410, with a spatial
resolution of 3.2 m. We call this dataset “Rong.” Table II lists
the pixel numbers of the training, validation, and testing samples
for each class in the Rong dataset.

The optical images in the two datasets are obtained from
GaoFen-2 in multispectral bands, as shown in Fig. 6(a). PolSAR
images are GaoFen-3 level 1A products in the C-band and
quad-polarization (HH + HV + VH + VV) observation modes,
as shown in Fig. 6(b). Because the resolution of GaoFen-2 is dif-
ferent from that of GaoFen-3, to maintain a consistent resolution,
we resized the GaoFen-3 image, which has a higher resolution, to
the GaoFen-2 size. We use a deep generative matching network
[48] to register optical and PolSAR images. Then, a manual fine
adjustment is used to obtain the final coregistered optical and
PolSAR image dataset used for fusion. In addition, to calculate
and compare the indexes of different methods, we labeled the
ground truth of the Baiyangdian and Rong datasets according
to the visual interpretation of the optical images. All the pixels
are assigned to seven classes: building (Bu), farmland (Fa), tree
(T), grass (G), bare land (Ba), water (W), and unknown (Un).
The ground truth is shown in Fig. 6(c).

The settings of our experiment are as follows. Learning rates
are tested between (0, 10−8). Through multiple experiments
on two datasets, 10−6 is selected as the final learning rate,
which can achieve rapid convergence and avoid large amplitude
oscillations in the gradient descent. The loss function is the
weighted categorical cross-entropy [48]

Funtionloss = −
k∑

i=1

Wi[yi log yi + (1− yi) log(1− yi)] (6)
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Fig. 5. Structural details of the symmetric skip-connection decoder.

where yi is the ground truth with one-hot coding for class i,
yi is the softmax function output for class i, k is the total
number of output classes, and Wi is the balanced weights of
class i.

We set the epoch to infinity, and the training termination
condition is met only when the loss function is less than 10−3

and the difference between two consecutive losses is smaller
than 10−4. Considering the limited memory, the batch size is
set to 10 in the experiments. All experiments are executed in

TensorFlow and Python 3.5 on the Windows platform with
an NVIDIA Quadro P5000 GPU (16 GB), and we also use
the OpenCV toolbox to carry out the image preprocessing
work.

B. Comparison Methods

UNet+Optical: Recently, UNet has achieved good results
in the semantic segmentation of single-modal RS images.
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TABLE II
SUMMARIZED STATISTICS OF THE RONG DATASET

Fig. 6. Examples of the optical, PolSAR (Pauli-RGB) and ground truth images. (a) Optical image. (b) PolSAR (Pauli-RGB) image. (c) Ground truth.

To compare the performances of single-modal methods and
multimodal fusion methods, we chose UNet as the comparison
method of optical image semantic segmentation. We pretrained
on ImageNet and finetuned the optical images of the Baiyang-
dian and Rong datasets. We refer to this method as “UNet-Op.”

UNet+PolSAR: This method is similar to the construction of
“UNet-Op.” The only difference is that the input is changed from
optical to PolSAR images. We refer to this method as “UNet-
PS.”

UNet+Optical+PolSAR: We concatenated the op-
tical images and PolSAR images into eight channels
(R+G+B+NIR+HH+HV+VH+VV) as the UNet input.
We refer to this method as “UOP.”

UNet+Optical+ PolSAR+SE: The squeeze-and-excitation
(SE) block [22] is embedded into the UOP method, which can
introduce a global attention mechanism into the feature encoder.
We refer to this method as “UOP-SE.”

Siamese CNN + Optical+ PolSAR: We used the VGG16
network to extract the features of the optical and PolSAR images
and fuse such features by concatenation. We refer to this method
as “SOP.”

Siamese CNN + Optical+ PolSAR+SE”: The SE block [22]
was embedded into SOP after the concatenation of the encoded
features. We refer to this method as “SOP-SE.”

We designed six comparison methods to verify the perfor-
mance of SDCAFNet. In summary, there are three compari-
son focuses. UNet-OP and UNet-PS are used to compare the
performance difference between single-modal image input and
multimodal image input. UOP and SOP are used to compare
the performances of different feature extraction methods with
SDCAFNet. UOP-SE and SOP-SE are used to compare the
performances of different attention mechanism modules.

