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FTC-Net: Fusion of Transformer and CNN Features
for Infrared Small Target Detection

Meibin Qi, Liu Liu , Shuo Zhuang , Yimin Liu, Kunyuan Li , Yanfang Yang, and Xiaohong Li

Abstract—Single-frame infrared small target detection is still a
challenging task due to the complex background and unobvious
structural characteristics of small targets. Recently, convolutional
neural networks (CNN) began to appear in the field of infrared
small target detection and have been widely used for excellent
performance. However, existing CNN-based methods mainly fo-
cus on local spatial features while ignoring the long-range con-
textual dependencies between small targets and backgrounds. To
capture the global context-aware information, we propose fusion
network architecture of transformer and CNN (FTC-Net), which
consists of two branches. The CNN-based branch uses a U-Net with
skip connections to obtain low-level local details of small targets.
The transformer-based branch applies hierarchical self-attention
mechanisms to learn long-range contextual dependencies. Specif-
ically, the transformer branch can suppress background interfer-
ences and enhance target features. To obtain local and global fea-
ture representation, we design a feature fusion module to realize the
feature concentration of two branches. We implement ablation and
comparative experiments on a publicly accessed SIRST dataset.
Experimental results show that the transformer-based branch is
effective and suggest the superiority of the proposed FTC-Net
compared with other state-of-the-art methods.

Index Terms—Deep learning, feature fusion, hierarchical
transformer, infrared small target detection.

I. INTRODUCTION

INFRARED small target detection is increasingly applied in
practical fields, including maritime surveillance [1], infrared

warning, infrared guidance, infrared search, and tracking, and
has made remarkable achievements. However, due to the lack
of discriminative features such as color and texture, small size
(less than 80 pixels in a 256 × 256 image [2]), long imaging
distance, and low signal-to-noise ratio, infrared small targets
are easy to be submerged by the noise in the complex and
changeable background and cloud sea waves, making it difficult
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to detect. As a result, improving the detection rate of infrared
small target detection tasks is still an inevitable demand for
practical application.

To solve the above challenging task, many methods have
been proposed, including filtering-based methods [3], [4], [5],
vision-based methods [6], [7], [8], [9], and low-rank-based
methods [10], [11], [12], [13]. The filtering-based method can
suppress the uniform background. Nevertheless, the detection
performance of small targets decreases when the background
is complex, which means poor robustness. The vision-based
method is mainly applicable to the scene where the target
brightness is relatively large and different from the surrounding
background. The low-rank-based method is time-consuming and
has a high false alarm rate for infrared images with dark targets.
The above methods rely on prior expert knowledge to extract
handcraft features and are sensitive to varied scenarios.

Benefiting from the development of computer vision in many
applications, the performance of the infrared small target de-
tection method based on convolutional neural networks (CNN)
is gradually improving. Liu et al. [14] proposed an end-to-end
network based on multilayer perception to localize small targets.
Fan et al. [15] enhanced infrared image contrast by applying
a modified convolutional neural network and thus improved
detection performance. Wang et al. [16] presented a conditional
generative adversarial network that uses one discriminator and
two generators to achieve a suitable balance of false alarm and
miss detection. Specifically, segmentation-based methods for
small target detection have begun to receive attention. Dai et al.
[17] proposed an attentional local contrast network to capture
long-range contextual interactions and applied a cross-layer
fusion module to realize infrared small targets segmentation.

Most current image segmentation-based methods for detect-
ing infrared small targets rely on the design of CNN architecture.
However, the CNN-based methods ignore the long-range de-
pendencies in infrared images. More specifically, convolutional
networks tend to focus on the local information of an image, thus
weakening the importance of the overall connection. Different
from the standard CNN-based methods that process images
pixel-by-pixel, a vision transformer (ViT) [18] treats an image
as a series of patch tokens (i.e., smaller parts of the image
consisting of multiple pixels). At each layer of the network, the
ViT uses multihead self-attention to process patch tokens based
on the relationship between each pair of tokens. As a result,
the ViT can build a global representation of an entire image.
Existing methods have achieved good performance, but the task
of infrared small target segmentation is still worth exploring,
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Fig. 1. Comparison results of infrared small target detection. (a) Original
infrared image containing a small target. (b) Predictions with CNN-based
method. (c) Predictions with proposed FTC-Net. (d) Ground truth. The red circle
area is detected incorrectly by the CNN-based method due to lack of long-range
dependencies learning.

and further enhancements can be made in modeling long-range
dependencies.

