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Abstract—The gradual development of remote sensing object
tracking technology based on unmanned aerial vehicles (UAV)
videos has become one of the main research directions in the field
of visual tracking. However, due to characteristics of the UAV
platform, typical visual tracking algorithms currently applied to
natural scenes cannot be used directly. Small-scale objects in UAV
remote sensing videos are difficult to detect and have the problem
of tracking identity switching. In order to solve these problems,
we designed the Swin transformer neck-YOLOX (STN-YOLOX)
object detection algorithm as the detection module, and the G-Byte
data association method as the tracking module. We then combined
the two into a new multiobject tracking algorithm named STN-
Track. We used STN-Track to conduct experiments on the UAVDT
and VisDrone MOT datasets. The experimental results show that
compared with the current state-of-the-art (SOTA) methods, our
STN-Track has improved detection and tracking accuracy of small-
scale objects and greatly improved identification capabilities for
object tracking. Compared with the SOTA ByteTrack algorithm,
MOTA of STN-Track can be improved by up to 3.2%, APs can be
improved by up to 4.4%, MT can be improved by up to 6.8%, and
IDSW can be reduced by up to 28.0%.

Index Terms—Data association, multiobject tracking (MOT),
object detection, Swin transformer, unmanned aerial vehicles
(UAV).

I. INTRODUCTION

IDEO object tracking, one of the basic tasks of computer
V vision, is a process of predicting changes of objects of in-
terestin videos based on scene understanding and video analysis.
In recent years, unmanned aerial vehicles (UAV) technology
has been widely used in military and civilian fields, such as
road monitoring and target search in harsh environments [1].
The gradual development of remote sensing object tracking
technology based on UAV remote sensing videos has become
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one of the main research directions in the field of visual tracking
[2]. However, due to the characteristics of the UAV platform,
UAV videos have difficult problems such as small-scale objects,
lack of texture, low resolution, and complex backgrounds. With
these problems, typical visual tracking algorithms currently
applied to natural scenes cannot be used directly, and it is
difficult to guarantee robustness and adaptability. At the same
time, due to the limited computing resources of the UAV itself,
it cannot withstand operations with too high complexity. It is
also extremely challenging to develop a tracking algorithm with
low complexity while ensuring accuracy.

According to different tracking tasks and application scenar-
ios, object tracking technology can be divided into single-object
tracking (SOT) and multiobject tracking (MOT) [3]. MOT can
track multiple objects, or track the identity (ID) of different
individuals of the same type of objects. At the application level,
MOT is more in line with the needs of UAV remote sensing object
tracking. The realization of an accurate and robust UAV remote
sensing MOT algorithm has important research significance
for further development and application of the object tracking
field. MOT is used to track multiple objects simultaneously
in a video or image sequence, while keeping the ID of each
tracked object unchanged. According to the object initialization
method, the current MOT algorithms can be divided into two
categories: detection-based tracking (DBT) and detection-free
tracking (DFT). Because the DFT algorithm relies too much on
manual annotation and the process is cumbersome and compli-
cated, it has gradually been replaced by the DBT algorithm. The
current mainstream MOT algorithms are mainly online tracking
algorithms based on object detection, which have a wide range of
application scenarios. DBT mainly includes four parts: detection
model, feature model, similarity metrics, and data association.

Object detection models are a key part of MOT, and the results
determine the performance to a certain extent. At present, object
detection based on deep learning has become the mainstream
detection model of MOT, which promotes the rapid development
of MOT technology. Therefore, an accurate and efficient detector
is very important for MOT algorithms. In recent years, a lot
of excellent object detection algorithms have been developed
based on convolutional neural network (CNN), such as the path
aggregation network (PANet) [4] and cascade regional CNN
(R-CNN) [5]. However, they still suffer from typical problems
such as inaccurate segmentation edges and a weak ability to
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Fig. 1.

Overall block diagram of proposed MOT algorithm, STN-Track. Input video sequence is first passed through designed STN-YOLOX to generate detection

boxes. After dividing all detection boxes into low-scoring and high-scoring boxes, they are, respectively, sent to the G-Byte data association algorithm after adding

GIoU matching and NSA Kalman filter to generate tracking results.

establish global relationships. CNNs are useful in extracting
local information, but they lack the ability to extract long-range
features from global information. This has a great impact on
object detection in remote sensing images with high resolution,
complex backgrounds, and small objects. Inspired by the use
of self-attention in transformer models [6] to mine long-term
correlation dependencies in text, many computer vision tasks
involve the use of self-attention mechanisms to effectively
overcome the limitations of CNNSs, such as vision transformer
(ViT) [7]. Self-attention mechanisms can more quickly acquire
relationships between distant elements, pay attention to different
regions of an image, and integrate information across the entire
image.

