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Detecting Fine-Grained Airplanes in SAR Images
With Sparse Attention-Guided Pyramid and

Class-Balanced Data Augmentation
Wei Bao , Jingjing Hu , Meiyu Huang , Yao Xu , Nan Ji, and Xueshuang Xiang

Abstract—Airplane detection in synthetic aperture radar (SAR)
images has drawn much attention owing to the success of deep
learning methods. However, the development of fine-grained air-
plane detection in SAR images is still in a dilemma due to the small
interclass variance and the large intraclass variance in complex
scenes with strong interference from the background. In addition,
the class imbalance problem in multiclass fine-grained airplane
recognition also significantly limits the direct application of general
deep-learning-based airplane detectors. This article proposes two
effective methods to tackle the above two problems, respectively.
First, we propose a sparse attention-guided fine-grained pyramid
module to simultaneously sample discriminative local features
scattered in multiscale layers and adaptively aggregate them with
fine-grained attention to better classify subordinate-level airplanes
with multiple scales. Second, a simple class-balanced copy-paste
data augmentation strategy, which randomly copies an airplane
of one category and pastes it onto an image according to the
classwise probability, is proposed for class balance. Finally, exten-
sive experiments on one public dataset and three representative
deep-learning-based detection benchmarks are conducted to show
the effectiveness and generalization of the two proposed meth-
ods. The combination of these two methods based on the cascade
R-CNN benchmark also won the fifth place in fine-grained airplane
detection in SAR images in the 2021 GaoFen Challenge.

Index Terms—Class-balanced copy-paste data augmentation
(CC-DA), fine-grained airplane detection, large intraclass variance,
small interclass variance, sparse attention-guided fine-grained
pyramid.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is an active microwave
remote sensing imaging radar with the capability of working

Manuscript received 9 June 2022; revised 24 July 2022 and 27 August
2022; accepted 9 September 2022. Date of publication 27 September 2022;
date of current version 12 October 2022. This work was supported by the
National Key Research and Development Program of China under Grant
2020YFB1709503 and the Beijing Nova Program of Science and Technology
under Grant Z191100001119129. (Corresponding authors: Jingjing Hu; Meiyu
Huang; Xueshuang Xiang.)

Wei Bao is with the School of Computer Science and Technology, Beijing
Institute of Technology, Beijing 100811, China, and also with the Qian Xuesen
Laboratory of Space Technology, China Academy of Space Technology, Beijing
100094, China (e-mail: baowei@bit.edu.cn).

Jingjing Hu is with the School of Computer Science and Technology, Beijing
Institute of Technology, Beijing 100811, China (e-mail: hujingjing@bit.edu.cn).

Meiyu Huang, Yao Xu, Nan Ji, and Xueshuang Xiang are with the Qian
Xuesen Laboratory of Space Technology, China Academy of Space Technology,
Beijing 100094, China (e-mail: huangmeiyu@qxslab.cn; xuyao@qxslab.cn;
jinan@qxslab.cn; xiangxueshuang@qxslab.cn).

Digital Object Identifier 10.1109/JSTARS.2022.3208928

in all-day and all-weather conditions and has triggered many
SAR image processing tasks, including target recognition [1],
detection [2], and segmentation [3], [4], [5]. As an important
task, airplane detection in SAR images is highly significant
on modern battlefields and military intelligence acquisition.
The traditional SAR airplane detection method [6] leverages
the constant false-alarm rate to distinguish objects from the
background and suffers from tremendous difficulties in accurate
detection due to weak feature extraction capabilities.