We made a comparison to illustrate that the long-range de-
pendency is significant for the infrared small target segmentation
task. To get the correct segmentation, the network needs to accu-
rately distinguish whether the pixels of the image correspond to
the background or the target. Due to the low signal-to-noise ratio
of infrared images, background clutter can easily be mistaken
for the target. Learning the long-range dependencies of targets
and background interference in infrared images is critical, which
helps to prevent the network from misclassifying a background
pixel as a target pixel and reduces false positives. As shown in
Fig. 1, due to the cloud background with the usual fuzzy and
fractal structures on the cloud margins, the CNN-based method
classifies a part of the background similar to the target (the
red circle highlights the region) as the target. In contrast, our
method avoids this error and predicts a more efficient result. This
false positive situation is avoided because the proposed fusion
network architecture of transformer and CNN (FTC-Net) learns
the long-range dependencies between the target pixel region and
the background.

To this end, we combine the sequence-model transformer with
the CNN model to enhance the ability to capture long-range
and large-range dependencies. Specifically, in the CNN-based
branch, the modified U-Net with skip connections obtains the
feature representation of local details to retain as many small tar-
gets as possible. The designed transformer branch is flexible and
can be scaled to extract high-level global context information.
Moreover, a feature fusion module (FFM) is designed to fuse
local details with global contextual features. The experimental
results show that our proposed method achieves the IoU and
nIoU gains of nearly 2% and 4.2% on the SIRST dataset,
respectively.

Our contributions can be summarized as follows:
� We design the FTC-Net to construct long-range dependen-

cies and fully explore the global context between infrared
small targets and background.

� We present an FFM to concatenate features extracted from
the CNN branch and the transformer branch, which can
obtain global context information while retaining location
details as much as possible for detecting small targets.

� Experimental results on the SIRST dataset show the supe-
rior performance of the proposed FTC-Net, which is robust
to clutter background, various target sizes and shapes.

The organization of this article is as follows: In Section II,
we present the related work. In Section III, we illustrate the
composition architecture of our FTC-Net. In Section IV, we
show the experimental details and final results. In Section V, we
draw the conclusion.

II. RELATED WORK

A. Single-Frame Infrared Small Target Detection

In the field of computer vision, single-frame infrared small tar-
get detection is always an important topic and research hotspot.
Typical traditional methods include filtering-based methods
[19], vision-based methods [20], [21], [22], [23] and low-rank-
based methods [24]. The filtering-based detection method high-
lights small targets by differencing the original image from the
filtered background image. Alternatively, the frequency differ-
ence between the target, background, and clutter is used to filter
out the background from the clutter by designing the corre-
sponding filter in the frequency domain. The vison-based ap-
proach mainly utilizes the saliency map. According to the visual
perceptual properties of the human eye, the presence of small
targets leads to significant changes in local texture rather than
global texture. As a result, the local difference or variation-based
algorithms excel in different small target detection tasks. The
low-rank basis has excellent stability performance for ordinary
infrared images. However, for infrared images with dark targets,
some strong clutter signals may be as sparse as the target signals,
leading to higher false alarm rates.

Recently, CNN-based methods perform better than traditional
methods. Liu et al. [14] proposed an end-to-end network based
on multilayer perception to localize small targets. Wang et al.
[25] proposed a feature extraction network with an attention
mechanism while incorporating the YOLO [26] algorithm for
target detection. Specifically, segmentation-based small target
detection methods have begun to receive attention. To achieve a
balance between miss detection and false alarm, Wang et al. [16]
proposed a novel generative adversarial framework consisting of
one discriminator and two generators. The segmentation results
were obtained by computing the average outputs of two gen-
erators. Dai et al. [18] designed a segmentation-based infrared
small target detection network, which proposed an asymmetric
contextual modulation (ACM) framework for information ex-
change between high-dimensional features and low-dimensional
features. In addition, Dai et al. [17] designed an attentional
local contrast network, using a local attention module and a
cross-layer fusion procedure to preserve local spatial features
and enhance the segmentation performance of small targets.

