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Abstract—The spread of aquatic invasive plants is a major con-
cern in several zones of the world’s geography. These plants, which
are not part of the natural ecosystem, cause a negative impact
to the environment, as well as to economy and society. In Spain,
large areas of Guadiana (the second-longest river in Spain) have
been invaded by such plants. Among the strategies to address
this problem, monitoring and detection play an important role
to control the spatiotemporal distribution of the invasive plants.
The main objective of this work is to develop a methodology able
to automatically detect the geolocation of aquatic invasive plants
using remote sensing and machine learning techniques. To this end,
several classification algorithms have been applied to freely avail-
able multispectral satellite imagery, collected by ESA’s Sentinel-2
satellite. A quantitative and comparative assessment is conducted
using different machine and deep learning algorithms from classi-
cal methods, such as unsupervised K-means to supervised random
forests and convolutional neural networks. This study also proposes
a methodology for validating the obtained classification results,
generating synthetic ground truth images based on available high
spatial resolution imagery. The obtained results demonstrate the
suitability of some of the considered algorithms for automatic
detection of aquatic weeds in satellite images with medium spatial
resolution.

Index Terms—Aquatic weeds, deep learning (DL), detection,
invasive plants, machine learning (ML), remote sensing (RS),
Sentinel-2.

I. INTRODUCTION

R EMOTE sensing (RS) and geographical information sys-
tems (GISs) are two disciplines on the rise in recent

decades. Together, they provide an ideal analysis framework
in many disciplines [1]. Based on RS technology, multispectral
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(MS) or hyperspectral (HS) sensors installed on airborne (air-
planes/drones) or spaceborne (satellites) platforms measure the
energy that an object in the Earth’s surface reflects and absorbs.
In this way, MS or HS images record measurements in discrete
and discontinuous portions of the spectral range, with tens (MS)
or hundreds (HS) of nearly contiguous spectral bands. As a
result, RS data contain a vast amount of information in the spatial
and spectral domains and can be represented as data cubes, as
they comprise data in three dimensions [2]. In other words,
each pixel is composed of tens or hundreds of measurements
in different wavelengths.

On the other hand, GIS technology facilitates the understand-
ing of the information in the pixels that make up the data cube
by taking advantage of the information available in the spatial
domain. In this way, maps can be created displaying the spectral
observations in a georeferenced way. This also allows for the
arrangement of different layers of georeferenced information for
better assessment of the data using GIS techniques in computer
applications.

The exploitation of RS together with GIS exhibits the potential
to improve the understanding of the land surface, thanks to
the detailed information that RS images provide, consequently
allowing for a precise analysis and GIS-based interpretation
that is applicable to several fields, such as urban planning [3],
biodiversity [4], disaster management [5], precision agricul-
ture [5], land cover mapping [6], monitoring of oil spills and
other events [7], among many others. In particular, classification
allows distinguishing water bodies from other impervious sur-
faces (e.g., urban environments), including soil and vegetation.
This allows us to address problems related to (for instance) the
excessive growth of vegetation in water (the most important
resource on the planet).

The inefficient management of domestic, agricultural, or in-
dustrial waste contributes to the excess of nutrients in aquatic
ecosystems (e.g., phosphorus and nitrogen), which pollute the
water through a process called eutrophication [8]. Important eco-
logical impacts, such as the loss of water quality, stem from the
enrichment of nutrients in the water. This enrichment also causes
an excessive growth of certain plant species known as aquatic
weeds [9]. An excessive presence of such weeds could lead to
the fact that a large amount of oxygen dissolved in the water is
consumed during their growth and putrefaction, introducing a
large amount of organic matter in the water [10]. Most notably,
floating aquatic weeds tend to create a mantle on the surface of
the water that absorbs light, reducing the amount of illumination
in benthic habitats and, therefore, reducing biodiversity [11].
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Occasionally, in specific geographical areas on the water’s
surface, there is vegetation that is not part of that particular
ecosystem. Such kind of vegetation is also referred to as alien
species. These are invasive species introduced intentionally or
accidentally, e.g., due to globalization (trade, transport of goods,
etc.). Due to their invasive nature, these species also pose a
significant threat to the species of the native ecosystem [12].
Therefore, the removal of these so-called invasive plants is much
needed to reduce the impact introduced in the environment
and water quality, and also to reduce the negative economic
impact [13]. As a specific case study, the Guadiana river basin
in Extremadura (a region in the southwest of Spain) contains
invasive species, such as water hyacinth (Eichhornia crassipes),
since the beginning of the 2000s. It is possible to perform me-
chanical elimination of these species by chemical or biological
means [14], [15], as well as to adopt other methods to control
their spread [16].

In order to monitor and control invasive aquatic plants, map-
ping their distribution is a critical step. RS plays an important
role in this task, since satellite images provide rich spatial and
temporal information. In recent decades, we have seen a tremen-
dous growth of RS studies in which image analysis and different
sensor specifications have been exploited to map and detect
aquatic invasive plants [17], [18], [19], [20], [21]. However, in
the literature, there are few studies aimed at monitoring and
controlling of aquatic invasive plants using machine learning
(ML) techniques [22], [23], [24].

Artificial intelligence (AI) approaches provide a wide variety
of regression and classification algorithms for the interpretation
of RS images. Besides, depending on the availability of labeled
samples to train the models, they can be categorized into un-
supervised, supervised, or semisupervised methods (a hybrid
of the first-two). Popular examples of unsupervised methods are
clustering algorithms. These algorithms find natural groups with
similar spectral behavior, such as the well-known K-means. Due
to its simplicity, this method has been widely used to group
samples of data in clusters [25]. On the other hand, super-
vised algorithms, such as random forests (RFs) [26], support
vector machines [27], K-nearest neighbor [28], or multilayer
perceptron (MLP), require training samples. MLP is in fact an
artificial neural network (ANN), which mimics the behavior
of neurons in the human brain. ANN-based algorithms have
significantly developed in recent years, thanks to the advent
of computer hardware, such as graphics processing units, and
have evolved into a subfield of ML called deep learning (DL).
Numerous studies have considered DL algorithms [29]. Among
them, convolutional neural networks (CNNs) have become ex-
tremely popular due to their outstanding performance in many
classification tasks (e.g., to recognize objects [30], scenes [31],
pixel classification of a scene [32], or subpixel detection
[33]).