Benefiting from the rapid development of deep learning and
the surge of satellite data, remarkable breakthroughs have been
made in deep convolutional neural network (CNN) [7] based
detection methods [8], [9], [10], [11], [12], [13], [14], [15], [16].
Based on these excellent CNN-based detectors, some effective
network structures [17], [18], [19], [20], [21], [22], [23] are
designed to detect airplanes with special structures and complex
imaging mechanism in SAR images. Diao et al. [17] present a
saliency-based target prelocating algorithm to reduce the false
alarms in the region proposal stage. He et al. [18] propose
a component-based multilayer parallel network to detect the
overall aircraft by introducing corresponding component infor-
mation. Zhang et al. [19] propose a cascaded three-look network
that contains three stages: airport detection, aircraft detection
in several airport chips, and airfield runway elimination. Zhao
et al. [20] design a pyramid attention dilated network to enhance
the relationship among discrete back-scattering features of air-
craft. Other methods [21], [22], [23] design various attention
mechanisms to improve detection performance. In addition,
some SAR ship detection methods [24], [25], [26] and target
recognition methods [27], [28] are also proposed to tackle with
the specific imaging mechanism in SAR images.

Despite the success in general object detection above, the
development of fine-grained airplane detection, which aims to
locate and distinguish objects from different subordinate-level
categories within a general category, is still in a dilemma. One
significant challenge of fine-grained airplane detection lies in
the small interclass variance and the large intraclass variance in
complex scenes. As depicted in Fig. 1(a), the small interclass
variance comes from two airplanes of different types with blue
and white rectangles marked. What causes this phenomenon
is the similar scattering mechanism with certain parts of the
surrounding area and only subtle differences between some
local areas of these two airplanes. The large intraclass variance
comes from two airplanes of the same category with the orange

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2578-1574
https://orcid.org/0000-0002-3220-621X
https://orcid.org/0000-0002-7513-1764
https://orcid.org/0000-0003-4982-4142
https://orcid.org/0000-0001-7794-4876
mailto:baowei@bit.edu.cn
mailto:hujingjing@bit.edu.cn
mailto:huangmeiyu@qxslab.cn
mailto:xuyao@qxslab.cn
mailto:jinan@qxslab.cn
mailto:xiangxueshuang@qxslab.cn


BAO et al.: DETECTING FINE-GRAINED AIRPLANES IN SAR IMAGES 8587

Fig. 1. Two serious problems for fine-grained airplane detection in SAR
images. (a) Small interclass variance and the large intraclass variance. (b) the
class imbalance problem in MFAD dataset.

rectangles marked in Fig. 1(a). These two airplanes of the
same class present different scattering power distributions from
the background caused by different orientations, scales, and
appearances. Inspired by successful works [29], [30], [31], [32],
[33], [34], [35], [36], [37] in fine-grained object recognition [38],
several researchers [39], [40] leverage or find more
discriminative information to overcome the small interclass and
the large intraclass variance in fine-grained object detection.
Han et al. [39] propose a concept of upper-level class to mine the
potential interclass relationships among multiple ship categories
hierarchically in optical remote sensing images. This hierar-
chically class annotation information is more discriminative to
distinguish subordinate-level ships but domain-specific. Instead
of performing fine-grained classification tasks separately,
Song et al. [40] design a fine-grained detection head to select
pixel-level features from different scales for each instance and
aggregates them for the finer representation via a dynamic
routing mechanism. However, the fine-grained information in-
teraction only exists in adjacent scales, and simply elementwise
aggregation in a dynamic routing mechanism is less efficient.

In addition to the small interclass and the large intraclass
variance in complex scenes, another challenge for fine-grained
object detection comes from class imbalance, especially the
imbalance between different subcategories. As depicted in
Fig. 1(b), the multiclass fine-grained SAR airplane detection
(MFAD) dataset (the 2021 GaoFen Challenge dataset, and we
will describe it in Section IV-A for more details) presents the
class imbalance problem where 2780 airplanes for category
“other,” while only 124 instances for category “A330” in the train
set. A big performance drop would be observed when directly
adopting detectors designed for a fairly balanced dataset to a
long-tail distribution dataset. Reweighting-based methods [11],

[41], [42] and resampling-based methods [43], [44], [45] are two
main branch of methods to deal with the class imbalance problem
in object detection. Compared to reweighting-based methods,
which are vulnerable to the interference of special background
class with many instances, resampling-based methods are more
suitable for detection tasks. However, the existing image-level
resampling-based methods aim to augment images rather than
instances, while instance-level resampling-based methods di-
rectly resample more proposals and do not increase the instance
diversity, which is less efficient. As for instance augmentation,
copy-paste data augmentation [46], [47], [48] performs well in
the fairly balanced dataset but not designed to address the class
imbalance problem in the fine-grained object detection task.