Data association is the core of MOT. It first identifies objects
through the motion and appearance models, then calculates the
position distance and feature distance to measure the similarities
between detection boxes and tracking boxes, and finally matches
according to the similarities. At present, most of the classic MOT
algorithms, such as SORT [8] and DeepSORT [9], will select a
detection threshold, and only keep the detection results with a
confidence score higher than this threshold for data correlation to
obtain tracking results, and detection results below this threshold
are directly discarded. However, due to the problems of small-
scale objects, mutual occlusion of objects, and complex and
changeable backgrounds in UAV remote sensing videos, simply
discarding these low-score detection boxes will cause missed
detection and trajectory interruption for the MOT algorithm,
reducing the overall tracking performance.

In this article, we designed a novel MOT algorithm to solve
these problems. The overall block diagram of the proposed MOT

algorithm is shown in Fig. 1. The main contributions of this
article can be summarized as follows.

1) We first propose a new object detection network named
Swin transformer neck-YOLOX (STN-YOLOX). This
network combines the advantages of CNN and the trans-
former network algorithms to improve the global informa-
tion extraction ability.

2) Second, we designed a new data association method,
named G-Byte. G-Byte retains all detection boxes and
divides them into high-scoring and low-scoring boxes by
confidence, using the noise scale adaptive (NSA) Kalman
filter [10] and the generalized intersection over union
(GIoU) [36] metric to predict the position of the trajectory
in the new frame.

3) Finally, we used the designed STN-YOLOX object detec-
tion algorithm as the detection module, and the G-Byte
association method as the tracking module. We combined
the two into a new MOT algorithm, named STN-Track. We
used STN-Track to conduct experiments on the UAVDT
[11] and VisDrone [12] MOT datasets.

II. RELATED WORK
A. Object Detection Model

In recent years, CNN-based object detection models have
been favored by both academia and industry due to their high
robustness and efficient performance [40], [41], [42]. Object
detection algorithms are divided into one-stage and two-stage
object detectors according to whether an R-CNN is required.
Among them, the two-stage object detector needs a certain area
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generation network part, so the running speed of the algorithm
is limited: Fast R-CNN [13], based on R-CNN, involves the
concept of a region of interest pooling layer, which can map the
feature maps of candidate regions of different sizes to fixed-size
feature maps; Faster RCNN [14] uses the CNN-based region
proposal network to take an image feature map as input, and
then output a series of candidate regions.

The one-stage object detector does not need the area genera-
tion network part, so the algorithm generally runs faster but the
accuracy is slightly lower than that of the two-stage detector. On
the basis of a feature pyramid network (FPN) [15], Lin et al. [16]
proposed RetinaNet, which further improved the performance of
the single-stage object detection algorithm. The YOLO series
algorithm is an example of a single-stage algorithm. YOLOvV3
[17] is the third version of the YOLO series, which improves the
speed and accuracy of object detection in three ways: multiscale
feature detection, multilabel task, and anchor box clustering.
YOLOV4 [18] is based on YOLOvV3 and uses the cross-stage
partially connected Darknet (CSPDarknet) [19] and the PANet
[20] to improve model performance. YOLOX [31] is a new
YOLO network proposed in 2021. It adds advanced detection
techniques such as anchor-free method, decoupled head, data
enhancement, and the SimOTA label assignment strategy [21]
based on the original, thus realizing a better trade-off between
accuracy and speed. However, due to the relatively weak ability
of CNN to capture distant features, the problem of establishing
global relationships in images has not been solved, so the effect
is not satisfactory when applied to remote sensing images.

The transformer model is a new type of deep neural network
that has emerged in recent years. It was initially applied in
the field of natural language processing and later extended to
computer vision tasks. The transformer’s network structure is
composed of only the self-attention mechanism and the feedfor-
ward neural network, completely avoiding the CNN network
structure. Compared with a CNN network, the advantage of
the transformer is to use self-attention to capture global con-
textual information. ViT [7] is a representative state-of-the-art
(SOTA) model in the field of image recognition. It only uses a
self-attention mechanism, which makes the image recognition
rate far higher compared with models based on CNNs. In 2020,
Nicolas et al. [22] combined CNN and transformer to propose a
complete end-to-end DETR object detection framework, apply-
ing transformer architecture to object detection for the first time.
Zhou et al. [23] proposed the deformable DETR model, which
draws on the variable CNN. Zheng et al. [24] proposed end-
to-end object detection with an adaptive clustering transformer
to reduce the computational complexity of the self-attention
module. Due to the large amount of computation of transformer
models, Liu et al. [34] proposed the Swin transformer to solve the
problems of traditional transformer models with large amounts
of computation and poor detection of dense objects.