The main goal of this work is to develop an ML/DL methodol-
ogy to automatically detect the spatial–temporal distribution of
aquatic invasive plants in the Guadiana river. To the best of our
knowledge, there are no previous studies about the detection
of aquatic weeds in this river combining GIS, RS, and AI
techniques [34]. Specifically, we could not find any works using

DL to address this problem. The main innovative contributions
of our work can be summarized as follows.

1) We establish a full processing chain, including prepro-
cessing, processing, and evaluation, of Sentinel-2 images,
using RS and GIS tools (with treatment of NoData val-
ues), to automatically detect invasive aquatic weeds in the
Guadiana river.

2) We have implemented a novel strategy to validate the
performance of ML/DL algorithms in the considered ap-
plication. To be specific, we generate synthetic ground
truth (GT) data from a high-resolution MS image. For this
purpose, we use data acquired by the (Spanish) National
Plan of Aerial Orthophotography (PNOA) that provides
open-access datasets that have been preclassified using a
window-based processing strategy [35].

3) We carry out a detailed comparison between ML and DL
algorithms in the context of aquatic weeds detection. In
order to show that invasive aquatic plants can be monitored
using ML/DL techniques, two areas in the Guadiana river,
Spain, have been carefully selected and studied. K-means
clustering and the RF algorithm have been applied to
them, and a CNN architecture has also been configured
for this study. We use Sentinel-2 medium-resolution MS
images to conduct the study, as they can be collected with
a frequent revisit time (five days) and are freely available
to the scientific community. We also report results on the
full Sentinel-2 flightlines for reference.

The rest of this article is organized as follows. Section II
describes some challenges related to the detection of aquatic
weeds in the Guadiana river. Section III outlines some available
open-access RS datasets to detect aquatic weeds in the Guadiana
river. Section IV describes the adopted ML/DL techniques.
Section V explains the materials and methods used in our
work. Section VI discusses the obtained experimental results.
Finally, Section VII concludes this article.

II. AQUATIC WEEDS IN THE GUADIANA RIVER: BACKGROUND

AND CHALLENGES

The challenge of preventing and controlling the existence
and spread of invasive aquatic weeds extends over a large part
of the world geography. As an illustration, the water hyacinth
(Eichhornia crassipes) is one of the most invasive species on
the Earth. Its geographical distribution reaches almost every
continent [36]. In Africa, it is present in many places, such as the
Lake Victoria or Niger river. In Asia, it can be found at the Al
Kabir river. In Australia, it covers the Burdeki Riverand. And,
in North and South America, it is present in the Rio Grande and
several lagoons outside the Amazon, among others. In Europe,
these aquatic weeds are also living in France, Italy, Portugal,
Germany, and Spain, where the second-largest river (Guadiana)
is largely affected.

The Guadiana river’s basin is located at the Iberian Peninsula
and covers an area of about 67 129.38 km2. The river flows in
a course of about 829 km from east to west, extending for the
most part in the southwest of Spain. The Spanish basin crosses
the regions of Andalucía, Castilla La Mancha, and Extremadura,
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Fig. 1. Nymphaea mexicana in the Guadiana river, photographed by Tomás Rodríguez.

distributed in an area of 55 508.28 km2 [37]. In this work, we
focus on two areas located in Extremadura, where the basin of
the Guadiana river occupies an area of 23 443.73 km2. Moreover,
Extremadura has about 1500 km of inland coastline, the largest
in Western Europe.

In addition to Eichhornia crassipes, other invasive aquatic
plant species have spread in the Guadiana river, such as
Nymphaea mexicana (see Fig. 1) and Azolla filiculoides. They
all have American origin. Moreover, as shown in Fig. 1, their
tapestry-like distribution on the surface of the water prevents
the passage of light and affects native vegetation as well
as aquatic invertebrates [38], [39], [40]. The negative eco-
logical and socioeconomic impacts caused by these invasive
plants have motivated different control mechanisms, as well
as eradication attempts by public institutions. In this sense,
several extraction and surveillance actions have been carried
out, requiring large economic investments. Some of these
actions have been framed within international projects [41],
[42], including LIFE + INVASEP “Combat invasive species in
the Tajo and Guadiana drainage basins in the Iberian Penin-
sula,” Interreg Spain–Portugal LIFE10/NAT/ES 000582, and
ACECA Project—cofinanced by the European Regional De-
velopment Fund (i.e., FEDER)—with budgets of 2 895 267
and 5 560 221.66 euros in 2012–2016 and 2014–2020 periods,
respectively.

The current strategies carried out for the eradication of inva-
sive aquatic plants have not achieved their total elimination. In
this regard, new financial investments for control strategies are
planned for the 2021–2027 period for Eichhornia crassipes and
Nymphaea mexicana [43], respectively. For this reason, moni-
toring and mapping aquatic weeds are necessary. RS and GIS
techniques for image acquisition and processing are powerful
tools for this purpose.

III. OPEN-ACCESS RS DATASETS

There is a wide variety of currently operational RS instru-
ments able to capture spectral radiance or reflectance of the
Earth’s surface, with different numbers of spectral channels
covering a diversity of spectral ranges. On the one hand, HS
sensors collect data in hundreds of nearly contiguous spectral
bands. On the other hand, MS images usually have a lower
discrete number of bands. RS sensors are flown on airborne or
spaceborne instruments, taking part in different space missions
or national plans, which provide coverage throughout interna-
tional and national territories, in several formats and resolution
in the spatial, spectral, and temporal domains. RS imagery
are often available for free or under request. In our research,
medium-resolution images (acquired with frequent revisit times)
have been targeted to monitor the spread of aquatic invasive
plants. Whenever available, open-access databases have been
chosen. In that sense, the MS dataset provided by PNOA and
datasets collected by Sentinel-2 have been selected.