According to the above analysis, we propose a sparse
attention-guided fine-grained pyramid (SA-FP) module and a
class-balanced copy-paste data augmentation (CC-DA) strategy
to deal with the small interclass variance and the large intraclass
variance and class imbalance in SAR fine-grained airplane detec-
tion, respectively. The overall process is depicted in Fig. 2. Given
the input image, the proposed CC-DA strategy randomly copies
an airplane of one category (“ARJ21” with a blue rectangle
marked) and pastes it onto this image according to the class-
balanced probability derived from the number of airplanes in this
category. If the frequency of instances of one class in the whole
dataset is small, the CC-DA strategy will perform the copy-paste
strategy with higher probability and vice versa. After the CC-DA
strategy alleviates the class imbalance, the proposed SA-FP
module simultaneously samples discriminative pixel-level local
features scattered in multiscale layers and adaptively aggregates
them to better classify different subordinate-level categories
with the small interclass variance and the large intraclass vari-
ance, enhancing the multiscale feature representation as well.
More specifically, in Fig. 2, the SA-FP module contains two
submodules: the multiscale sparse sampling (MSSS) module
and the attention-guided fine-grained fusion (AFF) module. The
MSSS block leverages deformable convolution [49] to simulta-
neously sample several discriminative pixel-level features (six
red squares) through learning the offsets according to the current
reference point (the orange square) in spatial dimensions for all
the feature maps. Then, the AFF block adaptively aggregates
these discriminative local features and the current reference
point with fine-grained attention to form the new pixel (the
yellow square), enhancing the fine-grained representation. Fi-
nally, the SA-FP module and the CC-DA strategy can be easily
combined to improve the performance of fine-grained airplane
detection in SAR images. The main contributions of our work
can be summarized as follows.

1) We analyze and conclude two main challenges in fine-
grained airplane detection in SAR images: the small inter-
class variance and the large intraclass variance in complex
scenes and the class imbalance problem.

2) Considering the small interclass variance and the large in-
traclass variance, we propose the SA-FP module to simul-
taneously sample discriminative pixel-level local features
scattered in multiscale layers and adaptively aggregate
them with fine-grained attention to better classify different
subordinate-level airplanes with multiple scales.
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Fig. 2. Overall process of the fine-grained airplane detector in SAR images. It consists of CC-DA strategy, SA-FP module, and detection head. The CC-DA
strategy randomly copies an airplane of one category and pastes it onto the current image for class balance. Given a reference point (the orange square), the SA-FP
module simultaneously samples discriminative pixel-level local features (six red squares) scattered in multiscale layers and adaptively aggregates them to form
new pixel (the yellow square) to better classify different subordinate-level airplanes with multiple scales.

3) Different from the traditional resampling-based methods
and simple instance-level data augmentation, the CC-DA
strategy is proposed to randomly copy an airplane of one
category and paste it onto an image according to the
classwise probability for class balance.

4) Various experiments are conducted on one fine-grained
airplane detection dataset and three representative CNN-
based detection benchmarks [8], [11], [14] to demon-
strate the effectiveness and generalization of the proposed
methods.

The rest of this article is organized as follows. Section II
introduces some related works, and Section III introduces our
methods in detail. Section IV provides the experimental settings
and results analysis. Finally, Section V concludes this article.

II. RELATED WORK

A. CNN-Based Detectors

Generally, CNN-based detection methods can be divided into
two categories: anchor-based detection methods [8], [9], [10],
[11], [12] and anchor-free detection methods [13], [14], [15],
[16].

1) Anchor-based detection methods predefine a handful of
anchor boxes with different scales and respect ratios as
common references to search possible regions contain-
ing the object of interest. Faster R-CNN [8], Cascade
R-CNN [9], and Libra R-CNN [10] preliminarily extract
class-agnostic region proposals of the potential objects
with negative locations filtered out and then further refine
these proposals and classify them into different categories
in a two-stage manner. RetinaNet [11] and YOLOv3 [12]
omit the region proposal generation process and directly
classify and regresses different objects in a one-stage
manner.

