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Abstract—Multispectral remote sensing images are widely used
for monitoring the globe. Although thin clouds can affect all optical
bands, the influences of thin clouds differ with band wavelength.
When processing multispectral bands at different resolutions,
many methods only remove thin clouds in visible/near-infrared
bands or rescale multiresolution bands to the same resolution and
then process them together. The former cannot make full use of
multispectral information, and in the latter, the rescaling process
will introduce noise. In this article, a deep-learning-based thin
cloud removal method that fuses full spectral and spatial features in
original Sentinel-2 bands is proposed, named CR4S2. A multi-input
and output architecture is designed for better fusing information
in all bands and reconstructing the background at original res-
olutions. In addition, two parallel downsampling residual blocks
are designed to transfer features extracted from different depths
to the bottom of the network. Experiments were conducted on
a new globally distributed Sentinel-2 thin cloud removal dataset
called WHUS2-CRv. The results show that the best averaged peak
signal-to-noise ratio, structural similarity index measurement, nor-
malized root-mean-square error, and spectral angle mapper of the
proposed method over 12 bands in all 20 testing images were 39.55,
0.9443, 0.0245, and 2.5676°, respectively. Compared with baseline
methods, the proposed CR4S2 method can better restore not only
the spatial features but also spectral features. This indicates that
the proposed method is very promising for removing thin clouds in
multispectral remote sensing images at different resolutions.

Index Terms—Deep learning (DL), multifeature fusion, parallel
downsample residual block (PDRB), Sentinel-2, thin cloud removal.
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I. INTRODUCTION

WHILE the development of remote sensing satellite tech-
nology, a large number of multispectral images with

high spatial resolution have been acquired. Due to the rich
information in multispectral remote sensing images, they have
been widely used for land use and land cover classification [1],
[2], environmental monitoring [3], [4], [5], and urban extraction
[6], [7]. However, most of the time, about 67% of the land
surface is covered by clouds, which seriously influences the
usability of remote sensing images [8]. Clouds can be classified
into thick and thin clouds according to their influence on the
background signal. Thick clouds completely block the optical
signal returned from the Earth surface while thin clouds let at
least some signal through. Therefore, in contrast to situations
with thin cloud coverage, in the presence of thick clouds, no
information about the ground can be retrieved from a single
image. For the removal of thick clouds, multitemporal images
[9], [10], [11], [12] or auxiliary data such as SAR images are
often necessary, regardless of whether the method is traditional,
machine learning, or deep learning (DL) based [13], [14],
[15], [16].

In order to restore the background information in thin cloud
contaminated areas in single-date images, various thin cloud
removal methods have been developed [17], [18]. The traditional
thin cloud removal methods in remote sensing can be divided
into spectral analysis [19], [20] and image filtering methods [21],
which are generally used with a simple cloud distortion physical
model.

Methods based on spectral analysis assume that there is a high
correlation between the bands in the cloud-free multispectral
image. The cloud-free image is obtained by fitting the cloudy
image to this correlation relationship. Zhang et al. [22] proposed
a cloud optimal transformation (HOT), which is based on the
statistical analysis of spectral information of a large number of
clear pixels. It is assumed that under clear sky conditions, the
reflectance of red and blue bands is highly correlated, and a
“clear sky line” is used to correct cloud contaminated pixels to
clear pixels. Chen et al. [23] proposed an iterative HOT algorithm
(IHOT), which detects and removes thin clouds in Landsat
images. IHOT uses cloudy and corresponding clear images to
solve the spectral confusion between clouds and bright surfaces.
He et al. [24] calculated the hot value of each pixel in the image,
then adjusted the deviation according to different land cover
types, and regarded the HOT image as a digital estimation map
(DEM), filled in the low valley and wiped out the peak caused
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by the highlighted background. Lv et al. [19] assumed that there
is a linear relationship between any two visible bands in clear
pixels. First, the Fmask algorithm [25], [26] was used to obtain
the clear pixels, then the parameters of the constructed model
were solved based on clear pixels and the assumption that visible
and near-infrared bands are correlated in water areas under
thin clouds. The correlation between various bands assumed
in methods based on spectral analysis is not applicable to some
highlighted ground objects such as snow and buildings [23]. And
the spatial information was not fully used in these methods [27].

Image-filtering-based methods treat the background as a high-
frequency component and the thin cloud as a low-frequency
component, then remove thin clouds by processing the low-
frequency and high-frequency components, respectively [28],
[29]. A cloud distortion physical model was proposed to describe
the radiation transmission process under cloud influence in [21].
This model converted the image to the frequency domain and
then filtered the low-frequency component by using homomor-
phic filtering (HF) to remove thin clouds. Based on the cloud
distortion physical model, Liu and Hunt [30] estimated noise
in the image with a Kaiser window and then filtered the noise
to remove thin clouds. Two different wavelet transforms were
adopted to obtain the low-frequency coefficients of the image,
and then, HF was used to reduce the low-frequency information
for thin cloud removal [31]. Shen et al. [32] proposed an adaptive
HF (AHF) method, which uses different truncation frequencies
for different bands to filter cloud components, then replaces
cloud pixels with the filtered cloud pixels and keeps clear pixels
unchanged. Wan and Li [33] decomposed the image into low-
frequency and high-frequency components and then set the filter
windows with different sizes according to the decomposition
level to avoid damaging low-frequency information in the back-
ground. In [17], a spherical model was proposed to produce the
transmittance map and dark channel prior (DCP) [34] was then
used to remove thin clouds. Although image filtering can remove
thin clouds, it also filters out some low-frequency components
in the background.