Although the detection capacity of CNN-based approaches is
gradually improving, the problem of effectively capturing long-
range dependencies in infrared small target images remains a
challenge.

B. ViT Transformers

Our work is motivated by the vision transformer (ViT) [18],
which has achieved impressive performance in many tasks in
the field of computer vision [27], [28], [29], [30], [31] and has
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Fig. 2. Illustration of the proposed FTC-Net. W and H represent the width and height of the original image, “×2” and “×18” represent the number of Swin
transformer blocks. In the CNN branch, the blue and green arrows represent the operation of max pooling and convolutions, upsampling, and convolutions.

been applied to target detection. In segmentation transformer
[32], they integrated a transformer framework on the base of a
fully convolutional network, and designed effective decoders
to improve segmentation performance. The feature pyramid
network in SOTR [33] can effectively distinguish low-level
feature information, and the twin transformer can capture the
association between remote contexts. In recent years, the frame-
work combining CNN and transformer has been used in medical
images. In two-dimensional (2D) medical image segmentation
task [42], transformer and CNN are combined to form an en-
hanced encoder. In transfuse [43], the authors discovered the
complementarity of transformer and CNN in image segmenta-
tion tasks. Recently, it is worth mentioning that an efficient hier-
archical ViT architecture, called Swin transformer [34], whose
representation was computed with shifted windows, achieved
good performance on many vision tasks. In infrared small target
detection, learning the long-range contextual dependencies of
targets and background is critical [44], and transformer-based
methods remain to be studied. While convolutional neural net-
works are still the main framework for all kinds of vision tasks,
we must acknowledge that the potential of transformer-based
architectures in this area cannot be ignored as well. In this work,
we attempt to combine a hierarchical transformer and CNN
model to detect infrared small targets.

III. METHOD

In this section, we introduce our FTC-Net in four parts. The
model architecture of our method is shown in Fig. 2. We design
an infrared small target detection network with two branches.
Specifically, one branch uses a powerful hierarchical transformer
to capture large-range dependencies, and the other branch uses

Fig. 3. Swin transformer block.

a variant of U-Net to extract local details. Finally, a feature
fusion module fuses the features extracted from the hierarchical
transformer branch and the modified U-Net branch.

A. Architecture Overview

As shown in Fig. 2, for the transformer branch, we use a
hierarchical construction with 4×, 8×, 16×, and 32× down-
sampling operations to obtain the image feature map with dif-
ferent sizes. To transform the inputs into sequence embedding’s,
the infrared input images are first to split into nonoverlapping
patches with the size of 4 × 4, which is treated as a “token.”
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TABLE I
VALUE OF IOU, NIOU, AND PD ACHIEVED BY DIFFERENT METHODS ON SRIST DATASET. FOR IOU, NIOU, AND PD, LARGER VALUES INDICATE HIGHER

PERFORMANCE

Fig. 4. FFM. T and D represent the output feature map of the transformer
branch and the CNN branch. M represents the calculated attention mask, and O
represents the output feature map after calibration.

Then the flatten operation is performed in the direction of
channel. Therefore, the feature dimension of each patch is 48
(4 × 4 × 3). Through the linear embedding layer, the channel
data of each feature map is linearly transformed from 48 to
an arbitrary dimension C, which means the image shape is
changed from

[
H
4

W
4 , 48

]
, to

[
H
4

W
4 , C

]
. By merging the layers,

the feature dimension is halved, while the number of channels
is doubled. Then the resolution remains the same when the fea-
ture transformation is performed with Swin transformer blocks.
Therefore, the size of the feature maps output in the four stages
are H

4 × W
4 , H

8 × W
8 , H

16 × W
16 and H

32 × W
32 , respectively.

For the CNN branch, we apply the U-Net with skip con-
nections. Considering the contextual gap that exists from the
encoder to the decoder, the feature representation with less local
details may influence the final segmentation results. The skip
connections in the U-Net help to recover fine-grained details in
the segmentation task.

To better fuse the output features of the two branches and
reduce the semantic gap, we design an FFM after the CNN
branch and the transformer branch in the FTC-Net framework.