C. Hyperparameter Determination

We find that two hyperparameters have a significant impact
on the segmentation result of SDCAFNet: the input image size
H×W and the feature compression ratio t in SDCAM. SD-
CAFNet is an end-to-end semantic segmentation network, so the
processing unit is an original image rather than an image patch.
The size of the input image H×W directly affects the ability of
SDCAFNet to extract spatial multiscale features. When H×W is
too small, the small-scale features are fully extracted. Although
subtle boundary segmentation can be more accurate, the trained
model is not sensitive to large-scale global features, leading to
oversegmentation that divides a wide range of continuous land
covers into multiple subregions. If H×W is too large, the model
lacks the ability to describe the details, and the segmentation
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TABLE III
EXPERIMENTAL RESULTS OF THE DIFFERENT METHODS ON THE BAIYANGDIAN DATASET

TABLE IV
EXPERIMENTAL RESULTS OF THE DIFFERENT METHODS ON THE RONG DATASET

performance of complex boundaries is too rough. The compres-
sion ratio t can affect the SDCAM spatial fineness for describing
the channel relationship in the local region. When the input size
H×W is fixed, if t is too large, there are too many parameters in
the SDCAM, and the training process has difficulty converging.
If t is too small, the description fineness of the local channel
relationship is too rough, and the improvement in the feature
fusion on the segmentation task is not obvious.

Therefore, in the experiment, H×W and t need to be adjusted
together to find the optimal hyperparameter pair < H×W and
t > that can realize the feature extraction ability of a reason-
able spatial scale on the premise of rapid model convergence.
Through many experiments, we found that when the num-
ber of hyperparametric pairs is < 512 × 512 and 4 >, SD-
CAM has more reasonable parameters, SDCAFNet has a faster
convergence speed, and the segmentation performance is greatly
improved after feature fusion.

D. Classification Over Two Datasets

We evaluate the experimental results with several indexes,
including the per-class accuracy (PA), overall accuracy (OA),
mean intersection over union (MIoU), and frequency weighted
intersection over union (FWIoU), in this article. To express the
mathematical formulas of these evaluation metrics, we assume
pij is the number of pixels of class i predicted to class j and
Ti is the total number of pixels labeled to class i. k is the total
number of classes. sij is a member of the confusion matrix S,
and C is the total number of classes. Thus, the accuracy metrics
are defined as follows.

PA: The simply computed ratio between the number of prop-
erly classified pixels and the total number of pixels for

each class

PA =
pii
Ti

(7)

where i = 1, 2 …, k.

OA: The percentage of properly classified pixels and the total
number of pixels in the entire image

OA =

∑k
i=1 pii∑k
i=1 Ti

. (8)

MIoU: The mean percentage of the similarity between the
prediction results and the ground truth

MIoU =
1

C

C∑

i=1

sii∑C
j=1 sij +

∑C
j=1 sji − sii

. (9)

FWIoU: The standard metric to measure the similarity between
the prediction results and the ground truth

FWIoU =
1

∑N
i=1

∑N
j=1 sij

N∑

i=1

∑N
j=1 (sijsii)∑N

j=1 (sij + sji)− sii
.

(10)

1) Classification Results on the Baiyangdian Dataset: To
verify the performance of the proposed method, we use six
methods for comparison with SDCAFNet on the Baiyangdian
dataset. The detailed experimental results are shown in Table III.
Compared with UNet-OP and Unet-PS, we found that the optical
image has higher average indexes, such as OA, MioU, and
FWIoU, than those of the PolSAR image, which can prelimi-
narily indicate that the optical image is more suitable for the
mixed classification of multiple land-cover classes. However,
the PolSAR image has a better classification performance for
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Fig. 7. Classification results of the different methods on the Baiyangdian dataset. (a) Optical image. (b) PolSAR (Pauli-RGB) image. (c) Ground truth.
(d) UNet-OP. (e) UNet-PS. (f) UOP. (g) UOP-SE. (h) SOP. (i) SOP-SE. (j) SDCAFNet.

some single categories, such as water. Overall, all the methods
for fusing optical images and PolSAR images improved all the
indexes compared with the methods of single-modal images,
showing that there is information complementarity between
optical images and PolSAR images that is useful in the classi-
fication task. Comparing UOP and SOP, it can be observed that
using the siamese network to extract optical and PolSAR features
has better experimental performance than simple image concate-
nation at the input. Comparing UOP and SOP to UOP-SE and

SOP-SE, it can be observed that channel selection with an atten-
tion module in the network can better solve the high-dimensional
space problem of feature fusion. Further comparing SDCAFNet
and SOP-SE, SDCAFNet has better experimental results, which
shows that the local dense channel relationship captured by
SDCAM is more suitable for land-cover semantic segmentation
than the global channel relationship captured by SENet.