In recent years, DL, in particular convolutional neural net-
works (CNNs), has been widely used for thin cloud removal in
remote sensing images and achieved better results than tradi-
tional methods [35]. A packet convolution residual network was
developed in [36], in which multiple parallel residual subnet-
works for processing different bands were used to remove thin
clouds in Landsat 8 images. Li et al. [27] proposed a residual
symmetrical concatenation network for thin cloud removal. The
results of this work indicated that more bands and residual
structures are conducive to cloud removal. In [37], a cyclic
convolution network was used to extract the potential cloud
regions, and then, an automatic encoder was adopted to remove
thin clouds in the regions. The guided filtering and multiscale
convolution unit were combined to make the network focus
on the texture features and obtain a larger receptive field than
the original convolution, so as to avoid network degradation by
learning the residual between cloudy and cloud-free images [38].
In [39], a gated cloud removal network based on multitemporal
images was proposed to take the current cloudy image, recent
less cloudy image and their cloud masks as the input, and the total

losses of image level, feature level, and change were calculated
to obtain a good cloud removal result. Using a U-Net-based
network [40] with two input and output branches, Li et al.
[41] proved that the information in vegetation red-edge and
short wave infrared bands, which is at a lower resolution but
less affected by thin clouds, can help remove thin clouds in
visible bands. Yu et al. [42] constructed a multiscale cloud
removal network (MCRN) with the proposed cloud-aware and
feature extraction module as a basic unit. The parameters of
cloud distortion model were encoded into trainable parameters
in MCRN for cloud removal. Wen et al. [43] introduced channel
attention mechanism into residual architecture to suppress thin
clouds and enhancing the background details. These CNN-based
methods use a synthetic or small dataset for training and testing
and ignore some bands when processing multispectral bands at
different resolutions.

As a very promising framework, generative adversarial net-
work (GAN) [44] has proved very effective in image generation,
synthesizing, and inpainting. GANs have also been applied
on thin cloud removal in remote sensing images successfully.
Enomoto et al. [45] proposed a conditional GAN (cGAN) for
the first time to remove thin clouds in remote sensing images.
The cGAN took the cloud-free and corresponding synthesized
cloudy visible and near-infrared bands as inputs while only
outputting visible bands. Wang et al. [46] also adopted cGAN
architecture for thin cloud removal. U-Net was used for thin
cloud removal in the first stage of the algorithm proposed in [47].
A cloudy image synthesis paradigm using cloud information in
sea scenes was proposed to generate dataset for training the thin
cloud removal method in [48]. A Cycle-GAN, which uses un-
paired cloudy and cloud-free images for training, was proposed
to remove the influence of clouds in Sentinel-2 images both in
[49] and [14]. Although the cyclic consistency of Cycle-GAN
can retain the texture information of the cloudy image when
converting it into a cloud-free image, a large amount of spectral
information of the background is lost. In [37], cloud detection
was carried out to obtain a cloud probability map that was then
put into a generative network with a corresponding cloud-free
image. To enhance performance, the perception loss between the
cloud removal result and the cloud-free image was established
by the VGG network [50]. Xu et al. [51] used cloud masks to
adapt different attention to different cloud areas by combining
recurrent attention mechanism and GAN, so as to improve the
quality of thin cloud removal results. Li et al. [52] combined
the cloud distortion model with GAN for thin cloud removal
in remote sensing images. Due to the introduction of the cyclic
reconstruction process, paired cloudy and cloud-free images are
not required in training. In [53], cloud and background compo-
nents were extracted from a cloud image first. Then, the cloud
component was synthesized to a clear image with a physical
model. The two steps were applied to the synthesized cloudy
image and extracted background, respectively, to construct the
cyclic process. However, the training of GAN is usually unstable
and results are not very satisfactory when using unpaired images.

Sentinel-2 imagery, with its multispectral bands at different
spatial resolutions, has played an important role in Earth obser-
vation. Although classical CNN-based methods obtain higher
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performance and are more stable than GAN-based methods
on thin cloud removal, they usually ignore low spatial reso-
lution bands or rescale all bands to the same resolution when
processing multispectral images at different spatial resolutions,
which will introduce noise. To solve the limitations of CNN
and GAN-based thin cloud removal methods, this article pro-
poses an end-to-end DL-based thin cloud removal method for
Sentinel-2 images (CR4S2) by taking all native 13 spectral bands
into consideration. The original spectral and spatial features
in Sentinel-2 images at three different spatial resolutions are
natively extracted and fused in the proposed CR4S2. Since most
thin cloud removal datasets either cover small regions [52],
[54] or have long time intervals between paired cloudy and
cloud-free samples [27], the performances of thin cloud removal
methods cannot be evaluated very accurately by these datasets.
A new thin cloud removal dataset WHUS2-CRv was collected to
solve the limitations in this work. The main contributions are as
follows.

1) A novel encoder–decoder network architecture is pre-
sented with multiple input and output branches that is
tailored for thin cloud removal in Sentinel-2A images with
the fusion of all bands. A double-path depthwise separa-
ble convolution (DDSC) module is designed to extract
and fuse multiscale features with fewer parameters than
a normal convolutional layer. Two parallel downsample
residual blocks (PDRB-D and PDRB-T) are designed and
injected into the encoder to fuse and pass features from
different spectral bands to the bottom of the network.
A multioptimization loss was introduced to further im-
prove the capability of restoration of edge information
and preservation of clear background.

2) A large thin cloud removal validation dataset WHUS2-
CRv for Sentinel-2 imagery is presented. This dataset con-
tains 123 paired cloudy and cloud-free images distributed
all over the world. The worldwide distribution guarantees
the diversity of land cover types. In order to minimize
the spectral and spatial difference between cloudy and
cloud-free images, the interval time for each paired cloudy
and cloud-free images is 10 days, which is the revisit time
of Sentinel-2A.

The rest of this article is organized as follows. Section II
presents the experimental data. Section III introduces the pro-
posed CR4S2 method. The experimental results are shown in
Section V and the discussion is also made in this section. We
draw conclusions in Section V.

II. DATA

A. Sentinel-2A Multispectral Data

Sentinel-2A is equipped with a high-resolution multispectral
imager (MSI) that covers 13 spectral bands (see Table I). The
wavelength of Sentinel-2A ranges from 0.443 μm to 2.190 μm.
The three vegetation red-edge bands are mainly used for moni-
toring vegetation. Bands 1 and 9/10 are used to detect the Coastal
aerosol and monitor the water vapor/Cirrus, respectively. Bands
1/9/10 are used for detecting and correcting the atmospheric
effects that can provide thin cloud information when removing

TABLE I
SENTINEL-2A SENSOR BANDS

thin clouds in other bands. In this work, all bands in Sentinel-2A
imagery are used.