B. Swin Transformer Block

Multihead self-attention (MSA) is used to obtain multiple
information from multiple inputs. Each attention module fo-
cuses on a different aspect of the feature map and finally gets
a combined result to obtain relevant information on different
subspaces. The Swin transformer block replaced the traditional
MSA module with shifted windows. Fig. 3 shows the specific
structure of the Swin transformer block, which consists of
a LayerNorm (LN) layer, a shifted window-based multihead
self-attention module (SW-MSA), a residual connection, and
a multilayer perception (MLP) with the nonlinearity GELU
function. The MLP Head contains two fully connected layers.
The idea of layer normalization is similar to batch normalization.
Compared with batch normalization that takes mini-batch size
samples per neuron, LN normalizes the input of all neurons at a
certain layer in the deep network. Layer normalization calculates
the mean μl and standard deviation σl of all neurons separately
for each sample as follows:

μl =
1

H

H∑
i = 1

ali (1)

σl =

√√√√ 1

H

H∑
i=1

(ali − μl)
2

(2)

where l, ali, H represents the lth hidden layer of the forward
neural network, the input vector (the weighted vector of the
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TABLE II
ABLATION EXPERIMENTS ON STRST DATASETS. “CNN,” “TRANSFORMER,” AND “FTC-NET” DENOTES THE CNN BRANCH, TRANSFORMER BRANCH AND

PROPOSED METHOD WITH FEATURE FUSION MODULE

Fig. 5. ROC of different methods.

output of the front layer network), and the number of hidden
units, respectively.

In the two successive transformer Blocks, the regular
window-based multihead self-attention (WMSA) module and
the SWMSA module appear alternately. WMSA divides the
input image into nonoverlapping windows, and then performs
self-attention calculations within different windows. Unlike a
regular window, the shifted window is offset and remerged on
the image. The advantage of this design is to ensure the window
information interaction and reduce the computational complex-
ity. To strengthen connections across windows, the partitioning
mechanism for the regular window and shifted window alternate
in the hierarchical Swin transformer block. The calculation
formula is as follows:

ẑl = WMSA
(
LN

(
zl−1

))
+ zl−1 (3)

zl = MLP
(
LN

(
ẑl
))

+ ẑl (4)

ẑl+1 = SWMSA
(
LN

(
zl
))

+ zl (5)

zl+1 = MLP
(
LN

(
ẑl+1

))
+ ẑl+1 (6)

where ẑl and zl represent the outputs of the WMSA module and
the multilayer perception module of the lth block, respectively.

In addition, we add relative position bias for each head during
the calculation of similarity:

Attention (Q,K, V ) = SoftMax

(
QKT

√
d

+ B

)
V (7)

where Q, K, V ∈ RM2×d denote the query, key and value matri-
ces; d is the dimension of the query or key, andM2 is the number
of patches in each window, respectively. We calculate the offset
between the absolute position of each pixel and other positions,
obtain the relative position index, and find the bias matrix B̂
that can be learned according to the index value. Bias matrix B
is added directly to the attention matrix, and the corresponding
values are derived from the bias matrix B̂ ∈ R(2M−1)×(2M+1).

C. Feature Fusion Module

To address the feature and semantic inconsistencies between
the hierarchical transformer and CNN decoder outputs, we use
an FFM to eliminate discrepancies.

As shown in Fig. 4, the FFM has two inputs, which are the
output T ∈ RC×H×W of the hierarchical transformer and the
output feature map D ∈ RC×H×W of the variant U-Net. For an
input feature map X ∈ XC×H×W , spatial squeeze generates a
vector G(X) ∈ G(X)C×H×W through the global average pool-
ing layer. Each element in G is calculated as follows:

Gk =
1

H ×W

H∑
i = 1

W∑
j = 1

Xk (i, j) (8)

This formula adds up all the elements in X and then divides
them by a total dimension. Its actual meaning is to compress all
the spatial information on the kth channel into a value, and G(X)
is a tensor obtained after compressing spatial information one
by one on all channels. We combine the obtained tensor with the
spatial information to calculate the attention mask:

M = L1 ·G (T ) + L2 ·G (D) (9)

where L1 ∈ RC×Cand L2�RC×C are the weights of two linear
layers. Then the activation value σ(M) is obtained through the
sigmoid layer so that it is between [0, 1]. The activation value
allows us to distinguish the importance of channels, which is
then multiplied with input T to obtain a feature map that has
been calibrated with information:

O = σ (M) · T (10)

D. Loss Function

Two loss functions are applied in the proposed model, includ-
ing the binary cross-entropy (BCE) loss and the Dice loss.