Several research efforts have considered digital aerial or-
thophotographs collected by PNOA for photointerpretation
tasks, due to their high spatial resolution [44], [45], [46]. Some
projects managed by the Ministry of Development (Spain) fol-
low the INSPIRE Directive [47], which establishes a spatial
data infrastructure for geographic data in Europe to provide
geometric and temporal coherence of cartographic and geo-
graphic databases. In this way, aerial photography constitutes a
basis for the realization of information on urban planning, land
occupation, hydrography, forest management, and cartography
for territories belonging to the European Community. Within the
PNOA framework, it is possible to perform photogrammetric
flights using planes equipped with a high-resolution digital
camera, four MS sensors, and a panchromatic sensor, collecting
high spatial resolution images (25 or 50 cm) of the entire Spanish
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TABLE I
SENTINEL-2 BANDS

territory within a period of 2 or 3 years (depending on the
area) [48]. Among the products offered, PNOA provides free
MS images with high spatial resolution and three RGB spectral
bands in the European Terrestrial Reference System (ETRS89)
geodetic system. Furthermore, upon request, digital frames of
PNOA flights can be purchased. These images comprise four
bands, three for the visible (RGB) part of the spectrum and one
for near-infrared (NIR), all georeferenced in the ETRS89 geode-
tic Cartesian reference framework, with high spatial resolution
images (0.22 or 0.45 m).

Last but not least, the European Space Agency (ESA) de-
veloped (as part of the Copernicus programme) a family of
Earth observations missions called Sentinels. In this work, given
their success for land cover classification [49], [50], an MS
medium-resolution optical imagery provided by Sentinel-2 mis-
sion (focused on land monitoring [51]) is considered. Sentinel-2
provides coverage over all land areas, except Antarctica, via two
identical satellites, which are composed by an MS instrument
(whose technical characteristics allow a revisit time of five
days). Sentinel-2 offers two types of products: 1) Level-1 C
(S2L1C); and 2) Level-2 A (S2L2A). Both of them are avail-
able for free, and they are composed of 100 × 100 km2 tiles,
which are orthoimages in UTM/WGS84 projection. S2L1C is a
top-of-atmosphere reflectance product and S2L2A a bottom-of-
atmosphere reflectance product. S2L2A is the result of applying
atmospheric correction techniques to S2L1C images (thanks to
a processing algorithm called Sen2Cor, developed by ESA). As
a result, the reflection and scattering of light by the atmosphere
before reaching the ground is corrected. Each S2L1C image is
composed of 13 spectral bands, containing reflectance values
from the visible and NIR to the shortwave infrared, with spatial
resolutions of 10-, 20-, and 60-m per pixel (depending on the
wavelength). In this way, the four visible spectral bands have
spatial resolution of 10-m per pixel, the six NIR bands have
20-m spatial resolution, and the three shortwave infrared bands
have 60-m spatial resolution. In case of S2L2A, the B10 band
(used for cirrus cloud detection) is excluded, because it does not
contain any information at the bottom of the atmosphere (see
Table I [52]).

IV. MACHINE/DEEP LEARNING TECHNIQUES

To the best of our knowledge, AI methods have not been fully
explored as of yet to automatically map the spatiotemporal dis-
tribution of aquatic invasive plants. In this section, we describe
some ML/DL techniques that we have used to perform automatic
invasive plants detection.

Let an MS image be defined by X ∈ RH×W×B , where H
andW denote the height and width of the data cube, respectively,
and B is the number of spectral bands. The goal is to find a
mapping function Mθ : X → Y that assigns each pixel xi to
a corresponding label yi (including aquatic weed), producing
a classification map Y ∈ RH×W . In this sense, ML/DL algo-
rithms build a model based on learning to make predictions. In
supervised approaches, training samples are collected and labels
for some pixels are available (e.g., by means of a human-based
annotation process). On the contrary, unsupervised approaches
group similar pixels together by discovering patterns of similar-
ity. Last but not least, semisupervised methods combine labeled
and unlabeled data during the training process.

Recent advances in ML/DL algorithms, high-performance
computing, and Big Data accessibility have led to the adoption of
ANNs for classification tasks [53]. DL, which can be considered
as a subfield of ML [54], exploits many ANN layers that are
stacks of functions able to extract features at different levels [55].
Their structure exhibits great advantages over traditional ML al-
gorithms. Specifically, DL models can be adapted to supervised
and unsupervised classification tasks; their learning procedure
allows to extract linear and nonlinear features, and they exhibit
great flexibility in their architectures, thanks to their diversity in
terms of both the types of layer that can be arranged and their
number (depth) [56].

In the following, general aspects of the ML/DL algorithms
adopted in our work are given. Specifically, we use an unsu-
pervised method widely known for its simplicity (i.e., K-means
clustering), a supervised (i.e., RF) based on decision trees, and
a supervised DL method (i.e., CNN).

1) K-means: K-means is a popular unsupervised method
among clustering techniques where data are grouped in clusters
such that samples in the same group (or cluster) are more
similar to each other than those in other groups. The goal of this
algorithm is to choose centroids within a cluster sum-of-squares
criterion given by

n∑

i=0

(
minµj∈C

‖ xi − μj ‖2) (1)

where n is the number of groups of equal variance in which
samples are separated and xi are the samples (divided into k
disjoint clusters C described by the mean μj). The operation of
this algorithm can be described in several steps.

a) In the first step, parameter k (corresponding to the number
of clusters to be identified in the data) is set. Then, the
centroids of the clusters are chosen and each sample is
assigned to its nearest centroid.
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b) In the second step, new centroids are created by taking the
mean value of all the samples assigned to each previous
centroid. The difference between the new centroids and
the old ones is computed, and this process is repeated until
there are no more changes in the location of the centroids.