Fig. 1 shows three examples under the different cloud-
contamination condition (odd rows) and the corresponding
cloud-free images (even rows). Column 1 shows the true color
composited images (T), Columns 2–14 are bands 2/3/4/8 (Visi-
ble and Near-Infrared, VNIR), 5/6/7/8A/11/12 (Vegetation Red-
Edge NIR Narrow and Short-Wave Infrared, VRE/NIRn/SWIR),
1/9/10 (Coastal Aerosol, Water Vapor, and Cirrus band,
Ca/Wv/Cir). All bands are resized to the same size for better
visualization. We can see that the influences of thin clouds on
these bands are different. In bands 6/7/8/8A/11/12, the clouds
are not very noticeable, which means that features in these bands
can help restore background information in other bands such as
bands 2/3/4. However, the cloud pixels can be easily found on
bands Ca/Wv/Cir, which can help locate cloud areas. This article
aims to make full use of all spectral bands in Sentinel-2 images
for thin cloud removal. We can also see that band 10 contains
the least background information among all bands. This is one
of the reasons why thin cloud removal took band 10 as input but
was not applied to band 10 in this article.

B. Details of the Experimental Dataset

In some related works, the datasets only cover local regions
[52], [54], use synthesized cloudy images [55], [56], or include
cloudy and cloud-free images with long interval [27], [57].
Although there are some widely distributed datasets, images in
these datasets are relatively few, typically less than 40 pairs [41].

Due to the diversity of land cover types on the Earth, a larger
and more representative thin cloud removal dataset is needed
for comprehensive study. In this article, we present a newly
collected thin cloud removal validation dataset, WHUS2-CRv,
for Sentinel-2 imagery. Fig. 2 shows the distribution of the
sampled regions in WHUS2-CRv. For each region, one cloudy
and cloud-free image pair with 10 days interval was selected to
avoid reflectance changes between them as much as possible.
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Fig. 1. Three examples of cloud contaminated images (odd rows) corresponding cloud-free images (even rows) (details can be found in Table VII). All bands
are resized to the same size for better visualization.

Fig. 2. Distribution of WHUS2-CRv dataset. Training, validation, and testing areas are marked in blue, purple, and red, respectively. The landcover background
is derived from 300-m annual global land cover classification map in 2015 (ESA, 2017).
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Fig. 3. Architecture of CR4S2. The number under/on each block is the corresponding number of feature maps.

Sampled regions for training and testing areas are spread over
all continents; biomes and mainland cover classes to make
the dataset representative. Finally, 123 cloudy and cloud-free
image pairs covering about 1.47 million km2 land surface
were collected from the Copernicus Open Access Hub website.
The acquisition dates of the 123 image pairs range from April 3,
2016 to January 13, 2021 and cover all seasons. From these,
93 image pairs were randomly selected for training, 10 for
validation, and 20 for testing. Training, validation, and testing
images are evenly distributed (see Fig. 2) to reduce biases in
experimental results. All methods can be fully evaluated by
WHUS2-CRv, which contain data with short interval, worldwide
distribution, large area coverage, and full season coverage.

In order to eliminate atmospheric influence, Sen2Cor was
run on all images to produce L2A data (surface reflectance),
which was then used as the experimental data. Although the Cir
band was not corrected by Sen2Cor, we still combined the L1C
band Cir with L2A bands Ca/Wv into a multispectral image.
Because memory requirements of CNN-based methods grow
with input size, we cropped all experimental images into small
patches without overlap. Since the spatial resolution of bands
VNIR, VRE/NIRn/SWIR, and bands Ca/Wv/Cir are 10 m, 20
m, and 60 m respectively, the corresponding sliding window
sizes and steps were set to 384× 384, 192× 192 and 64× 64
pixels, respectively, which means that there are three multi-
spectral images for each patch. This cropping strategy allows
the coverage of 384× 384 patch at 10 m, 192× 192 patch at
20 m, and 64× 64 patch at 60 m in each group to match. In

this way, 24 450 patch-triplets were produced from 123 image
pairs for cloudy and cloud-free images. The training, validation,
and testing datasets contain 18 816, 1888, and 3746 pairs of
cloudy and cloud-free patch-triplets generated from 93, 10,
and 20 image pairs, respectively. The training samples were
augmented by flipping horizontally and vertically and rotating
at 90°, 180°, and 270°. Finally, 112 896 pairs of cloudy and
cloud-free patch-triplets were obtained for training. The dataset
is available on https://github.com/Neooolee/WHUS2-CRv.

III. METHODOLOGY

A. Framework of CR4S2

In most of the cloud removal methods, both the input (cloudy)
and output (cloud-free) bands are rescaled to the same reso-
lution when processing multiresolution bands. The traditional
empirical rescaling operation with constant parameters not only
introduces noise to the input but also to the output, because refer-
ence clear images contain noise after being rescaled. Therefore,
CR4S2 is designed to handle the original Sentinel-2 multispec-
tral bands at their native resolution for cloud removal without
using any traditional rescaling strategy. CR4S2 is designed
based on the encoder–decoder architecture, which is one of the
most widely used architecture in DL and achieves very good
performance in image processing.

Fig. 3 shows CR4S2 architecture, including three input
branches in encoder and three corresponding output branches
in decoder. These branches are used for processing the
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Fig. 4. Details of DDSC block. DC is a depthwise convolutional layer. K and
S are the kernel size and stride, respectively.

patch-triplets, which contain different resolution bands: three
input branches to avoid noise introduced by rescaling, and three
output branches supervising CR4S2 by the original clear bands.
Three CNN-based input branches are used to extract features
from input bands. Then, for features from different depths,
we designed two PDRBs (PDRB-D/PDRB-T), which can fuse
features from current and previous branches and pass original
features to the next block in the meantime. In order to reduce the
parameters of the proposed method, a DDSC unit was designed
to extract and fuse multiscale features from the input. Three
output branches were used to produce multiresolution cloud
removed bands that can be supervised by original resolution
clear bands.

1) Multiresolution branches: It can be seen that the three
input branches and three output branches are symmet-
ric. The input/output groups include bands VNIR, bands
VRE/NIRn/SWIR, and bands Ca/Wv/Cir from top to bot-
tom. It should be noted that the bottom output group only
includes bands Ca/Wv, because the atmosphere correction
of Sen2Cor is not run on band Cir. However, since the
Cirrus information can assist CR4S2 in locating areas
affected by clouds when removing clouds in other bands,
Cir band is used as one of the input bands.