Due to the high resolution of remote sensing images, the Swin
transformer is very suitable for remote sensing object detection
tasks, but its ability to collect local information is still weak.
Therefore, we need to design a new object detection framework
that combines the advantages of CNNs for processing the un-
derlying vision and transformers for processing the relationship
between visual elements and objects.
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B. Data Association Tracking Algorithm

Data association first calculates the similarity between tra-
jectories and detection boxes, and then matches according to
the similarity. Feature model and similarity metrics are both
important parts of data association. Among them, the motion
model is used to predict the position of objects in video frames.
It predicts tracking boxes of the current frame from the previous
frame and matches the detection boxes in the current frame to
achieve continuous tracking of objects. The appearance model
aims to learn the discriminative features of objects, so that
the same object features in different frames are more similar
than different object features. The similarity metrics measure
the similarity between the detection and the tracking boxes by
calculating the feature distance and position distance. Frequently
used metrics include IoU metric, Mahalanobis distance, and
cosine distance [25].

SORT [8] uses the Faster R-CNN object detector, Kalman
filter prediction to predict and update motion trajectories to
track boxes, and the IoU metric as the matching criterion. Based
on the SORT algorithm, the DeepSORT [9] algorithm does an
additional cascade matching before IoU matching, adds deep
appearance features, and extracts them as an embedded layer
through the reidentification (Re-ID) network. This method can
alleviate the occlusion problem to a certain extent and reduce the
amount of ID switching. To improve the DeepSORT algorithm,
the innovation of the MOTDT algorithm [26] is that it introduces
a trajectory scoring mechanism. The longer the trajectory, the
higher the reliability. The JDE algorithm [27] is improved based
on MOTDT. The main advantage is that the detection and em-
bedding networks are combined in the feature extraction stage to
achieve a balance of speed and accuracy. Based on the JDE algo-
rithm, FairMOT [28] improves the anchor-free method of object
detection and introduces multilayer feature aggregation to deal
with the problem of insensitivity to scale changes. ByteTrack
[29] proposes a simple and efficient data association method,
which separates high-scoring and low-scoring boxes and mines
more real objects from the latter. ByteTrack has achieved SOTA
results so far on the MOT20 [39] dataset. It can be seen from the
above-mentioned tracking algorithms that the current research
direction is focused on how to design better data association
methods. Given that the DBT algorithm is more dependent on
the object detection module, the detection ability and speed of
detection algorithms are equally important.

III. METHODOLOGY
A. Swin Transformer Neck-YOLOX

The network structure of the STN-YOLOX object detection
algorithm is shown in Fig. 2. The STN-YOLOX network con-
sists of three parts: the basic YOLOX network framework, the
network neck that integrates the Swin transformer block and
the convolutional block attention module (CBAM) [30], and the
network prediction head. The back end of the model performs
feature map classification and bounding box regression tasks.
In our model, each bounding box is divided into object and
nonobject regions. The details of each module are described in
the following.
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Fig. 2. Architecture of the STN-YOLOX. Left side shows detailed structure
of the Swin transformer neck (STN); right side shows detailed structure of the
Swin transformer block.
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Fig. 3. Structure of the CBAM. Input feature maps pass through channel
attention and SAMS in turn to obtain refined feature maps.

YOLOX [31] converts the YOLO family detectors to an
anchor-free approach and performs other advanced detection
methods. There are four models of YOLOX — YOLOX-S,
YOLOX-M, YOLOX-L, and YOLOX-X and the number of
model parameters increases sequentially. In view of the impor-
tance of tracking speed in UAV MOT tasks, we chose YOLOX-S
as the basic network. The backbone feature extraction network
of YOLOX is CSPDarknet [19], and the specific structure is
shown in Fig. 2. CSPDarknet has four important features: it
uses residual network, CSPNet network structure, focus network
structure [32] to increase the number of feature layer channels,
and SPP structure [33]. The backbone part of CSPNet still uses
the original residual blocks, while the other part, such as the
residual edge, is directly connected to the end after some pro-
cessing. The SPP structure performs feature extraction through
maximum pooling of different pooling kernel sizes to improve
the receptive field of the network.