2) Considering that the predefined anchors are domain-
specific and highly sophisticated for detection heads,
anchor-free detection methods, such as RepPoints [13]
and FCOS [14], design considerably simpler detectors to

eliminate the predefined anchor boxes and reduce the num-
ber of design parameters. More specifically, DETR [15]
and Deformable DETR [16] leverage the transformer
mechanism to avoid the design of predefined anchor boxes
by formulating object detection as a direct set prediction
task.

B. Fine-Grained Object Recognition

Recent works for fine-grained object recognition [38] attempt
to leverage or find more discriminative information to distin-
guish different subordinate-level categories and can be classified
into three classes: feature-encoding methods, localization-based
methods, and attention-based methods.

1) Feature-encoding methods [29], [30], [31] aim to learn
more discriminative representation for modeling subtle
differences by performing high-order feature interactions.

2) Localization-based methods [32], [33], [34] rely on addi-
tional annotation information to locate the subtle parts and
then perform feature extraction and classification.

3) Attention-based methods [35], [36], [37] attempt to find
the discriminative region in images by exploiting the
powerful properties of attention, releasing the reliance on
manual annotation.

C. Class-Balanced Object Detection

The class imbalance problem in object detection can be solved
from two perspectives: 1) reweighting training examples to
balance optimization direction in loss level [11], [41], [42] and
2) resampling training examples to balance the distribution in
data level [43], [44], [45]. Reweighting-based methods elabo-
rately design balanced loss to dynamically rebalance gradients
of imbalanced classes. Resampling-based methods can be per-
formed at the image and instance levels. RFS [43] proposes
an image-level repeat factor sampling strategy to oversample
the images that contain the category with small instances. Sim-
Cal [44] and Forest R-CNN [45] focus on the instance-level
sampler to balance the classes by selecting more proposals for
tailed classes.
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D. Multiscale Representation

A feature pyramid network (FPN) [50] has been proven to
alleviate the scale variance in object representation by com-
bining low-resolution semantic strongly features at the high
level with high-resolution semantic weakly features at the low
level. PANet [51] further enhances the entire feature hierarchy
with bottom-up path augmentation. Aug-FPN [52] narrows the
semantic gaps between features of different scales before feature
fusion through consistent supervision. Considering the semantic
information diluted in nonadjacent levels, BFP [10] integrates
and refines the multilevel features to enhance the semantic hier-
archy at the same time. Dyhead [53] presents a novel dynamic
head framework to enhance scale awareness between feature
levels. Deformable DETR [16] upgrades DETR [15] with a
multiscale representation module to mitigate the limited feature
spatial resolution.

E. Attention Mechanism

SEnet [54] adaptively recalibrates channelwise feature re-
sponses by explicitly modeling interdependencies between
channels. CBAM [55] sequentially extracts cross-channel and
spatial information by inferring attention maps along the channel
and spatial dimensions for adaptive feature refinement, respec-
tively. GCnet [56] forms a global context feature by aggregating
the features of all the positions together, followed by channel-
wise interdependencies modeling. Transformer [57] captures
long-range global context by directly computing each query
position response as the weighted aggregation of the features
at all the positions regardless of their distance.

III. METHODOLOGY

In this section, we first introduce three CNN-based object
detection benchmarks: Faster R-CNN [8], RetinaNet [11], and
FCOS [14]. Next, the SA-FP structure, including the MSSS and
the AFF module, is described in detail. Finally, we will introduce
how the CC-DA strategy solves the class imbalance problem.

A. CNN-Based Object Detection Methods

We select three representative methods: Faster R-CNN [8],
RetinaNet [11], and FCOS [14], as the baselines in our work.
Here, we only introduce the critical architecture of these three
detection benchmarks, and we refer to their original paper [8],
[11], [14] to see a more detailed introduction. It is noted that
our proposed SA-FP module and CC-DA strategy can be easily
applied to other state-of-the-art SAR airplane detectors to boost
the performance of fine-grained recognition.