2) Top to bottom residual path: Residual architecture has
been proved to be effective in the DL field. In order to
better transmit the information through the network, we
designed two PDRBs (PDRB-D/T). The shared dilated
convolution residual block (SDRB) introduced in [58] that
uses shared convolution and residual architecture to solve
the grid effect caused by dilated convolution, was adopted
to obtain a larger receptive field without downsampling
features anymore. As we can see in Fig. 3, the features
extracted by the normal convolutional layer in each input
branch can be directly passed to the bottom blocks through
max-pooling layers in PDRB-D/T. The features input to
the SDRB can also be passed to the next SDRB. In this
way, features from each input branch can reach the bottom
part of the encoder.

B. Components of CR4S2

1) DDSC Block: As shown in Fig. 4, the basic unit of DDSC
is depthwise convolutional (DC) layer [59], which has as many
convolution kernels and output feature maps as its input feature
maps. Three DC layers construct two feature extraction paths in

DDSC. The right path is a DC layer with kernel size = 3 × 3
and stride = 2. The left path includes two DC layers in which
the first DC layer has kernel size = 3× 3 and stride = 2; the
second DC layer has kernel size = 3× 3 and stride = 1. The
receptive fields of the right and left paths are 3× 3 and 7×
7, respectively. The outputs of the two paths are concatenated
channelwise and then put into a 1× 1 convolutional layer for
multiscale features fusion. This operation is similar to the last
operation of depthwise separable convolution [60]; thus, we call
the designed block DDSC. It should be noted that the 1× 1
convolutional layer outputs the same number of feature maps as
that of the input of DDSC.

2) Parallel Downsample Residual Block: As shown in Fig. 3,
there are two versions of PDRB in CR4S2, PDRB-D (in light
blue dotted box), and PDRB-T (in red dotted box). PDRB-D
contains one DDSC and one max-pooling layer and only has
one input. The input of PDRB-D is processed by DDSC and
max-pooling layer at the same time and their outputs are summed
pixelwise to construct the residual architecture. PDRB-T is
specially designed for processing multispectral bands at differ-
ent spatial resolutions. This makes PDRB-T more suitable for
multispectral remote sensing images at different resolutions than
other residual modules in the computer vision field. PDRB-T
contains one DDSC and two max-pooling layers and has two
inputs from previous and current branches. That is why PDRB-T
is only used in the second and third input branches. The two
inputs are concatenated channelwise and then input into DDSC
for feature fusion. One of the max-pooling layers is used for
downsampling the feature maps from the current branch and the
other max-pooling layer is used for downsampling the feature
maps from the previous branch. The outputs of DDSC and
two max-pooling layers in PDRB-T are summed pixelwise to
construct the residual architecture.

C. Multioptimization Loss

L1 loss is usually used as the loss function in many image
restoration networks, because it can prevent blurry images [61].
In CR4S2, the L1 loss between cloud removed images and
reference images is calculated pixelwise to restore information
at a pixel level. In order to optimize the restoration of the edge
information, the L1 loss between the edges of cloud removed
and reference images is also calculated. The L1 losses of image
pixel and edge for a single band are calculated as follows:

Lk (z, x) =
1

mn

m∑

i = 1

n∑

j = 1

|R(z)k − xk| (1)

Ledge−k (z, x) =
1

mn

m∑

i = 1

n∑

j = 1

|∇(R(z)k)−∇(xk)| (2)

where z is the input image, xk the kth band in reference image
x, R(z)k the kth band in cloud removed image, ∇ is the edge
operator (right pixel minus left pixel, down pixel minus up pixel),
and m and n are the width and height of xk. The pixelwise
loss Lk aims to help CR4S2 restore information in the low
frequency while Ledge−k aims to restore the information in high
frequency. The cloudy and clear remote sensing images are
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acquired at different dates, spectral (low-frequency information)
may change but edges (high-frequency information) will not
change as much generally, except on abrupt changes. Therefore,
Ledge−k can provide more accurate supervision on CR4S2.

The values of clear pixels should not be changed when
removing clouds, and this constraint can be used to optimize
the preservation performance of clear pixels at a pixel level.
This idea was proposed independently in [52] and [16]. An
optimization process is also designed to preserve the information
of clear pixels not only at pixel-level but also on the edges.
The reference clear image is put into CR4S2, to make sure the
corresponding “cloud removed” image is the same as the input
clear image. The L1 losses for a single band are calculated the
same in a clear image as in a cloudy image. By combining the
L1 losses for cloudy and clear images, we give the loss function
of a single band as follows:

Ltotal−k (c, n) = Lk (c, n) + λ1Ledge−k (c, n)

+ λ2(Lk (n, n) + λ1Ledge−k (n, n)) (3)

where c and n are cloudy and clear images, respectively. λi is
the weight balance factors. λ1 = 0.01, λ2 = 0.1 (term for clear
images). For each band, we use (3) to calculate the loss. The
total loss of CR4S2 is as follows:

Ltotal =
1

B

B∑

k = 1

Ltotal−k (c, n) (4)

where B is the number of bands in the cloud removed image.
Ltotal is used for optimizing the parameters of CR4S2. After
CR4S2 is well trained, it can remove thin clouds in images while
preserving the information of clear pixels.

IV. EXPERIMENTS AND DISCUSSION

A. Experimental Setting

1) Baseline Methods: Because DL-based thick cloud re-
moval methods require either multitemporal images or auxiliary
data such as SAR, they are not included as baseline methods. In
order to evaluate CR4S2 performance, three deep learning-based
(DL-based) thin cloud removal methods, RSC-Net [27], FCTF-
Net [56], and RSDehazeNet [55] and two traditional methods,
DCP [34] and Color Ellipsoid Prior (CEP) [62] were selected
for comparison. The DL-based baseline methods were originally
proposed for thin cloud removal in remote sensing images and
the traditional baseline methods proved very effective for haze
removal in natural images. For traditional baseline methods,
we kept default parameters and directly run them on testing
images. The training and testing details of DL-based methods
were described in the following paragraphs.