CBAM performs attention mapping in the channel and space
dimensions, which can help the network pay more attention to
identifying objects. CBAM includes two submodules, a channel
attention module and a spatial attention module (SAM), as
shown in Fig. 3. CBAM sequentially infers the attention map
along the two submodules from the input feature map, and then
multiplies the attention map with the feature map. This design
can not only save parameters and computing power, but also
ensure that the module can be integrated into other existing
network architectures. Therefore, we added the CBAM to the
STN to enhance the network’s ability to find regions of interest
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in large-area images. In order to expand the receptive field of
the network without increasing the amount of parameters, we
replaced some convolutional layers of the CBAM module with
dilated convolutions. We put the CBAM module behind the Swin
transformer module to ensure that the Swin transformer module
can learn the original feature maps.

B. Swin Transformer Neck

The network neck of YOLOX uses a structure similar to
PANet [4], combining PAN and FPN. The network neck aggre-
gates the parameters of the three feature layers generated by the
backbone network from different backbone layers to different
detection layers. However, for remote sensing images, ordinary
CNN networks have poor ability to solve problems such as
small-scale objects and low resolution. Inspired by ViT [13], we
add the Swin transformer block to the network neck of YOLOX
to replace some CSPNet modules of the original network. The
Swin transformer [34] improves the network’s ability to capture
global information and reduce the amount of computation as
much as possible. As a general vision backbone network, the
Swin transformer achieves SOTA performance in tasks such as
object detection and semantic segmentation. In recent years, the
application of the Swin transformer in remote sensing object de-
tection and instance segmentation has performed outstandingly
[35].

Since the resolution of remote sensing images is usually
large, traditional transformer models will have large amounts
of computation. Considering the model detection speed, we
introduced the Swin transformer to solve the problem that the
traditional transformer has a large amount of calculation and
a poor detection effect on dense objects. The structure of the
Swin transformer block is shown in Fig. 2. The block consists
of window multihead self-attention (W-MSA), shifted-window
multihead self-attention (SW-MSA), and a multilayer percep-
tron. LayerNorm layers are inserted in the middle to make
training more stable, and a residual connection is applied after
each module. This part can be expressed as follows:

X' =W — MSA(LN(X'"Y)) + x'7!
X'= MLP(LN(X")) + X"
X = SW — MSA(LN (X)) + X
X" = MLP(LN(X'FY)) 4+ X1+ (1)

As shown in Fig. 4, W-MSA and SW-MSA use a special
calculation method. W-MSA controls the calculation area of the
MSA [6] of the traditional transformer model within the range
of windows (window size is set to 7 by default). This calculation
method greatly reduces the computational complexity of the
network and reduces the complexity to a linear scale of the
image size. Since W-MSA lacks connections across windows,
SW-MSA needs to provide different window segmentation after
W-MSA to realize cross-window communication. The imple-
mentation process is shown in Fig. 4. The result of window
segmentation of the input image through W-MSA is shown in
Fig. 4(b). Then, the image is moved up and left circularly by half
the size of the window, and the blue and red areas are moved
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Fig. 4. Mechanism of action of shifted windows (a) input image, (b) window
segmentation (window size is set to 7) of input image through the W-MSA), (c)
action of the shifted windows, and (d) different window segmentation method
through the SW-MSA.

Algorithm 1: Pseudo-Code of G-Byte.

Input: UAV video sequence V/, detection score threshold
Thigh Tlow» Object detector Det, tracking score
threshold €, NSA Kalman Filter NSA — KF

Output: Tracks 7 of UAV remote sensing video

1. Initialization: T < (; dpigh<— 0; djow<— 0
2. For frame fi, in V do
3 dj Det(fk)
4 For din D;, do
5. If d.scoce > Tpi4n Then
6 dhight—dnignU{d}
7 else if d.scoce > 7;,,, Then
8. dzow%dzowU{d}
10. end
/] predict tracks //
11. Fortin T do
12. t=NSA - KF(t)
13. end
/I first association //
14.  Associate T and dj; 4, using GloU metric
15.  dunmatched < unmatched object boxes from Dy, 4y,
16.  Tynmatched < unmatched tracks from T
/] second association //
17.  Associate T, pmatched and djoy using IoU metric
18. T (re-unmatched )< unmatched tracks from Ty pmatched
19. Delete tracks T}c_ynmatched
/I initialize new tracks //
20. For din dynmatched do

21. If d.scoce > ¢ Then
22. T=Tu {d}

23. end

24. Return T;

to the lower and right sides of the image. The implementation
process is shown in Fig. 4(c) and (d). Finally, the window
is divided again based on the shifted image, and a window
segmentation method different from that of W-MSA will be
obtained.