Faster R-CNN [8], on behalf of the two-stage anchor-based
object detection methods, consists of three modules: feature em-
bedding network extracting high-level features from the original
images, region proposal network (RPN) preliminarily generat-
ing the object proposals and prediction network performing the
final classification and regression task. We initially set three
anchor boxes with one scale of size 8 and three aspect ratios of
size {0.5, 1, 2.0} at each spatial location of each feature map.
After RPN generating proposals, we adopt the RoIAlign [58] op-
eration to fix the misalignment of feature maps caused by coarse

spatial quantization. Furthermore, we select the cross-entropy
and smooth L1 loss function to optimize the classification and
regression task, respectively.

RetinaNet [11], the representative one-stage anchor-based ob-
ject detector, eliminates the dense-to-sparse stage in the RPN and
leverages a novel focal loss to resolve the extreme foreground–
background class imbalance in a directly dense prediction man-
ner. It is noted that the focal loss is not suitable to solve the
foreground–foreground class imbalance in fine-grained object
detection. Similar to the parameters settings in Faster R-CNN,
we also set three anchor boxes with one scale and three aspect
ratios at each spatial location. The parameters of focal loss are
set as α = 0.5 and γ = 2.

FCOS [14], the representative anchor-free object detector,
explores fully convolutional networks to directly regress the
distances from the location falling into the bounding box to
the four sides in a per-pixel prediction manner and eliminates
the design of domain-specific anchor boxes. Moreover, FCOS
adds an additional “centerness” classification branch to suppress
low-quality detected bounding boxes produced by locations far
away from the center of an object.

B. Sparse Attention-Guided Fine-Grained Pyramid

The FPN is one of the most classic architectures in object
detection and has been proven to alleviate the scale variance
in object representation. However, the FPN ignores the fine-
grained local features scattered in multilevel features and only
performs elementwise addition to combine low-resolution se-
mantic strongly features with high-resolution semantic weakly
features. The proposed SA-FP method can well find and leverage
these discriminative pixel-level local features for fine-grained
representation. The same idea that conditionally selects a pixel-
level combination of local features from different scales also
occurs in [40]. However, the fine-grained feature was only se-
lected from adjacent scales via spatial gate. Instead, our proposed
MSSS module can simultaneously sample fine-grained local
features across all the feature levels. Moreover, the proposed
AFF module can aggregate discriminative features with dynamic
fine-grained attention scores for different feature vectors other
than simple elementwise accumulation in [40]. The proposed
SA-FP method can also generate appropriate pyramidal repre-
sentation, which is crucial to multiscale airplane detection. The
idea that refines FPN features is also similar to those in [10], [16],
[26], and [59]. The most related work Deformable DETR [16]
proposes a multiscale deformable attention module to mitigate
issues of slow convergence and limited feature spatial resolution
in DETR [15]. However, the SA-FP method leverages MSSS
to capture pixel-level local features and elaborately designs
fine-grained dynamic attention instead of the inner products or
a separated convolution layer in Deformable DETR [16]. Next,
we will introduce the MSSS module and the AFF module in
detail.

1) MSSS Module: It is difficult to directly extract effective
fine-grained local features from the whole images due to com-
plex spatial feature relationships and fixed receptive fields in
standard convolution. Inspired by DCN [49] and Deformable
DETR [16], the MSSS module is proposed to enable the network
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Fig. 3. Structure of the MSSS module.

to collect a small set of highly correlated pixel-level features by
a separated convolution layer according to the current reference
pixel, as depicted in Fig. 3. Specifically, the convolution layer
takes in the reference pixel and outputs the offsets of pixels to be
sampled in the x and y directions. Then, the fine-grained local
features can be sampled in the multilevel features based on these
offsets. It is noted that the MSSS module needs to traverse all
the reference pixels on the feature map, and only one point is
shown in Fig. 3 for convenience.