2) Hardware Environment and Hyperparameters: The train-
ing and testing experiments were both conducted on Windows
11 operating system on an 11th Gen Intel (R) Core (TM)
i9-11900KF @ 3.50 GHz, with an NVIDIA GeForce GTX
3080Ti with 12-GB memory (7 GB was required for training
CR4S2 with batch size = 1). RSC-Net, RSDehazeNet, and
CR4S2 are based on the Tensorflow platform with Python 3.8.8,
and FCTF-Net is based on PyTorch platform. DCP and CEP

do not need training and only use CPU for computation. The
codes of all baseline methods are downloaded from their GitHub
repositories, except RSC-Net is implemented according to the
corresponding article. For parameter optimization of CR4S2,
Adam-optimizer [63] is adopted using the following hyperpa-
rameters: β1 = 0.9, β2 = 0.999, initial learning rate = 0.0002,
and exponential decay at decay rate = 0.96. For other DL-based
baseline methods, the hyperparameters were set as default and
the validation dataset was used for setting up early-stop for all
DL-based methods.

3) Data Preprocessing: Since our goal is to remove thin
cloud in all Sentinel-2 bands except band 10, and baseline
methods cannot process the original multispectral bands at
different resolutions, bands VRE/NIRn/SWIR and Ca/Wv/Cir
were rescaled to the same resolution as that of bands VNIR
before being put into DL-based methods. While the original
patch-triplets were directly put into CR4S2 due to its network
architecture, the surface reflectance values were clipped to [0,
10 000] and then normalized to [0, 1] before being processed
by all DL-based methods. Band Cir input was taken from L1C
product and ignored in the outputs by all methods. Therefore,
the DL-based methods took 13 bands as input, but only output
12 bands. Traditional methods were run on bands VNIR only,
because they were designed for RGB natural images.

4) Accuracy Indexes: Structural similarity index measure-
ment (SSIM), peak signal-to-noise ratio (PSNR), mean absolute
error (MAE), normalized root-mean-square error (nRMSE), and
spectral angle mapper (SAM) were taken as the quantitative
evaluation measures. The SSIM evaluates the cloud removal
performance in the view of the whole image. The PSNR, MAE,
and nRMSE are calculated for pixelwise comparison between
cloud removed and clear images. SAM shows the reconstruction
ability in the spectral domain.

B. Comparison With DL-Based Methods

1) Effectiveness: Because L2A product does not contain Cir-
rus band, we only evaluated the cloud removal performances
of all DL-based methods on bands VNIR, VRE/NIRn/SWIR,
and Ca/Wv. Table II shows the quantitative results of different
methods on all testing samples. It can be seen that CR4S2 always
obtained the highest PSNR and SSIM among all DL-based
methods on 12 bands. The PSNR for CR4S2 ranges from 30.96
(band 8A) to 39.55 (band 1) and SSIM ranges from 0.9002 (band
8) to 0.9443 (band 3), respectively. CR4S2 obtains at least 0.58
higher PSNR, 0.0056 higher SSIM, and 0.0041 higher nRMSE
than DL-based baseline methods. RSC-Net performs the worst
among all methods, with lowest PSNR and SSIM 29.32 (band
8A/11) and 0.8459 (band 1), respectively.

FCTF-Net obtained the highest nRMSE (1.7052) compared to
other methods, indicating lower performance. On the contrary,
all DL-based methods obtained the highest PSNR and SSIM on
band 1 and band 3. When analyzing the performance of a given
model across all bands, both CR4S2 and RSDehazeNet obtained
their lowest nRMSE on band 8A. Among all bands, the hardest
bands for RSC-Net and for FCTF-Net were band 6 and band 11,
respectively. Results in Table II also show that, as wavelength
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TABLE II
AVERAGE PSNR, SSIM, AND NRMSE FOR DL-BASED METHODS OVER ALL TESTING IMAGES (3746 TESTING SAMPLES)

decreases from 0.865 nm (band 8A) to 0.443 nm (band 1),
CR4S2, RSC-Net, and FCTF-Net keep on performing well on
PSNR. Unlike RSC-Net, the performance of CR4S2, RSC-Net,
and FCTF-Net on SSIM improve as wavelength increases from
0.842 nm (band 8) to 2.190 nm (band 12). The nRMSE of CR4S2
decreases as wavelength increases from 0.665 nm (band 4) to
0.865 nm (band 8A) while baseline DL-based methods cannot
keep this.

Fig. 5 shows the visual results of all DL-based methods on all
bands. CR4S2 obtains more visually similar results on visible
bands (see Fig. 5, row 2) to reference images than DL-based
baseline methods. RSC-Net produces a lower surface reflectance
than the reference image. CR4S2 always achieves the lowest
MAE on all bands. For (a), RSC-Net gets the highest MAE on
bands 2/3/4/6/11/12/1, FCTF-Net performs the worst on bands
band 8/5/9 and RSDehazeNet obtains the highest MAE on bands
7/8A among all methods. It should be noted that there are six
regions (marked in red rectangles) in which all methods get very
large MAE on all bands, because the land cover types completely
changed in these regions. For (b), CR4S2 achieved more accept-
able MAE on all bands than other DL-based methods. Unlike
in (a), RSDehazeNet performed worse on bands 5/11/12/9, but
better on bands 2/3/4/7/8A/1 than RSC-Net in (b). Results in
Fig. 5 show that, as wavelength decreases from 0.665 nm (band
4) to 0.443 nm (band 1), the performances of all DL-based
methods keep on improving on MAE.

The PSNR and SSIM of DL-based methods on Fig. 5(a) and
(b) are shown in Fig. 6. It can be seen that CR4S2 gets the
highest PSNR and SSIM among all methods on all bands in
(a) and (b). In particular, CR4S2 obtains a significantly higher
PSNR value than DL-based baseline methods on bands 5/11
than other bands in (a). CR4S2 outperforms other methods on
all bands in (b). The increase of SSIM value with CR4S2 is
higher on bands 5/4/11/12 than other bands in (a). CR4S2 also
performs significantly better than DL-based baseline methods
on bands 2/3/5/6/7/8A/11/12/1/9 than on other bands in (b).
Combining quantitative and qualitative results, we can see that
CR4S2 can not only restore more spectral information but also
texture information than DL-based baseline methods.