2) Random Forest: RF is an ensemble learning approach first
introduced in [57]. In particular, this method classifies pixels by
creating a multitude of randomized decision trees (supervised
and nonparametric classifiers) where the final prediction is an
average of the probabilistic ones of each decision tree. In other
words, it performs a bagging strategy by building the trees from
top to bottom based on the “divide and conquer” concept [58],
achieving error compensations. First, in order to carry out the
(supervised) classification, a training set is defined. RF operates
by means of a bagging procedure in which training samples are
randomly selected from the original training set. As a result,
some samples may not be used and others may be chosen more
than once. Next, each decision tree is built with different training
sets by using a boostrapped dataset. This technique improves the
generalization of the learning process by avoiding the tendency
to overfitting of decision trees. It is advantageous for reducing
model variance without increasing bias. Other methods based
on “boosting” are more sensitive to overtraining and noise [59].

3) Convolutional Neural Networks: CNNs are a kind of non-
linear models categorized within a supervised deep network
(discriminative deep networks). Their structure is inspired by
the behavior of neurons in visual neuroscience. CNNs comprise
a set of blocks with units (or neurons) capable to transform the
input data volume to an output volume of units (or neurons).
The output volume of neurons of the previous blocks will be
the input block to the following block [32]. In general terms, as
any feedforward neural network, the architecture of the CNN
consists of an input layer, hidden layers, and output layer. The
hidden layers are divided in two parts: a) the first one is the
feature extractor; and b) the second part is often an MLP, which
assigns the final class labels. In other words, this design consists
of multiple layers where the outer layers of a CNN extract
basic features, whereas more complex learning is hierarchically
produced in the inner layers. With regards to the MLP, the
neurons of a layer are not fully connected to all neurons of the
previous one, because they are connected to a small region of
previous input volume. This particularity allows the blocks of
neurons in a CNN to work as kernels, operating over a small
region of the previous layer. The withdrawal of fully connected
layers can be beneficial in terms of reducing complexity and
enhancing the exploitation of spatial information in the data.
CNNs have been successfully applied to perform RS image clas-
sification. Their multilayer structure can exploit the advantages
of natural signal sharing weights, with pooling layers and local
connections. The way input data are presented to the network
(in the form of multiple arrays), makes it suitable to process
both MS and HS images [60]. The main types of hierarchical
structures are convolutional layers with nonlinear operation and
pooling layers in the first stages and fully connected layers in
the last stages [56]. The CNN applies weights and biases to the
input data in each hidden layer. CNNs use an activation function
and perform convolutions. Among the different types of CNN

models for RS data classification (spectral CNN, spatial CNN,
and spectral–spatial CNN) [61], we focus on spectral CNNs [62]
where the procedure repeated in the convolutional layers l can
be described as

l : X l
k = σ(Kl−1

1 ∗X l−1 + bl−1
k ) (2)

where the feature map created at each layer l is Xk, K is a set
of kernels K = {K1,K2,K3, . . .,Wk}, the b applied biases are
γ = {b1, b2, b3, . . ., bk}, the input RS dataset is convolved using
the ∗ operation, and the nonlinear transform function is denoted
by σ(.) [29]

V. MATERIALS AND METHODS

A. Study Area

Our study has been conducted at the Guadiana river in Ex-
tremadura, Spain. Two portions of a section affected by aquatic
weeds in the river have been analyzed. The first region of
interest (ROI) corresponds to a section affected by Nymphaea
mexicana that crosses the city of Badajoz (denoted hereinafter
as BA_zone) with an area of 192 ha approximately, which
extends between 7◦ 01′–6◦ 58′ W latitude and 38◦ 51′–38◦ 53′

N longitude. The second study area (about 45 ha) is affected by
Eichhornia crassipes in the city of Mérida (denoted hereinafter
as ME_zone) in which an invasive plant control barrier has
been installed in the river for mechanical removal. This area
extends between 6◦ 19′–6◦ 18′ W latitude and 38◦ 50′–38◦ 51′N
longitude, respectively (see Fig. 2).

B. MS Datasets

In our experiments, several datasets collected by different MS
sensors (PNOA and Sentinel-2) have been considered. First,
to facilitate the training and validation for aquatic weeds de-
tection, the PNOA dataset has been obtained over BA_zone
and ME_zone. The orthophotographs have been obtained for
free from National Geographic Institute’s Download Center
(IGN) [63]. By analyzing the metadata of each image, we can
see that the date in which they were collected was July 10,
2019. These PNOA datasets include three RGB bands and their
dimensions are 18 630 × 9747 and 7443 × 6321 pixels (width
× height) for the BA_zone and ME_zone, respectively. As will
be explained later, both images acquired by the PNOA are
rectangular and include both ROIs for Badajoz and Mérida (i.e.,
ROI_BA and ROI_ME), corresponding to the river areas being
analyzed, as well as some NoData values (pixels where there
is no information). There are 27 448 554 and 6 432 601 pixels
with information in ROI_BA and ROI_ME, respectively, with
a spatial resolution of 0.25-m per pixel. These datasets were
downloaded in Unit 8 (unsigned integer 8 bits) format, where
each pixel values range from 0 to 255.