C. G-Byte Data Association Method

Most of the current MOT algorithms focus on optimizing
data association, while ignoring that the results of the object
detection module can have a large impact on MOT tasks. Due
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to problems of complex environmental interference, small and
dense objects, and motion blur in UAV videos, there are many
low-scoring detection boxes. If detection boxes with a low
confidence score are directly ignored, problems such as missed
detection and trajectory departure can occur. Therefore, inspired
by the ByteTrack [29] algorithm, we designed anew UAV remote
sensing data association algorithm, G-Byte. G-Byte used the
GIoU metric method to associate data between high-scoring
detection boxes and used NSA Kalman filter for trajectory
prediction.

The algorithm keeps all detection boxes and divides them
into high-scoring and low-scoring boxes. The pseudocode of
the algorithm is shown in Algorithm 1. The level of confidence
is divided into high-scoring boxes (detection boxes with scores
greater than 7y,;45,) and low-scoring boxes (those with scores
between 7j;45, and 7,4, are low-scoring boxes). In the first data
association, we used high-scoring boxes to match new trajecto-
ries generated by NSA Kalman filter. Similarity was calculated
using the GloU metric between detected and predicted boxes.
Since IoU only considers the overlap ratio between two boxes,
it cannot reflect the distance and intersection between them, so
on this basis, we used GloU to solve this problem (lines 14-16
in Algorithm 1). In the second data association, we matched
low-scoring boxes with unmatched trajectories after the first step
data association (lines 17-18 in Algorithm 1). We deleted the
unmatched detection boxes the second time and treated them as
backgrounds. We kept tracks that were not matched and removed
them from tracks when they remained more than 30 frames.
Finally, we filtered the unmatched high-scoring boxes from the
first data association. When the score of the detection box is
greater than tracking score threshold ¢ and it appeared in more
than two frames, we treated it as a new object and generate a
new trajectory (lines 20-23 in Algorithm 1).

Throughout the algorithm, we used the NSA Kalman filter
for trajectory prediction. As shown in (2), the Kalman filter
generates a Kalman gain K ;- when making predictions. K g con-
sists of the predicted estimated covariance P g, the measurement
model H g, and the prefitted covariance C k. Ck consists of mea-
surement noise covariance Rg, Pk, and Hg. In the traditional
Kalman filter algorithm, the noise scale is a constant matrix.
However, in essence, the measurement noise level should vary
with the detection confidence. Therefore, detection confidence
Sk was added to the NSA Kalman filter to generate adaptive
measurement noise covariance R K- R i canreduce the influence
of noise, thereby improving tracking accuracy.

Ky = PxHECK!
O = HxPrHE + RK(]N%K)

Ric = (1 — Sk) R )

At the same time, we combined the GIoU and IoU metrics
in our algorithm. IoU only considers the overlap ratio between
two boxes, and cannot reflect the distance and intersection. The
GloU metric is proposed to solve this problem. The difference
between these two measurement methods is described in (3). In
the formula, the area of the detection box is A, the area of the
prediction box is B, and C is the minimum rectangular frame
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Fig.5. UAVDT and VisDrone MOT datasets displays. (a) Portion of VisDrone
dataset. (b) Portion of UAVDT dataset. From these examples, we can see
difficulties for UAV MOT, such as small-scale objects, low resolution, and
complex backgrounds. (a) VisDrone-MOT dataset. (b) UAVDT dataset.

area that can contain A and B. GloU adds a measure of how the
two boxes intersect based on IoU, and considers the area other
than A and B in C.

4 _AnB
IToU — AUB
Lioy =1—Srou
C—-ANB
Sarov = Srov — —
Larov =1 - Sarou- 3)

In the whole algorithm, we do not use the feature models com-
monly used by other algorithms for matching. There are two rea-
sons for this: first, UAV MOT has high requirements regarding
tracking speed. For feature matching, the Re-ID network needs
to be added to the algorithm. This operation will slow down the
tracking algorithm. Second, in UAV videos, when the shooting
angle is changed, the appearance characteristics of objects will
change greatly based on their relative orientation to the camera.
Adding Re-ID has little effect on the tracking accuracy of the
network, which was proved in subsequent ablation experiments.

IV. EXPERIMENT
A. Dataset and Metrics

AsshowninFig. 5, we selected two large-scale, publicly avail-
able UAV remote sensing MOT datasets for training and testing
our designed algorithm. The UAVDT dataset [11], proposed by
ICCV2018, contains a total of 80 000 frames of pictures, which
can be used for object tracking as well as object detection. The
UAVDT dataset focuses on complex scenes and contains 50
video sequences with more than 80 000 frames. The dataset
contains three object categories, cars, buses, and trucks. We used
40 video sequences in the dataset as a training set and 10 video
sequences as a test set for experiments. The VisDrone MOT
dataset [12] was collected by the Machine Learning and Data
Mining Laboratory of Tianjin University. The dataset provides
96 video sequences, including training video sequences (56 in
total, 24 201 frames), validation video sequences (7 in total,
2819 frames), and test video sequences (33 in total, 12 968
frames). The video sequences captured by different drone cam-
eras covering various aspects, including location (14 cities in
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TABLE I
INITIAL LEARNING RATE ABLATION STUDY
Initial learning o o
Method AP (%) APso (%)

rate

0.001 21.4 36.8

0.01 232 38.9

STN-Track 0.02 26.0 413

0.04 26.3 42.9

0.1 24.0 40.6

The bold entities indicate the best result of the comparison methods.