2) Efficiency: From Table III, it can be seen that CR4S2
has the most parameters but lowest computational complex-
ity among all DL-based methods. This is because PDRB
modules in CR4S2 construct a top-to-down highway for

TABLE III
PARAMETERS AND FLOPS OF DL-BASED MODELS WITH 384 × 384×13 AS

INPUT SIZE AND 384 × 384×12 AS OUTPUT SIZE

information transfer in its encoder. The computational complex-
ity of FCTF-Net ranks second. This may be because FCTF-Net
also has a top-to-down highway in its encoder. RSC-Net has
the least parameters, which is because RSC-Net only includes 5
symmetrical convolutional and deconvolutional pairs, in which
each convolutional and deconvolutional layer has only 32 feature
maps. The number of parameters in RSDehazeNet is only about
18.2% of that in CR4S2; however, RSDehazeNet run about three
times slower than CR4S2.

C. Influence of Cirrus Band

In order to analyze the improvement on thin cloud re-
moval introduced by Cirrus band, models taking 12 bands
(1/2/3/4/5/6/7/8/8A/9/11/12) as input and output (12-bands
models) were trained and tested. The PSNR and SSIM of models
without considering the Cirrus band as input (models with -12
as suffix) and the corresponding performance improvement δ
when adding the Cirrus band are given in Fig. 7. We can see that
CR4S2-12 can still obtain higher PSNR and SSIM than RSC-
Net-12, FCTF-Net-12, and RSDehazeNet-12. RSC-Net-12 still
performs the worst on most bands. From Fig. 7(a), it can be seen
that CR4S2 gets higher improvement than RSC-Net, FCTF-Net,
and RSDehazeNet on bands 2/3/4/11/12/1/9. RSC-Net even gets
lower PSNR than RSC-Net-12 on bands 2/3/4/12/1. The signal
preservation performance of FCTF-Net and RSDehazeNet also
degrades on bands 2/3/5/1 and bands 4/8/11/12, respectively.
Fig. 7(b) shows that the improvement of CR4S2 on SSIM is
higher than other methods on bands 2/3/4/8/6/11/12/1/9 but
lower than RSDehazeNet on other bands. This is because
CR4S2-12 obtains a much higher SSIM than RSC-Net-12,
FCTF-Net-12, and RSDehazeNet-12. Therefore, there is less
room for improvement for CR4S2 on these bands. The capa-
bility of all methods to restore structure has been improved
by taking the Cirrus band as input, except that RSC-Net and
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Fig. 5. Visual comparison results of (a) farmland and (b) barren samples (details can be found in Table VII). Columns 1 and 2 are cloudy and cloud-free images,
respectively. True color is a true color image, band n are MAEs of bands n, respectively.

FCTF-Net fail on bands 2/3/4/5/6/12/1 and 2/6/7/8A/11/12/1/9,
respectively.

The average nRMSE and δ (performance index of 13-bands
models minus the performance index of 12-bands models) of all
DL-based methods are shown in Table IV. CR4S2-12 achieves
better performance than DL-based methods that take 12 bands
as input, except on band 6/7/11/12 and 9 for which FCTF-12 and
RSDehazeNet-12 perform marginally better, respectively. When
taking the Cirrus band into consideration, CR4S2 gets lower
nRMSE than CR4S2-12 on all bands, and the lowest nRMSE
overall. However, DL-based baseline methods cannot always
reduce nRMSE on all bands, such as bands 11/12 (RSC-Net),

bands 2/3/4/5/6/712/1/9 (FCTF-Net), and band 4/8/11/12/9 (RS-
DehazeNet). This demonstrates that CR4S2 can make use of the
Cirrus band to improve thin cloud removal performance on other
bands at pixel-level.

Three different samples with land cover types and cloud
thickness are shown in Fig. 8, from which we can see that the
cloud effect in vegetation scene (a) cannot be eliminated either
by RSC-Net-12, RSC-Net, and FCTF-Net-12. FCTF-Net- and
RSDehazeNet-based methods can remove clouds, but the results
vary with input bands. The barren region is transferred into
red by RSC-Net-12, RSC-Net, and FCTF-Net-12. The region
seriously affected by thin cloud is also changed after being
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TABLE IV
AVERAGE NRMSE FOR 12-BANDS MODELS, AND δ OF 13-BANDS MODELS OVER 12 BANDS MODELS OVER ALL TESTING IMAGES

(3746 TESTING SAMPLES)

Fig. 6. PSNR and SSIM of different methods on 12 bands corresponding to
Fig. 5(a) and (b).

Fig. 7. (a) Average PSNR and (b) SSIM of 12 bands-based methods (marked in
line) and corresponding δ on PSNR and SSIM (marked in bar) of 13 bands-based
models over 12-bands based models on all testing samples.

Fig. 8. Visual results of on samples in Fig. 1. (a) Vegetation. (b) Farmland.
(c) Barren mountain.

processed by RSDehazeNet-12, RSDehazeNet, and FCTF-Net.
However, both the results of CR4S2-12 and CR4S2 retain the
spectral features in the region. For the farmland scene (b), Only
RSDehazeNet, CR4S2-12, and CR4S2 can remove cloud effects
visually. RSC-Net-12, RC-Net, and FCTF-Net-based methods
change the spectral features in purple regions. It can also be seen
that RSDehazeNet performs much better than RSDehazeNet-12
with the help of the Cirrus band. In the barren mountain region
(c), the cloud effect can be removed by all methods except
FCTF-Net-12 visually. But the spectral features are changed by
RSC-Net-12, RSC-Net, and RSDehazeNet-12 in the left region.
From the results in (a), (b), and (c), it can be seen that the cloud is
further removed by all methods when taking the Cirrus band as
input. Both CR4S2-12 and CR4S2 can not only remove clouds
visually but also preserve features in the spectral domain.
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TABLE V
AVERAGE PSNR, SSIM, AND NRMSE FOR DIFFERENT METHODS OVER ALL

TESTING IMAGES (3746 TESTING SAMPLES)

D. Evaluation Using Only VNIR Bands

Since there are many satellites that only acquire bands in the
visible and near-infrared part of the spectrum (VNIR), which are
the most used for remote sensing applications, the performance
of the CR4S2-based model trained on VNIR bands was also
evaluated.