Our study aims to detect aquatic weeds by using free high
spatial resolution satellite images with a frequent revisit time
over the ROI, allowing for the monitoring and control of the
weeds. For this purpose, datasets S2L2A (acquired by an MS
sensor onboard Sentinel-2) have been downloaded from a satel-
lite imagery provider called SentinelHub [64]. These datasets are
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Fig. 2. (a) Geographical location of Spain. (b) Geographical location of the region of Extremadura, the Guadiana river, and the Guadiana river basin. (c) Zoom
of the Extremadura region, depicting the Guadiana river and its basin. (d) Zoom of an area affected by aquatic weeds in Badajoz city (BA_zone). (e) Zoom of an
area affected by aquatic weeds in Mérida city (ME_zone).

atmospherically corrected so they are not foggy in appearance
(as it is the case of S2L1C datasets). Since Sentinel-2 has a revisit
time of five days, the closest date to the PNOA datasets has been
chosen. For BA_zone and ME_zone, images from July 11, 2019,
have been downloaded. These MS datasets contain 12 bands
ranging from 442.7 to 2202.4 nm, with spatial resolution of 10-,

20-, or 60-m per pixel, depending on the wavelength. Table III
gives the corresponding bands. After applying a clipping mask
with ROI_BA, the S2L2A dataset for BA_zone has dimensions
of 451 × 236 pixels, being 16 240 pixels with information (the
rest are NoData values). In the case of ME_zone, the S2L2A
dataset has dimensions of 189 × 173, with 4471 pixels with
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information. Both MS images have been downloaded in 8 bit
format (unsigned integer 8 bits), where the pixel values range
from 0 to 255.

C. Hardware/Software Environment

The hardware environment used in the experiments is com-
posed by an Intel(R) Core(TM) i7-8700 processor, 32 GB
random access memory (RAM) memory, and 1 TB SSD. The
window partitioning strategy and the ML/DL frameworks have
been implemented in Python 3.8 programming language, se-
lected because of its open-source nature, its versatility, and
flexible integration with other components, in addition to the
existence of numerous libraries. In addition, a very popular DL
framework has been used, i.e., TensorFlow, which is an end-to-
end open-source platform which is very easy to use through
the high-level library Keras (a DL application programming
interface). Regarding image preprocessing operations, most of
them have been carried out using QGIS software [65], as well
as tools developed in QGIS. In general terms, GIS techniques
have been used for the following.

1) Visualization of images (PNOA, Sentinel-2, and classified
images).

2) Treatment of NoData values, i.e., to query pixel values,
and to analyze histograms, spectral signatures, etc.

3) Training sample collection process: This has been accom-
plished by means of vectors (polygons) drawing over the
Sentinel-2 image, having as a reference layer, the PNOA
high-resolution image. The samples were extracted from
the Sentinel-2 image.

4) Data preprocessing and postprocessing: All previous
tools were used directly on QGIS, but also implemented
in Python to automate processes.

5) Maps layout design (for better understanding when dis-
playing results).

6) The synthetic GT generation (described in Section V-G2)
was performed using a Python script to automate all GIS
processes needed (crop geolocation, centroids generation,
vectorial data calculations, etc.).

D. Classification Methods

In order to verify that aquatic weeds can be automatically
detected by ML/DL algorithms, the following methods have
been adopted.

1) K-Means: The number of classification groups (the same
number of centroids generated) has been set empirically using
different values (between 3 and 6) in order to classify the two
scenarios according to their most representative classes (four
and five classes for ROI_ME and ROI_BA, respectively).

2) Random Forest: The number of estimators has been set
to 100 after checking that the obtained results did not improve
much by increasing the number of decision trees. They have been
tested with an increasing value of tree depth, since the algorithm
takes longer after a certain depth, but the accuracy remains the
same.

3) Convolutional Neural Network: The CNN is applied in
such a way that the spectral signature of each pixel is considered

TABLE II
NUMBER OF TRAINING SAMPLES (PIXELS) USED FOR TRAINING THE RF AND

CNN CLASSIFIERS IN THE BADAJOZ AND MÉRIDA CASES

as the input vector. Therefore, the CNN receives as many input
vectors as the number of pixels in the MS image. It is assumed
each pixel is labeled as one class. The structure of our CNN
classifier consists of several layers, i.e., convolutional, reshap-
ing, fully connected, normalization, and activation, as shown in
Fig. 3. In this study, the CNN does not use spatial information
(only spectral information), due to the fact that we are using a 1-D
convolutional network (CNN1D). This makes a fair comparison
with the other ML algorithms used (i.e., K-means and RF).

E. Training and Validation

In order to apply supervised classification algorithms, we
choose a set of training samples from Sentinel-2 images for each
of the scenarios analyzed in this article. Since the PNOA images
have higher spatial resolution and have been taken at the same
date as the Sentinel-2 images, two training datasets have been
defined by photointerpretation over PNOA images. The first
training dataset has been selected according to the predominant
classes in the ROI_BA scenario, so that representative samples
have been collected from each of them. Specifically, five classes
(i.e., water, aquatic weeds, soil, other vegetation, and other
as bridges) were defined in ROI_BA. Similarly, samples from
four representative classes (i.e., water, aquatic weeds, soil, and
other vegetation) have been selected in ROI_ME. First, samples
were taken with pixels containing only a single class. As we
were mainly interested in locating invasive plants in this study,
for greater accuracy of results, we proceeded to take training
samples of mixed pixels containing invasive plants among other
classes. The segmentation process of these training samples was
carried out using GIS tools in QGIS software. Table II gives
the total number of pixels used for training the RF and CNN
classifiers in both scenarios. The numbers in the parentheses are
the percentage of available labeled samples used for training,
while the rest of the labeled samples were used for testing. As it
can be seen in Table II, the RF and CNN classifiers are trained
with a very limited number of the available labeled pixels (2.58%
of the labeled samples for the Badajoz case and 10.06% of the
labeled samples for the Mérida case).

The training sets (one for BA_zone and one for ME_zone)
include samples of invasive plants and other classes that are
not invasive plants (with other kinds of vegetation among
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Fig. 3. Architecture of the considered CNN.