The segmentation-based infrared target detection method
can be regarded as a binary classification task (target versus
background). As a result, the BCE loss function is applied and
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Fig. 6. Qualitative results obtained by different detection methods. For better visualization, correct detections (true positives) are highlighted with red circles,
false alarms, and missed detections are highlighted with yellow circles. Our FTC-Net can achieve accurate target positioning and low FPR of output.

calculated as follows:

LBCE (x, y) = L = {l1, . . . , ln, . . . , lN}T (11)

ln = − wn [yn · log xn + (1− yn) · log (1− xn)]
(12)

where N is the sample number.
Dice loss is a common evaluation metric in medical image

segmentation tasks [45], which is similar to an infrared small
target detection application. It comes from a similarity function
in statistics, which is proposed to measure the similarity of two
samples and gives a value of 0 or 1. The formula of Dice loss is
as follows:

LDice = 1− 2 |X ∩ Y | / (|X|+ |Y |) (13)

where X and Y represent the predicted pixels and the ground
truth pixels, respectively.

The overall optimization objective of proposed model is:

L = αLBCE + βLDice (14)

where α and β are the balance coefficients.

IV. EXPERIMENTS

A. Dataset

We evaluate our method using the SIRST dataset proposed by
Dai et al. [41]. This open dataset is constructed with high-quality
images and labels. It contains 427 single-frame infrared images,
including short, medium, and 950 nm wavelengths, which are
roughly divided into 70% for training, 10% for validation, and
20% for testing. In this dataset, the targets mainly appear in
complex backgrounds such as sky, ocean, and city. It is easy to
find that these small IR targets are relatively faint pixels, and
some are distributed in the background without distinguishable
characteristics. Considering this challenging detection task, we
perform data enhancement by filtering, cropping, and horizontal
and vertical flip methods to increase sample size and avoid
overfitting in the training process.

B. Evaluation Metrics

Two evaluation metrics are explored for testing infrared small
target detection performance. On the one hand, we use pixel-
level evaluation metrics such as IoU and nIoU, which mainly
focus on the shape of target segmentation.
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Fig. 7. 3D visualization results of different methods on five test images.

On the other hand, we use the target-level evaluation metric
probability of detection (Pd) to assess the localization ability of
the proposed model for infrared small targets. Generally, infrared
small targets lack shape and texture information, a mispredicted
pixel will result in a Pd decrease of 11.1% when evaluating a
3 × 3 small target.

1) IoU: Intersection over Union (IoU) is one of the most
widely used metrics in the field of segmentation. Specifically,
IoU represents the area of overlap between the labeled and
predicted pixels divided by the union area between the predicted
and labeled pixels.

IoU =
Ainter

AAll
(15)

where Ainter and AAll represent the interaction areas and union
areas, respectively.

2) nIoU: The average value of IoU of all targets in the images
at a certain judgment threshold is used as the nIoU metric. nIoU
is defined as follows:

nIoU =
1

N

N∑
i

TP [i]

T [i] + P [i] + TP [i]
(16)

where N, TP, T, and P denote the number of total samples, true
positive, true, and positive samples, respectively.

3) Probability of Detection: Pd is a widely used target-level
metric. It represents the probability of successful detection of

the target.

Pd =
Pcorrect

PAll
(17)

where Pcorrect and PAll are the number of correctly detected
targets and all targets, respectively.

4) ROC: The horizontal and vertical axis of the receiver
operation characteristics curve (ROC) are false positive rate
(FPR) and true positive rate (TPR), respectively. FPR represents
the probability of being misclassified as positive among all
actually negative samples. TPR represents the probability of
being classified as positive among all positive samples. ROC
is a measure under a sliding threshold, which can effectively
reflect the overall target detection performance.