China), environment (city and country), objects (pedestrians,
cars, buses, etc.), and density (sparse and crowded scenes). We
chose five object classes to track experiments: pedestrians, cars,
vans, buses, and trucks.

We quantitatively analyzed the proposed MOT algorithm by
various metrics [37]: average precision (AP), AP5y (AP value
when IoU threshold is 0.5), APg (the average value of recall
measurement of object frames smaller than 32 x 32 pixels),
false positive (FP), false negative (FN), identification precision
(IDP), identification recall (IDR), IDF1 score, MOT accuracy
(MOTA), mostly tracked objects (MT), mostly lost objects (ML),
ID switching (IDSW), and frames per second (FPS). Among
them, AP, APg, and AP35 are used for object detection tasks, and
MOTA, IDF1, IDSW, MT, ML, FP, EN, and FPS are used for
MOT tasks. MOTA and IDF1 are two more important evaluation
metrics. MOTA is a comprehensive evaluation of FP, FN, and
mismatch rate, while IDF1 combines IDP and IDR.

B. Implementation Details

Our experimental hardware platform is a computer equipped
with GEFORCE RTX 3060 GPU (12 G), and the compilation
environment used by the computer is python 3.8 and PyTorch
1.8.1. The experimental training parameters were as follows:
training schedule of 48 epochs, optimizer is SGD with weight
decay of 5 x 10~* and momentum of 0.9, batch size of 8, the
initial learning rate is 0.04 with cosine annealing schedule. For
G-Byte, the high detection score threshold 77,4, is 0.6, the low
threshold 7;,,, is 0.1, and the tracking score threshold ¢ is 0.7.

C. Study for Initial Learning Rate and Detection Score
Threshold

We conducted ablation experiments with MOT algorithm
parameter settings. The initial training learning rate and the
detection score threshold 7,4, are crucial hyperparameters in
the tracking algorithm. Their selection is directly related to the
final effect of the algorithm.

We used the STN-Track algorithm we designed for training,
and set the initial learning rate to 0.001, 0.01, 0.02, 0.04, and 0.1
to conduct comparative experiments. After the optimal initial
learning rate was determined, we set the detection score thresh-
old Tpign to 0.5 to 0.8, and observed the impact of different
parameters.
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TABLE II
DETECTION SCORE THRESHOLD ABLATION STUDY

Detection score

Method threshold Ty, MOTA (%) IDF1 (%)
0.5 593 72.6
0.6 60.4 73.7
STN-Track 0.7 57.9 71.3
0.8 525 69.9

The bold entities indicate the best result of the comparison methods.

TABLE III
DETECTION PERFORMANCE OF DIFFERENT METHODS

AP APsy  APs

Method Dataset  Parameter Epochs

) () (%)
UAVDT 233 38.0 18.9

YOLOX-S 8.94M 48
VisDrone 37.6 56.9 15.5
UAVDT 25.5 428 210

YOLOX-M 25.28M 50
VisDrone 38.8 58.6 16.7
UAVDT 260 433 214

YOLOX-L 56.30M 55
VisDrone 419 61.1 17.2
YOLOX-S+  UAVDT 240 393 208

9.05M 48
Transformer  VisDrone 38.9 58.6 16.9
YOLOX-S + UAVDT 24.8 40.7 22.1

9.11M 48
STN VisDrone 39.3 59.3 17.9
UAVDT 263 429 233

STN-YOLOX 9.13M 48
VisDrone 40.9 60.7 19.8

The bold entities indicate the best result of the comparison methods.

It can be seen from Table I that when the initial learning rate
is 0.04, the AP and AP values obtained by object detection are
the highest. Therefore, setting the initial learning rate to 0.04
can make the object detection module of the network achieve
the best results on the UAVDT dataset. From Table II, we can
see that when the initial learning rate is constant, setting the
detection score threshold 7,545, to 0.6 can result in the highest
MOTA and IDF1 scores. Therefore, when the detection score
threshold is set to 0.6, the MOT algorithm can achieve the best
tracking effect on the UAVDT dataset.