We use RSC-Net-4, FCTF-Net-4, RSDehazeNet-4, and
CR4S2-4 to present the DL-based methods that only take VNIR
bands as input/output. Table V shows that DL-based meth-
ods perform much better than traditional methods. CR4S2-4
achieves the best PSNR, SSIM, and nRMSE performance on
VNIR bands among all methods. This is because even without
the other two input branches, max-pooling in PDRB-T will
be removed and PDRB-T becomes PDRB-D, which means
CR4S2-4 model can still extract and fuse multiscale features at
each level when only inputting VNIR bands. CEP always ranks
last on these bands. FCFT-Net-4 always gets better performance
than RSC-Net-4 on bands 2/3/4 and RSDehazeNet-4 obtains
quite close PSNR, SSIM, and nRMSE to CR4S2-4. This may
be because RSDehazeNet-4 also fuses features from different
levels for thin cloud removal.

From the true color composited results in Fig. 9, we can see
that CR4S2-4 achieves the most similar visual result to the refer-
ence image among all methods. Although CEP can remove more
clouds than DCP, neither can remove clouds completely. The
outputs of CEP, DCP, and RSC-Net-4 have lower pixel values
than the reference image. Although the results of FCTF-Net-4
and RSDehazeNet-4 contain no clouds visually, they produced
higher surface reflectance than the reference image on bands
2/3/4. The MAE increases from bands 2 to 8 for all methods.
DCP performs the worst on VNIR bands among all methods,
with a much higher MAE in highlight regions (such as urban
and barren) than other methods. DCP and RSC-Net-4 get higher
MAE in barren areas than farmland and urban areas on bands
2/3/4. It can also be found that MAE in the farmland region on
band 8 is higher than bands 2/3/4 for all methods. This may

TABLE VI
AVERAGE SAM (°) FOR DIFFERENT METHODS OVER ALL TESTING IMAGES

(3746 TESTING SAMPLES)

be because the vegetation in farmland has changed in 10 days.
CR4S2-4 obtains the highest PSNR and SSIM on VNIR bands,
except that RSC-Net-4 obtains a marginal improvement of SSIM
(0.0082) on band 8.

E. Analysis of Spectral Preservation

In order to evaluate the spectral preservation performance of
CR4S2-based methods, SAM was calculated pixelwise. SAM
values for bands VNIR VER/NIRn/SWIR and Ca/Wv were
calculated separately, because the spatial resolutions of these
band groups are different. Table VI shows the average SAM
for all methods on all testing samples. It can be seen that
CR4S2-based methods can always obtain the best SAM when
taking different bands as input. For methods taking bands VNIR
as input, CEP and DCP perform much worse than DL-based
methods. The SAM values of CEP and DCP are almost 3.7 and 2
times larger than that of CR4S2-4. Combining results of methods
with 12 bands as inputs, we can see that the spectral preservation
ability of DL-based methods is improved when taking bands
VRE/NIRn/SWIR and Ca/Wv into consideration. The gain in
spectral preservation ability for DL-based methods is further
increased when taking the Cirrus band as additional input.

Additionally, the average SAMs for samples in Fig. 1 are
also shown in Fig. 10, from which we can see that CEP can
barely preserve the spectral information. The SAM of DCP
is close to that of DCP. FCTF-Net-4 get much higher SAM
than RSC-Net-4, FCTF-Net-4, and CR4S2-4. CR4S2-4 obtains a
little better spectral preservation performance than FCTF-Net-4
and RSDehazeNet-4. RSC-Net-12 even get worse results than
RSC-Net-4 on bands VNIR. The spectral preservation ability
of all models cannot always be improved as the number of
input bands increases except CR4S2-based models. CR4S2-
based models always achieve a competitive spectral preservation
performance on the samples in Fig. 1.

F. Influence of Multioptimization Loss

As mentioned in Section III, the losses for clear image and
gradient were introduced to construct the multioptimization loss,
which was used to improve the performance of CR4S2. To
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Fig. 9. Results on farmland and urban areas (details can be found in Table VII). Columns 1–8 are cloudy and reference images, results of CEP, DCP, RSC-Net-4,
FCTF-Net-4, RSDehazeNet-4, and CR4S2-4, respectively, using a color scale for better visualization of results. True colors are true color composites. Bands 2/3/4/8
are the MAE maps of bands 2/3/4/8. The numbers below each MAE map are PSNR (left) and SSIM (right) for the corresponding band, respectively. The highest
values for PSNR and SSIM are marked in red and green, respectively.

Fig. 10. Average performance improvement introduced by multioptimization
loss for PSNR (in red), SSIM (blue), and nRMSE (green) on all test samples.
The higher δ on PSNR and SSIM the better, and the lower δ on nRMSE the
better.

evaluate the effectiveness of multioptimization loss, a model
CR4S2-noopt was trained and tested, with its parameters up-
dated only with cloud images and Lk(c, n). Fig. 11 shows
the quantitative comparison results on all test samples between
CR4S2 and CR4S2-noopt. We can see that CR4S2 got higher
PSNR than CR4S2-noopt on all bands except band 2 (less than

0.14 PSNR). CR4S2 obtained at least 0.21 more in PSNR than
CR4S2-noopt on other 11 bands. We can also see that CR4S2
always performs better than CR4S2-noopt in SSIM on all bands.
This demonstrates that multioptimization loss can restore more
structural features on all bands. The nRMSE of CR4S2-noopt
was improved with multioptimization loss on all bands except
band 11 (0.0001) and 9 (0.003). The SSIM increases slightly
(0.0102) and nRMSE decreases significantly (0.3839) on band
1, which is more affected by thin clouds. This means that mul-
tioptimization loss can effectively improve thin cloud removal
performance on the coastal band.

In order to analyze the influence of multioptimization loss
on spectral preservation, the surface reflectance was cal-
culated pixelwise. Since the spatial resolutions of VNIR,
VRE/NIRn/SWIR, and Ca/Wv are different, we selected a cen-
tral pixel (row 33 of 64 and column 33 of 64) in Ca/Wv bands
and corresponding central windows in VNIR (from row 33 6
to 34 6 of 384 and from column 33 6 to 34 6 of 384), and
VRE/NIRn/SWIR (from row 33 3 to 34 3 of 192 and from
column 33 3 to 34 3 of 192) bands to ensure that the surface
reflectances in different bands are from the same location. As
shown in Fig. 12, we can see that the result of CR4S2 on
vegetation scene (a) is in good agreement with the reference.
However, CR4S2-noopt produces higher surface reflectance
than reference on bands 6/7/8/8A/9. For farmland scene (b),
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Fig. 11. Average pixel spectra of the central pixels (6× 6 for VNIR bands,
3× 3 for VRE/NIRn/SWIR bands, and 1× 1 for Ca/Wv bands) in the respective
input, target, and output images of CR4S2 and CR4S2-noopt for samples in
Fig. 1. (a) Vegetation. (b) Farmland. (c) Barren mountain.