In conclusion, SDCAFNet has better experimental results
than other methods. The reasons are as follows.
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Fig. 8. Classification results of the different methods on the Rong dataset. (a) Optical image. (b) PolSAR (Pauli-RGB) image. (c) Ground truth. (d) UNet-OP.
(e) UNet-PS. (f) UOP. (g) UOP-SE. (h) SOP. (i) SOP-SE. (j) SDCAFNet.

Compared with the input of a single-modal image, the mul-
timodal input of optical and PolSAR images introduces more
useful and complementary information.

1) The structure and pretraining method of the two-stream
siamese convolution feature encoder can better capture
the respective optical and PolSAR features.

2) Compared with other attention modules, the SDCAM has
a better ability to capture dense and effective channel
relationships.

3) Compared with the decoders in other methods, the sym-
metric skip-connection decoder block can recover spa-
tiotemporal information and improve the resolution of the
classification result graph to the greatest extent.

Fig. 7 shows the classification results of SDCAFNet and
several other comparison methods. The results show that the
classification results obtained by SDCAFNet are better than
those of the other comparison methods, especially at the bound-
aries of different features. This proves that the fusion features
extracted by SDCAM have a stronger ability to describe the
detailed and dense relationships between local channels than
other methods.

2) Classification Results on the Rong Dataset: The experi-
mental results on the Rong dataset are shown in Table IV. It is
clear that SDCAFNet has the best PA for water (W), farmland
(F), grassland (G), and unknown (Un), while the OA, MIoU, and
FWIoU are the best among all methods. Although the results for
the Bu, trees (T), and bare land (Ba) are not optimal, they are

not far from those of the optimal method. Overall, SDCAFNet
shows the best classification effect in the Rong dataset upon
comparison with the other methods. The classification effect of
the abovementioned method is shown in Fig. 8.

It is clear from Fig. 8 that the SDCAFNet classification map is
better than those of several comparison methods, demonstrating
the superiority of this method. However, it is worth noting that
grassland (G) and bare land (Ba) are easily confused.

E. Experimental Validation Curves

The experimental validation curves of the Baiyangdian and
Rong datasets are shown in Figs. 9 and 10. Fig. 9 shows the pro-
cess in which the loss gradually decreases and tends to stabilize
with the increase in epochs during SDCAFNet training. Fig. 10
shows the process in which the accuracy gradually increases and
tends to stabilize with the increase in epochs during SDCAFNet
training. Because there is little difference in the final accuracies
between the validation set and the training set, it can be observed
that the training of SDCAFNet has not been overfitted and the
trained model has good generalization.

F. Computational Time

The computational times for testing different methods per
sample are shown in Table V. Experiments show that SDCAFNet
can achieve better classification results on the premise of a
computational time on the same order of magnitude.
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Fig. 9. SDCAFNet loss curves for the two datasets. (a) SDCAFNet loss curves on the Baiyangdian dataset. (b) SDCAFNet loss curves on the Rong dataset.

Fig. 10. SDCAFNet accuracy curves for the two datasets. (a) SDCAFNet accuracy curves on the Baiyangdian dataset. (b) SDCAFNet accuracy curves on the
Rong dataset.

TABLE V
COMPUTATIONAL TIME OF DIFFERENT METHODS

V. CONCLUSION

In this article, a new end-to-end semantic segmentation net-
work, SDCAFNet, was proposed based on optical and PolSAR
image fusion. To capture dense and effective channel rela-
tionships, a new attention mechanism module, SDCAM, was
proposed to extract the local relationships of multiple channels to
improve the feature fusion performance of the network. Finally,

to better recover the spatial-temporal information and improve
the resolution of the segmentation result graph, we designed
a symmetric skip-connection decoder block. Upon comparison
with other methods on several indexes, it was shown that our
method has higher accuracy and more practical value.

In the future, we hope to introduce the physical imaging mech-
anism of different sensors to the encoding process to optimize the
performance of the multimodal network. In addition, we hope to
study the research of the generation and transformation methods
between optical and PolSAR images, which can enhance the
training performance by solving the problem of insufficient
co-registration data.
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