Take RetinaNet as an example; the backbone is divided into
five stages according to the size of the feature maps in different
layers. Based on the last three stages of the backbone, the
FPN produces five-layer feature maps, which can be defined
as {P3, P4, P5, P6, P7}. More specifically, the feature map at
pyramid level l is denoted as Pl ∈ R(W/sl)×(H/sl)×C with
l = 3, 4, 5, 6, 7, where W ×H is the size of the input image
and C is the channel dimension; sl = 2l is the corresponding
downsampling ratio to the input image.

The SA-FP module refines each pixel in pyramidal level j
for finer representation. Suppose that the reference pixel pj with
location (x, y) has content feature pj(x, y) ∈ R1×1×C in input
feature map Pj . As depicted in Fig. 3, the MSSS module first
samples KL sparse pixels for all the pyramid levels according
to pj(x, y), where K enumerates all the sampled pixels in each
pyramid level and L is the number of pyramid levels. Assume
that qklj (x, y) represents pixels to be sampled. The input-specific
offsets (Δxkl,Δykl) between pj(x, y) and qklj (x, y) can be
learned via a separate 1× 1× C convolution layer with 2KL
output channels applied over pj(x, y). It is worth noting that the
learned convolution kernels can be updated simultaneously with
the whole detection network.K � H ×W enables the network
to focus on several discriminative pixel-level local features.
The formula for obtaining sampled pixels qklj (x, y) from the
reference point in location (x, y) can be written as follows:

qklj (x, y) = pl
(
x†, y†

)
= pl

(
φl
j(x) + Δxkl, φl

j(y) + Δykl
)

(1)

where φl
j(·) is the level mapping function that rescales the

coordinates of pj(x, y) to the feature map in the lth level. For the
clarity of scale formulation, we use normalized coordinates, in
which the normalized coordinates pl(0, 0) and pl(1, 1) indicate
the top-left and the bottom-right feature map corners, respec-
tively. Moreover, the sampling offset (Δxkl,Δykl) is typically
fractional; the value pklj (x, y) remains to be determined. Bilinear

Fig. 4. Structure of the AFF module.

interpolation is implemented to determine the missed fractional
value

qklj (x, y) =
∑

(x∗,y∗)∈τ
B
(
(x∗, y∗) ,

(
x†, y†

))
pl (x

∗, y∗)

=
∑

(x∗,y∗)∈τ
max

(
0, 1− ∣∣x∗ − x†∣∣)

max
(
0, 1− ∣∣y∗ − y†

∣∣) pl (x∗, y∗) (2)

where (x∗, y∗) represents an arbitrary position and τ enumerates
all integer spatial locations near (x†, y†). B is the bilinear
interpolation kernel and is separated into two 1-D kernel in the x
and y directions. Then, KL sparsely sampled pixels will be con-
catenated to generate the corresponding sampled feature vector.
Next, we will introduce the AFF module to fuse these pixel-level
local features to improve the fine-grained representation.

2) Attention-Based Fine-Grained Fusion Module: The AFF
module aims to aggregate the sampled local features to achieve
fine-grained representation. The general approach to directly
sum or average the sample pixels is simple but less efficient.
To adaptively aggregate contexts and retain more semantic
information, we propose to leverage the attention mechanism
to enhance the fusion performance. As shown in Fig. 4, the
procedure contains sequentially the adaptive spatial attention G
and adaptive channel attention S to involve both spatial struc-
tures and channel semantics under the guidance of the reference
point. Here, we use M = KL, q, and p to represent the number
of sampled pixels, sampled pixels qklj (x, y), and the reference
point pj(x, y) for convenience, respectively. Supposing that p∗

is the final fused feature value, the formula of the AFF module
can be defined as follows:

p∗ = AFF (p,q) = G (p,q) + S (p,q) . (3)

As for the adaptive spatial attention G, we leverage one
separated linear layer Wg ∈ C ×M followed by a softmax
operation to directly generate the spatial attention weights for
q based on p. Different from general spatial attention in [56],
the sampled pixels here are selected according to the reference
pixel via a separated convolution layer in the MSSS module (see
Fig. 3 for more details), which illustrates thatq andp are already
related to each other. Thus, the generated attention weights from
p can well involve spatial structures on q. The corresponding
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formula can be defined as follows:

G (p,q) =
e(pWg)m∑M

m=1 e
(pWg)m

q. (4)

Consequently, the sampled local features can be reweighted in
spatial dimension.