Fig. 12. (a) Average PSNR and (b) SSIM of CR4S2-r (marked in line) and
corresponding δ on PSNR and SSIM (marked in bar) of CR4S2 over CR4S2-r
on all testing samples.

although both CR4S2 and CR4S2-noopt get lower surface re-
flectance than reference on bands 8A/11/12/9, the result of
CR4S2 is closer to reference than that of CR4S2-noopt. CR4S2
and CR4S2-noopt get higher surface reflectance than reference
on bands 2/3/4/5/6/7/1/9 in the barren mountain scene (c), but
CR4S2 performs slightly better on bands 6/7. Combining the
results on the three samples, it can be seen that the proposed
multioptimization loss is effective for thin cloud removal in most
bands on the samples in Fig. 1.

Fig. 13. Average performance improvement introduced by PDRB-D/PDRB-T
for PSNR (in red), SSIM (blue), and nRMSE (green) on all test samples. The
higher δ on PSNR and SSIM the better, and the lower δ on nRMSE the better.

G. Effectiveness of Multi-Input/Output Branches

The key contribution of this work is using multi-input/output
branches to process bands at different spatial resolutions, rather
than rescaling the bands to the same size by human-designed
interpolation algorithms that will introduce noise. To prove the
effectiveness of the proposed multi-input/output branches, a
CR4S2-r model that uses the rescaled multiresolution bands as
the inputs and outputs was trained. Fig. 10 shows the average
PSNR and SSIM of CR4S2-r and corresponding δ on PSNR and
SSIM of CR4S2 over CR4S2-r on all testing samples. CR4S2
outperforms CR4S2-r in PSNR on all bands except band 11
and in SSIM on all bands except bands 8/11. This demonstrates
that the proposed multi-input/output branches can help improve
CR4S2 performance both in signal and structure restoration on
most bands.

H. Superiority of PDRB

In this article, two parallel downsample residual blocks PDRB
(PDRB-D/PDRB-T) were designed for multiscale feature fu-
sion. To analyze the superiority of PDRB over normal convolu-
tion layer, all PDRB in CR4S2 were replaced with convolution
layers (CR4S2-noPDRB). As shown in Fig. 13, CR4S2 performs
better than CR4S2-noPDRB in PSNR, SSIM, and nRMSE on
all bands, except a little worse in PSNR on band 2. This demon-
strated that the proposed PDRB can improve thin cloud removal
performance of CR4S2 effectively.

I. Overall Assessment of CR4S2 Performance

CR4S2 is still more effective than baseline methods when
taking only VNIR bands as input (see Table V). The thin cloud
removal performance of CR4S2 method is improved when tak-
ing more bands as input. Table IV shows that the Cirrus band,
which contains the least land surface information and is the
most influenced by clouds, is helpful for CR4S2 to remove thin
clouds in other bands. The statistical results in Fig. 11 prove
that the proposed multioptimization loss can further improve
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Fig. 14. Visual results of three whole Sentinel-2 scenes. (a) Vegetation (S2A_MSIL1C_20220729T072631_N0400_R049_T41WNM_20220729T074342). (b)
Urban (S2B_MSIL1C_20210412T030539_N0300_R075_T49SGU_20210412T045545). (c) Barren (S2A_MSIL1C_20210417T180911_N0300_R084_T12TYS_
20210417T221540).

the thin cloud removal ability of spectral and structure restora-
tion on most bands. From the quantitative results in Table II,
we can see that CR4S2 can better restore the background in-
formation than baseline methods not only at pixel-level but
also at structure-level. This is due to the superiority of the
structure and multioptimization loss of CR4S2. The spectral
preservation results in Table VI demonstrate that the CR4S2
method can restore spectral information more effectively than
baseline methods with the same input bands. From Tables II,
IV, and V, we can also see that RSC-Net performs the worst
among all DL-based methods. This may be because RSC-Net
only includes normal convolutional and deconvolutional layers,
thus, cannot make full use of the information in the input. Both
FCTF-Net and RSDehazeNet inject channel attention operation
to their network to learn the weights for different channels, which
may be the reason why their performances are not too different
on most bands. The visual results of three whole scenes from
Sentinel-2 in Fig. 14 show that CR4S2 outperforms baseline
DL-based methods on vegetation much more than on urban
and barren. Color distortions are seen in the results of baseline
DL-based methods on vegetation scenes. In particular, the result
of RSC-Net on vegetation scene still contains cloud effect.
Overall, the experimental results show that the proposed CR4S2
method is very promising for thin cloud removal in Sentinel-2
imagery.

V. CONCLUSION

In this work, a novel DL-based method CR4S2 was proposed
for thin cloud removal in Sentinel-2 imagery. Three input/output

branches were designed for taking original Sentinel-2 images as
input/output. In order to extract and fuse multiscale features in
different depths, we designed two parallel downsample blocks
(PDRB-D and PDRB-T) that are based on a newly proposed
DDSC module. A top-to-bottom residual path was constructed
by injecting PDRBs into certain branches. Experimental results
demonstrate the superiority of CR4S2-based models over base-
line methods. CR4S2-based method can restore more spectral
information than baseline methods. The influence of the Cirrus
band on CR4S2 was also analyzed. The results show that CR4S2
can not only restore more texture information but also can
use the cloud information in the Cirrus band to improve its
thin cloud removal performance in other bands. The proposed
multioptimization loss and multi-input/output branches have
also been proved effective for improving thin cloud removal
performance in most bands. The encoder of CR4S2 includes sev-
eral multiscale fusion blocks; however, the decoder only takes
normal deconvolutional layers as basic units, which may limit its
performance.

In the future, we will consider designing and introducing
multiscale feature fusion blocks into the decoder of CR4S2. The
application on other multispectral images will also be taken into
consideration. The transformer has been successfully applied
on image processing; the superiority of the transformer on
thin cloud removal will also be explored by injecting it into
CR4S2.

APPENDIX

See Table VII.
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TABLE VII
DETAILS OF SAMPLES FOR VISUAL COMPARISON IN THIS ARTICLE
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