C. Implementation Details

The proposed FTC-Net consists of a CNN-based segmen-
tation branch and a hierarchical transformer branch. In the
transformer branch, the number of down-sampling layers is set
to 4. In the four Swin transformer blocks, the channel C ,C1

is set to 128, 64. The number of MSA head is set to 4, 8, 16,
and 32, respectively. As shown in Fig. 2, the number of the Swin
transformer block is set to 2, 2, 18, and 2, respectively. The input
image datasets with the different resolutions are first resized into
a fixed size of 384 × 384. All models are implemented using
PyTorch library on a computer with four Nvidia GeForce 1080Ti
GPUS and are trained from scratch. We set the batch size to 8



8620 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 8. Grad-CAM visualization map of FTC-Net (column 2) and CNN-based network (column 3).

and use the Adam optimizer with an initial learning rate of 0.001
to train the designed model.

D. Comparison to the State-of-the-Art Methods

To validate the superiority of the proposed FTC-Net, we
compare it to several state-of-the-art methods, including several
traditional methods: LCM [35], FKRW [36], MPCM [37], IPI
[11], RIPT [12], NIPPS [39], PSTNN [40], and three CNN-based
methods: MDvsFA-cGAN [16], ACM [41], and ALCNet [17].

1) Quantitative Results: We used the same dataset, publicly
released code and settings in our experiments to ensure the
authenticity of the comparison. Experimental results can be
observed in Table I.

The prediction results using the above approaches are evalu-
ated with IoU, nIoU, Pd, and ROC. Compared with traditional
methods, the CNN-based detection framework has a signifi-
cant improvement in all evaluation metrics. This is because
the SIRST dataset has clutter in the background and contains
challenging images with different target shapes and target sizes.
The CNN-based methods are robust to changing backgrounds. In
contrast, the local contrast and rank-based methods are generally
scene-specific and can only suppress uniform backgrounds to
a certain extent. In addition, traditional methods mainly focus
on overall target positioning rather than fined shape matching,
which gains relatively poor performance.

Compared with the CNN-based methods, our FTC-Net has
achieved obvious improvement in detection performance. The
designed network combines the advantages of both CNN and

transformer, while taking into account the deep and shallow
layers of the network as well as long-range dependencies. There-
fore, the network can ensure accurate localization and precise
segmentation of small infrared targets. As shown in Table I,
compared with the state-of-the-art ALC method, our proposed
FTC-Net has consistent improvements with IoU, nIoU, and Pd
gains of approximately 2.02%, 4.22%, and 2.48%, respectively.

We further evaluate our FTC-Net and other existing methods
using the ROC metric. The area under the ROC curve (AUC) is
a measure of the performance of the classification model, and a
larger value means better performance. The results are shown in
Fig. 5 and Table I. It can be seen that the proposed FTC-Net has
the best results, indicating the effectiveness of our network. The
ROC of conventional methods is under the CNN-based methods,
which means relatively poor performance. Compared to the
ALCNet method with the attentional local contrast module,
the presented FTC-Net has a larger area under the ROC curve
with a value of 0.9658. The results further demonstrate the
effectiveness and robustness of our method in infrared small
target detection.

2) Qualitative Results: To visually understand the detection
performance, qualitative results of five representative methods
on the SIRST dataset are shown in Figs. 6 and 7. As can be seen,
the ALC model and our FTC-Net are significantly superior to the
traditional methods, which obtain more accurate segmentation
results. As shown in Fig. 6(c) and 6(d), the traditional method
performs well on images where infrared targets are clearly
distinguished from the background. However, it is easy to miss
the detection when the targets are similar to the background.
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Fig. 9. Samples of inaccurate detection results using the proposed FTC-Net.

In addition, there are often a large number of false alarm areas,
as shown in Fig. 6(a) and 6(b). It can be explained from two
aspects. First, traditional models tend to focus on the differences
between the small target and the background environment, which
is not suitable for detecting targets in dark environments. Second,
some strong clutter signals may be as sparse as target signals,
resulting in a higher false alarm rate. From Figs. 6 and 7, we
can conclude that the CNN-based methods perform better than
the conventional methods in terms of detection accuracy and
are less prone to higher false alarm cases. Moreover, compared
with ALCNet, our FTC-Net did not miss the target in Fig. 6(c)
and did not generate false detections in Fig. 6(a). For detection
accuracy, our FTC-Net has a more accurate segmentation of
the target contour. These qualitative results illustrated that the
designed dual-path network is well adapted to the challenges
of various complex backgrounds, target shapes, and sizes, thus
showing better segmentation performance.