D. Experiment With STN-YOLOX

We conducted ablation experiments on the UAVDT test set
and VisDrone MOT test-dev dataset to verify the importance
of each component in the designed STN-YOLOX object detec-
tion network. The specific content of the experiment is shown
in Table III. In the experiment, we gradually added the STN
and CBAM to the YOLOX-S network, and compared with
YOLOX-M, YOLOX-L, and YOLOX-S with traditional trans-
former modules. It can be seen from the table that after adding
the STN, the detection effect of the network is improved, and
the detection effect of small objects is better than the traditional
transformer. After adding CBAM to the network, the detection
effect increases considerably. For YOLOX-L, although it has
good results in detection, the number of network parameters
is too large. Having excessive network parameters is not con-
ducive to the real-time object detection and tracking of UAVs.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

frame: 132 num:

Fig. 6. Comparison of detection results of YOLOX and STN-YOLOX. (a)
Night detection scene. (b) Small object detection scene in daytime environment.
(c) Blurred scene due to shaking of camera on UAVs. (a) Night scene. (b) Small
object scene. (c) Blur scene (camera shake).

Our proposed STN-YOLOX object detection network achieves
detection performance similar to YOLOX-L, with almost no
increase in the number of network parameters. Compared with
YOLOX-S, on the UAVDT dataset, AP of the STN-YOLOX
detection network increased by 3.0%, APs5 increased by 4.9%,
and APg increased by 4.4%. On the VisDrone MOT dataset, AP
of STN-YOLOX increased by 3.3%, AP5( increased by 3.8%,
and APg increased by 4.3%.

We selected some representative examples from the two
datasets for demonstration, as shown in Fig. 6. We used them
to compare YOLOX with the STN-YOLOX network. The self-
attention mechanism of the transformer can bring the global
receptive field to the network, which can improve the network’s
ability to detect the edge of images. At the same time, the trans-
former has the ability to associate with the global context, which
is very helpful for the localization of small objects. Fig. 6(a)
shows a detection scene at night. It can be seen from the image
that the STN-YOLOX network has a better edge detection effect
for the night scene. Fig. 6(b) shows a small object detection
scene in the daytime. We can clearly see that the detection effect
of STN-YOLOX on small objects is significantly improved, and
there are more detected small objects. Fig. 6(c) is a blurred scene
due to the severe shaking of cameras on UAVs. As can be seen
from the image, when a scene captured by the camera is blurred,
the detection effect of the network is poor, and STN-YOLOX
can improve the detection effect somewhat.

E. Comparison of STN-Track With SOTA MOT Algorithm

We combined STN-YOLOX with the proposed data associ-
ation algorithm, G-Byte, to form a complete MOT algorithm,
STN-Track. We compared the proposed tracking network with
previous SOTA MOT methods. We selected some representative
SOTA MOT methods: SORT [8], DeepSORT [9], MOTDT
[26], JDE [38], and ByteTrack [29]. These have all previously
achieved SOTA results on the MOT20 dataset. It can be seen
from Table IV that the tracking accuracy and speed of the
STN-Track algorithm surpassed most algorithms and achieved
the best performance on many metrics, including MOTA, IDF1,
MT, and IDSW. Except for STN-Track, detection modules of
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TABLE IV
COMPARISON OF SPEED AND ACCURACY OF SOTA METHODS

Method Dataset MOTA IDF1 IDSW MT ML FP FN FPS
(%) 1 (%) 1 ! (%) 1 (%) ' v 1
SORT 55.5 68.1 196 46.0 224 9323 72492 12.02
DeepSORT 56.5 69.1 175 48.8 213 10 193 71194 8.82
MOTDT 56.3 68.8 172 483 21.6 8343 74 968 7.92
JDE UAVDT 55.9 69.0 155 49.6 23.0 9105 64 990 8.18
ByteTrack 57.4 70.2 102 50.2 20.9 10 084 69770 12.07
ByteTrack + Re-ID 57.4 71.2 124 48.7 20.1 10143 71298 9.08
STN-Track (ours) 60.6 73.7 76 57.0 17.0 12 825 61760 11.39
SORT 35.5 47.0 1373 27.4 52.7 7044 79 980 6.66
DeepSORT 36.0 48.6 934 28.4 50.3 10268 76511 4.58
MOTDT 35.7 47.4 1129 27.2 51.9 9329 77672 4.26
JDE VisDrone 36.2 48.5 998 29.7 50.1 8776 78 980 5.37
ByteTrack 36.6 49.5 928 29.0 52.9 6495 79375 6.42
ByteTrack + Re-1ID 36.5 48.0 1104 28.5 51.0 7276 80797 4.87
STN-Track (ours) 38.6 52.6 668 31.4 51.2 7385 76 006 6.18