Fig. 4. Spectral signatures of the vegetation differentiated in the training sets,
i.e., Eichhornia crassipes, other vegetation in ROI_ME, Nymphaea mexicana,
and other vegetation in ROI_BA.

them). In Fig. 4, the spectral signatures of Eichhornia crassipes,
Nymphaea mexicana, and other vegetation species in ROI_ME
and ROI_BA are shown. As it can be seen, the signatures
exhibit a similar spectral pattern, but there are some spectral
differences between them. These nuances are usually enough
for classification algorithms to distinguish them. The fact that
invasive plant species can be distinguished from other vegetation
species has also been taken into account in other studies [66].
Fig. 4 suggests that the spectral signatures of invasive plant
species can be separated from those of other kinds of vegetation
species.

F. Image Preprocessing: Dealing With NoData Values

In many research works in which RS techniques have been
applied for classification purposes, the analyzed images have a
square or rectangular shape. That is because such techniques are
often applied to identify every class and all of them are of equal
importance in the study. In addition, working with images that
are not square or rectangular implies the presence of NoData
values, resulting in added difficulty in both preprocessing and
data processing. NoData values are values where there is no
information about the scene, due mainly to its geometry and not
to sensor data capture errors that may result in missing values.
Therefore, working with NoData values can be a tedious process,
since they have to be considered at GIS level, when data are
displayed, and also at coding level, when reading, processing,
and writing (saving) the images.

Fig. 5. (a) Full Sentinel-2 image for ROI_BA. (b) Clipped ROI_BA and
NoData values present in the image due to its geometry.

In this research, PNOA and Sentinel-2 datasets have been ob-
tained from the mentioned platforms in 8-bit format, and hence
pixel values range from 0 to 255 in each spectral band. First,
a normalization of these values has been carried out (dividing
these values by 255) so that they are displayed in a range from
0 to 1. In order to apply classification techniques only over the
areas in which we want to detect aquatic weeds, a previously
elaborated mask has been applied to show only the data within
each ROI (as shown in Fig. 5). Consequently, datasets have
information and NoData values. To deal with NoData values
and exclude them from training, prediction, and classification,
other values different than the values inside the ROIs have been
assigned. The histogram of each dataset has been calculated, and
given that the pixels that do contain ROI information saturate
the range (0 or 1 values), the dataset format has been changed
to 32-bit floating point. Then, NoData values are assigned to
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Fig. 6. Main steps in synthetic GT generation.

10 000, avoiding difficulties to handle the data. In addition, at
coding level, the ROI mask has been applied so that we only
take into account the pixels that are outside the mask to apply
the classification techniques.

G. Evaluation of Classification Techniques

In this work, a strategy has been developed to evaluate inva-
sive plants classification. It involves GIS techniques and their
implementation in programming languages. Since PNOA MS
images have very high spatial resolution, training and validation
samples could be chosen by photointerpretation. Furthermore,
they can also be used to validate the classification made in the
Sentinel-2 dataset. For this purpose, we need to compare the
classified pixels in the Sentinel-2 image with the classified pixels
in the PNOA dataset. The classification of the latter has been
possible by resorting to spatial partitioning. Both datasets have
different spatial resolutions; so in order to conduct this operation,
we elaborated a synthetic image of the classified PNOA dataset.
Thus, the resulting PNOA classified image pixels have 10 m of
spatial resolution (the same as Sentinel-2 datasets). In this way,
a synthetic GT can be generated and used to compute different
evaluation metrics.

1) Window Partitioning for the PNOA Dataset: Since PNOA
datasets are very high-resolution images and due to the big
dimensions of the ROIs studied, a lot of information is collected.
Consequently, the MS data cube requires a large amount of
RAM to be able to process the pixels. To solve this problem, we
apply the window partitioning methodology presented in [35].
Resulting from this, the PNOA data cube is split in contiguous
processing blocks. These neighboring blocks in the spatial do-
main contain subsets of pixels of the complete dataset with their
associated spectral information and can be processed in block
by block fashion.

2) Synthetic GT Generation: The main steps in the syn-
thetic GT generation are shown in Fig. 6. First, we con-
sider the Sentinel-2 image with a set of pixels represented by

XS = xS1, xS2, xS3, . . ., xSm. Then, a vector grid is generated
where each cell xGi is a square of 10 × 10 m, simulating
the contours of the pixel xSi. As a result, the H×W grid
(where H is the height and W is the width of the image) has
the same dimensions as the Sentinel-2 image, with the same
geolocation. On the other hand, the PNOA dataset has been
classified by using the RF algorithm, and it is composed of
pixels XP = {xP1, xP2, xP3, . . ., xPm}. Each pixel is labeled
as ypi, according to the class where it belongs. The pixels xPi

have a higher spatial resolution than that of xSi. Then, the
centroids cPi of each pixel xPi are identified, adopting their
labels ypi and generating a vector file. Afterwards, a synthetic
GT is generated by placing the vector grid on a vector file. Next,
each cell xci of the grid is assigned an attribute table equipped
with as many features as labels ypi are present on the vector
file. Finally, each cell is assigned with a label ypi by majority
voting. Consequently, a synthetic GT is developed resulting in
an H×W image with the same number of pixels and spatial
resolution as the Sentinel-2 dataset. We emphasize that after
having the synthetic GT generated, it was validated and refined
by visual comparisons with field observations to guarantee the
accuracy of the labels. For illustrative purposes, some synthetic
GT scenes generated for the considered ROIs are shown in Fig. 7.

VI. EXPERIMENTAL RESULTS

The results of the application of the considered ML/DL algo-
rithms to the Sentinel-2 datasets are explained in this section.
The classification maps and statistics obtained after applying
the precision metrics described in the following section are dis-
cussed for the Badajoz and Mérida cases. This section concludes
with a brief discussion on the obtained results.