E. Ablation Study

To explore whether each component is helpful to model
performance, we conduct ablation studies on the SIRST dataset.
Specifically, we analyze the detection results by removing every
single module.

As shown in Table II, “CNN,” “Transformer,“ and “FTC-Net”
denote the CNN branch, transformer branch, and proposed
method with feature fusion module, respectively. Compared
with the CNN branch, the detection performance is better with
the addition of the transformer branch, and the IoU value in-
creases from 74.09% to 76.69%. After adding FFM, the value
of IoU is increased by 1.03%. Compared to the baseline, our
proposed FTC-Net improves the values of IoU, nIoU, and Pd
by 3.63%, 1.36%, and 2.72%, respectively. The results of the

ablation study illustrate the effectiveness of feature fusion of
two branches. As for runtime, the proposed FTC-Net takes about
0.313s to test on a 384 × 384 image, which is slightly higher
than a single Transformer branch or CNN branch.

The excellent detection capability can be attributed to two
perspectives. On the one hand, the transformer with a self-
attentive mechanism helps to capture long-range dependencies
and thus achieves more accurate segmentation. On the other
hand, our results reveal that the FFM can fuse local details and
global semantic features, eliminating ambiguity generated with
decoder features.

F. Visualization of Feature Maps

To better understand and illustrate the effectiveness of FTC-
Net, a visualization of feature maps is presented. Grad-CAM
[38] intuitively displays the feature maps learned by the network
in the form of a heatmap. Grad-CAM can help us analyze the
focus area of the network for a certain category. It performs re-
verse propagation by selecting the node with the largest softmax
value and using the average value of the gradient as the weight.
The weights of all the corresponding categories of the feature
maps are obtained and then the weighted sum is made.

As shown in Fig. 8, we apply the Grad-CAM method to
visualize feature maps of our FTC-Net and CNN-based network.
To make a better comparison, we choose the deep feature graph
of the network to output heatmaps. It can be seen that the CNN-
based network is easy to be disturbed by the background with a
similar size and brightness to the target. As shown in Fig. 8(a)
and (d), the CNN-based network generates false attention in the
background with strong noise and multiclutter. However, the
feature map from the FTC-Net is more sensitive to the target,
which generates accurate shape segmentation.
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G. Error Diagnosis

In this section, we analyze some inaccurate detection results
on the SIRST testing dataset. The results in Table I show that
the detection probability of our proposed FTC-Net is already
quite high and achieves good performance. However, there are
also false positives and false negatives, as shown in Fig. 9,
the segmentation errors mostly come from some incorrectly
predicted pixels which distribute around the target boundary.

False detections occur for two reasons. First, the infrared
images in the SIRST dataset are used to capture airborne moving
targets far away. As a result, the target edges are blurred, and
the difference between the targets and background is small in
the image. The segmentation results are prone to generate errors
at the image boundary. The second reason that affects detection
results is that the ground truth is manually labeled. There are
visual biases and ambiguous pixels for the actual images, which
influence the training process of the proposed model. Besides,
for the small target with around 3 × 3 size, each pixel error will
have a great impact on the final detection results.

V. CONCLUSION

Precise shape segmentation is the key point of infrared small
target detection. In this work, we propose an infrared small tar-
get detection network named FTC-Net. Different from existing
target detection methods based on CNN, the proposed FTC-Net
contains a hierarchical transformer branch to capture long-range
contextual dependencies between the targets and background.
In addition, to address the feature inconsistency between the
transformer-based and CNN-based branch outputs, we design a
FFM that can well concatenate long-range contextual informa-
tion and local edge details. We conduct ablation experiments to
illustrate the effectiveness of the transformer branch and feature
fusion module. Moreover, qualitative and quantitative results on
the SIRST dataset show that the proposed approach achieves
high-quality predictions with favorable detection performance
and strong generalization ability.
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