The bold entities indicate the best result of the comparison methods.

all algorithms used YOLOX-S. Compared with the latest MOT
algorithm, ByteTrack, on the VisDrone MOT dataset, MOTA of
STN-Track increased by 2.0%, IDF1 increased by 3.1%, MT
increased by 2.4%, and IDSW decreased by 28.0%. On the
UAVDT dataset, MOTA of STN-Track increased by 3.2%, IDF1
increased by 3.5%, MT increased by 6.8%, and IDSW decreased
by 25.4%. At the same time, the calculation speed of STN-Track
also achieved good results, which was slightly lower on the FPS
metric compared with ByteTrack (11.39 versus 12.07 FPS). This
indicates that the G-Byte algorithm we designed greatly im-
proves the object identification ability of the algorithm, which is
very effective in the scenario where the drone is tracking objects.
Compared with the classic algorithm, DeepSORT, MOTA of
STN-Track can be improved by about 2.6%—4.1%, IDF1 can be
improved by 4.0%—4.6%, MT can be improved by 3.0%—8.2%,
and IDSW can be reduced by 28.5%-56.6%. We added the
Re-ID network to the ByteTrack, and found that this not only
failed to improve the tracking accuracy, but also reduced the
tracking speed of the algorithms. From the above-mentioned
experimental results, it can be concluded that STN-Track has
superior tracking accuracy and speed when dealing with MOT
tasks in UAV videos.

In order to show the advantages of the STN-Track MOT al-
gorithm more clearly, we used that algorithm and the ByteTrack
algorithm to conduct a more detailed comparison experiment.
We selected representative UAV videos that contain some classic
challenges of MOT tasks. The images in Fig. 7 are from the
UAVDT dataset. We extracted three frames from the video for
analysis. It can be seen from the images that the objects to be
tracked in the video are relatively small and easily occluded by
other objects. At frame 213, both algorithms detected a black car
at the same time. At frame 256, the black car was not detected
by the ByteTrack algorithm because it was blocked by a street
light. At frame 293, ByteTrack detected the black car again and
determined it as a new object, resulting in the loss of the original
tracked object (object ID changed from 39 to 43). In contrast,

Fig. 7. Comparison of tracking results of ByteTrack and STN-Track. Video
frames are from the UACDT dataset, including problems of small objects and
object occlusion. (a) Frame 213. (b) Frame 256. (c) Frame 293.

Fig. 8. Comparison of tracking results of ByteTrack and STN-Track. Video
frames are from the VisDrone MOT dataset, including problems of shooting
angle changes and image blurring. (a) Frame 316. (b) Frame 326. (c) Frame
336.

the STN-Track algorithm never lost the object (object ID 56)
from start to finish, even with obstacles.

The images in Fig. 8 are from the VisDrone MOT dataset, and
we also sampled three frames from the video for analysis. It can
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be seen from the figure that rotation of the UAV leads to a change
in the camera’s shooting angle and a blurred image. At frames
316 and 326, both the ByteTrack and STN-Track algorithms
detected the same four cars in the upper left corner of the video.
At frame 336, due to the change in shooting angle and the blurred
image, ByteTrack lost track of the three cars in the upper left
corner (object IDs changed from 124, 139, 12 to 165, 124, 164).
At the same time, STN-Track kept track of these three vehicles,
and could track more other objects than ByteTrack. From these
two examples, the superiority of STN-Track can be proved.
For UAV videos with complex and changeable backgrounds,
the improvement of the algorithm greatly improves the ability
to identify object, and is very effective in situations such as
occlusion by many objects, changes in shooting perspective, and
blurred images.

V. CONCLUSION

In this article, we designed a novel algorithm, STN-Track,
for MOT in UAV remote sensing videos. STN-Track consists of
two parts: We first made improvements based on the YOLOX
algorithm, replaced the original network neck with the designed
STN, and proposed a new object detection network named
STN-YOLOX. This network combines the advantages of CNN
and the transformer network algorithm to improve the global
information extraction ability. Second, we designed a new data
association method named G-Byte. G-Byte retains all detection
boxes and divides them into high-scoring and low-scoring boxes
by confidence, and uses the NSA Kalman filter and GloU metric
to improve the tracking accuracy. The following experiments
show that the STN-Track can improve the detection and tracking
accuracy of small-scale objects and greatly improved identifi-
cation capabilities for object tracking. In addition, the tracking
speed of the algorithm is not inferior to that of most SOTA
algorithms.
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