A. Metrics for Accuracy Assessment

In order to evaluate the efficiency of different techniques, we
assume that the difference between the results and the GT data
are due to classification errors. For this purpose, a confusion
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Fig. 7. Some synthetic GT images generated for each considered ROI.

matrix is computed for each of them. In this matrix, true positives
(TPs), true negatives (TNs), false positives (FPs), and false neg-
atives (FNs) are shown. The real values are in rows, representing
the values in the synthetic GT image. The columns in this matrix
contain the predicted values of each classifier. As this study is
focused on the detection of aquatic weeds, the confusion matrix
is binary (i.e., it indicates whether the invasive plants are detected
or not).

The metrics implemented to evaluate the quality of the consid-
ered algorithm predictions are overall accuracy [see (3)], user’s
accuracy [see (4)], producer’s accuracy [see (5)] (also known
as recall, sensitivity, or TP rate), and F1 score [see (6)]. Their
equations are described as follows:

Overall accuracy =
TP + TN

TP + TN + FP + FN
(3)

User’s accuracy =
TP

TP + FP
(4)

Producer’s accuracy =
TP

TP + FN
(5)

F1 score =
2 ∗ TP

2 ∗ TP + FP + FN
. (6)

B. Visual Interpretation of Results: Badajoz Case

Fig. 8 shows the performance of the classification algorithms
employed in this study for the detection of aquatic weeds in the
Guadiana river (three scenes, one per column, all in Badajoz). In
this figure, the first row depicts the PNOA data. The second row
depicts the Sentinel-2 data. The third row shows the synthetic
GT. The fourth row provides the K-means classification results.
The fifth row reports the RF classification results. Finally, the
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Fig. 8. Classification maps for three representative scenes in ROI_BA (Badajoz).



8578 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

sixth row contains the CNN classification results. We report
results for three representative scenes in ROI_BA. As it is shown,
by comparing the RGB image (the PNOA dataset) and the
synthetic GT with the results of applying the different classifi-
cation algorithms on the MS dataset (Sentinel-2 image), we can
conclude that they can all detect the presence of aquatic weeds.
In the following, we describe the specific results obtained by
each algorithm and shown in Fig. 8.

1) Results of K-Means: K-means is an unsupervised algo-
rithm. It has been tested with different numbers of clusters. Five
clusters were finally chosen, which are in agreement with the
number of classes with which the two supervised algorithms
(i.e., RF and CNN) have been trained. In this case, a single cluster
is not associated with the aquatic weeds class. Specifically, two
clusters represent almost all the aquatic weeds present in the
water. However, these clusters do not distinguish the weeds
from other types of vegetation. Water can be distinguished well,
and part of the soil is also well-differentiated. Another cluster
represents different classes, water, and contours of aquatic weeds
(mixed pixels). In most cases, this cluster represents areas close
to the contours of the masses of aquatic weeds, which are often
water areas, although (rarely) they can also contain some pixels
associated to aquatic weeds.

2) Results of RF: The RF classification maps have been
obtained after a training process with five classes. In the resulting
images, aquatic weeds can be distinguished from other classes
present in the scenes. Soil, water, and other vegetation areas can
be also distinguished. However, some parts of the contour of the
masses of aquatic weeds are classified as other vegetation.

3) Results of CNN: The maps obtained by the CNN are in
close agreement with the GT. It can be visually seen that this
classifier improves the aquatic weeds detection results obtained
by the other algorithms.

To conclude this section, Fig. 9 shows the full classification
maps obtained by the three considered classifiers for the entire
Badajoz scene. It can be seen that supervised classifiers (i.e.,
RF and CNN) provide more consistent results than the K-means
with a better delineation of the river area and the bridges over
the river (belonging to the soil class).

C. Visual Interpretation of Results: Mérida case

Fig. 10 shows the obtained classification results in Mérida
(three scenes, one per column, all in Mérida). In the following,
we describe the results obtained by each classifier in this case.

1) Results of K-Means: After different iterations with differ-
ent numbers of centroids, we finally considered that the K-means
performance with five clusters is the best. With this number
of clusters, the classifications of two clusters needed to be
grouped to reflect the distribution of invasive plants. Moreover,
there are two clusters showing water, which have been grouped
with the same color for visualization purposes. Regarding the
classification with four clusters, invasive plants were detected,
but we could not differentiate them from the vegetation on the
river banks.

2) Results of RF: The performance results of the RF classifier
improved with regards to the K-means algorithm, as it was
already seen in the ROI_BA case study.

3) Results of CNN: The performance results of the CNN clas-
sifier improved with regards to the K-means and RF algorithms,
as it was already seen in the ROI_BA case study. Specifically,
the CNN produced a very good delineation of water bodies and
accurate detection results of aquatic invasive plants.

To conclude this section, Fig. 11 shows the full classification
maps obtained by the three considered classifiers for the entire
Mérida scene. Once again, supervised classifiers (i.e., RF and
CNN) provide more consistent results than the K-means with a
better identification of soil areas.

D. Statistical Analysis of the Classification Results

The obtained confusion matrices are shown in Fig. 12. It can
be seen in these matrices that the accuracy of aquatic weeds
detection increases according to the complexity of the algo-
rithm applied. The lowest accuracy is obtained by the K-means
algorithm. RF and CNN algorithms outperform K-means and
result in similar accuracies, with acceptable FN and FP rates.
It is worth noting that the three considered classifiers achieve
better performance in ROI_ME than in ROI_BA. As it can be
seen in Fig. 9, ROI_BA contains more separate and irregularly
shaped masses of aquatic weeds. This leads to the existence
of mixed pixels (aquatic weeds with water and aquatic weeds
with other vegetation), decreasing the overall classification
accuracies. Nevertheless, as it can be seen in Table III (which
reports the quantitative metrics calculated, such as the F1 score,
overall accuracy, producer’s accuracy, and user’s accuracy), the
obtained results are close to 1, indicating that good accuracies
could be obtained in the ROI_BA case when RF and CNN
classifiers are adopted. Table III also gives that the scores for
ROI_ME are even superior, with both RF and CNN providing
close to optimal results in this case study.

We also compared how accuracies change depending on the
number of samples used for the training process. Table IV gives
the accuracies for different numbers of training samples. We
selected the samples randomly and ran the algorithm ten times,
and then we calculated the mean accuracy between executions.
Fig. 13 shows that there is not a significant impact in the overall
accuracy when reducing the number of samples. This is because
a lot of time was spent in this study to carefully select the most
representative samples through validation supported by the high-
resolution image.

E. Discussion

The two scenarios considered in experiments cover large
irregular areas of the Guadiana river (from one margin of the
river to the other). Our methodology has been shown to be
able to provide accurate classification of invasive plants in large
areas of the river, enabling for a detailed monitoring of all river
sections affected. Specifically, a preprocessing strategy has been
adopted to treat the NoData values present in the pixels outside
the analyzed river contour of the whole rectangular image, as
the datasets do not have a perfectly rectangular shape.

In addition, different ML/DL classification techniques have
been evaluated from clustering algorithms, such as K-means, to
more complex supervised classification algorithms, such as RF
and CNN. The spatiotemporal distribution of aquatic invasive
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Fig. 9. Classification maps in ROI_BA with different classifiers. (a) K-means. (b) RF. (c) CNN.
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Fig. 10. Classification maps for three representative scenes in ROI_ME (Mérida).
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Fig. 11. Classification maps in ROI_ME with different classifiers. (a) K-means. (b) RF. (c) CNN.
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Fig. 12. Confusion matrices. (a) K-means applied to ROI_BA. (b) RF applied to ROI_BA. (c) CNN applied to ROI_BA. (d) K-means applied to ROI_ME.
(e) RF applied to ROI_ME. (f) CNN applied to ROI_ME.

TABLE III
PERFORMANCE METRICS FOR THE BADAJOZ AND MÉRIDA CASES

Fig. 13. Graphical representation of the overall classification accuracy obtained using different numbers of training samples. (a) ROI_BA. (b) ROI_ME.
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TABLE IV
OVERALL CLASSIFICATION ACCURACY OBTAINED USING DIFFERENT

NUMBERS OF TRAINING SAMPLES FOR THE BADAJOZ AND MÉRIDA CASES

plants has been accurately mapped by RF and CNN classifiers
using a limited number of training samples. Our results demon-
strate the success of these approaches in terms of quantitative
accuracy and visual appearance of the obtained results.

Specifically, we have observed that CNNs provide better
classification results and can therefore detect aquatic invasive
plants very accurately. They are followed in decreasing order of
accuracy by RF and K-means. The advantage of using K-means
is the fact that the algorithm is unsupervised, and hence does not
require collecting training samples. On the other hand, K-means
needs to identify the classes detected by the clusters, which may
be difficult in practice.

Another important observation is that better results are ob-
tained when the masses are distributed in the water surface,
forming fewer blankets than in the case in which they are dis-
tributed in separated masses and with irregular contours, which
favors the existence of mixed pixels that decrease the overall
accuracy. In this sense, training supervised classifiers, such as
RF and CNN, can be useful to carry out predictions in other river
datasets. In this study, these classifiers have achieved reasonable
accuracies (between 77% and 90% in terms of overall accuracy)
with a small percentage of training samples (only 2.58% of the
available labeled samples in the Badajoz case and 10.08% of the
available labeled samples in the Mérida case). Thus, considering
the classifier that has obtained the highest accuracy (CNN), the
area occupied by the invasive plants is about 18 ha in ROI_ME
and about 46 ha in ROI_BA.

Moreover, the results obtained show that similar classification
accuracies can be achieved with high-resolution images, such
as PNOA data (which are expensive and costly to process),
than with medium-resolution images, such as Sentinel-2 images
(which are free and require less processing time). The strategy
developed for validation of the results has been possible thanks
to the synthetic GT generated from high-resolution classified
images that required using a window processing strategy (due
to the large amount of RAM memory needed).

To conclude this section, we note that ML/DL algorithms
can also be applied to the PNOA dataset, but the classification
accuracy cannot be calculated because the PNOA image is the
one that we use as our baseline for creating the GT. Sentinel-2
data are easier to work with due to their size (PNOA images are
about 800 times heavier due to their high spatial resolution). This
is why our goal is to detect invasive plants in Sentinel-2 medium
spatial resolution images instead of high resolution expensive

PNOA flights that are used in this work as a starting point for
generating a high-quality GT.

VII. CONCLUSION

In this study, we have developed a full processing chain
for automatic detection of aquatic invasive plants in satellite
images. Specifically, our methodology comprises preprocessing,
processing, and evaluation stages, able to accurately geolocate
invasive vegetation weeds present in the Guadiana river, Spain,
achieving high detection accuracies. In our work, supervised
classifiers performed better than unsupervised ones, not only
because RF and CNN can provide good results with a limited
number of training samples, but also because the unsupervised
algorithm (K-means) ultimately needs a supervised interpre-
tation process (based on analyzing high-resolution images to
combine some of the obtained clusters). The use of one algorithm
or another depends on the requirements of each case study, but
in our context, the CNN classifier was regarded as the best tool
of choice.

Continuous monitoring and control of aquatic invasive plants
require early detection of the growth of existing masses in
the water. To achieve this goal, future work will be oriented
toward the development of methods able to assess the spa-
tiotemporal evolution of aquatic weeds, given that Sentinel-2
captures images with a five-day revisit time, which allows to
conduct change detection studies in that time frame. In addition,
other DL approaches can be considered in future studies. For
instance, the spatial information of the input image may be
considered besides the spectral signature of each pixel by using
a spatial CNN (CNN2D) classifier. A spatial–spectral CNN
(CNN3D) architecture may also be used for even more refined
classification.
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