As for the adaptive channel attention S, we adopt two con-
secutive linear layers (Ws1 and Ws2) after the adaptive spatial
attention to adaptively recalibrate channelwise feature responses
by explicitly modeling interdependencies between channels.
Different from the channel attention directly recalibrating the
whole feature maps with a fixed response in [54], the proposed
AFF module recalibrates different sparsely sampled feature
vectors with dynamic responses for different reference pixels.
This dynamic channel attention enables the AFF module to
extract more fine-grained semantic information for local fea-
tures scattered in multiscale feature maps, which is constructive
for improving the ability of fine-grained airplane recognition.
The dynamic mechanism shares similar insights with the fine-
grained attention mechanism for neural machine translation
in [60]. Specifically, the corresponding formula can be defined
as follows:

S (p,q) = δ (G (p,q)) · q
= Ws2 ReLU (Ws1 (G (p,q))) · q

= Ws2 ReLU

(
Ws1

(
e(pWg)m∑M

m=1 e
(pWg)m

q

))
· q

(5)

where δ(·) = Ws2 ReLU(Ws1(·)) denotes the bottleneck trans-
form used in [54]. a · b means the elementwise multiplication
operation between a and b. Both Ws1 ∈ C × C/r and Ws2 ∈
C/r × C are linear layers to capture the channel dependence.
The factor r is set as 4 in all the experiments by default.
Consequently, the sampled local features can be reweighted in
channel dimension.

After the AFF module, the SAR airplane detector can
well extract fine-grained information to distinguish different
subordinate-level categories. Moreover, we also adopt the mul-
tihead attention module in [16] to more adaptively aggregate
fine-grained features from different representation subspaces.
The formula of multihead attention operation can be defined as
follows:

MultiHead(AFF(p,q)) = Concat (head1, . . . ,headH)Wh2

headi = AFF(p,qW i
h1) (6)

where Concat represents the concatenate operation, i indexes
the attention head, and H is the number of heads (we use H = 8
by default). W i

h1 ∈ C × C/H and Wh2 ∈ C × C are linear
layers.

C. Class-Balanced Data Augmentation

The foreground–foreground class imbalance problem usually
exists in fine-grained object detection, such as MFAD dataset,
as depicted in Fig. 1(b). Resampling-based methods are more
suitable for detection tasks than reweighting-based methods.

Algorithm 1: The Training Process of the CC-DA Strategy.
I is the Number of Categories.
Input: the training dataset and its annotations.
Output: the class-balanced training process for fine-grained

detection.
1: Initialize the set Fi to record the number of instances

in each category i and the set Ei to record the airplane
slice in each category i;

2: for each image in the training dataset do
3: for each airplane in the current image do
4: inquire the class index cls and bounding box bbox;
5: copy the current airplane slice e from the current

image according to the bbox;
6: Ecls = Ecls ∪ e;
7: Fcls = Fcls + 1;
8: end for
9: end for

10: compute the probability probi for each category
according to (7);

11: start training;
12: for each image in the training dataset do
13: for i in 1, 2, . . . , I do
14: random select a copied airplane slice e from Ei

according to probi;
15: random paste e onto the current image and obtain

the new location bboxnew;
16: add the class index i and the new location bboxnew

into the current annotation;
17: end for
18: perform forward and backward operation;
19: end for

LVIS [43] proposes a repeat factor sampling strategy that in-
creases the rate of tailed categories being observed by over-
sampling the images containing them. However, when an image
containing tailed categories appears multiple times, the head
class on this image can also appear multiple times. Moreover,
the image-level sampling strategy will also significantly increase
training time. The basic idea behind the proposed CC-DA strat-
egy is to oversample the limited instances for small-sample
classes at the instance level instead of the image level. More
specifically, for the category i, the proposed CC-DA strategy
randomly copies an airplane from the whole airplanes of the
category i and pastes it onto an image with probability probi:

probi = e−
fi
t (7)

where fi denotes the frequency of airplane of category i in
the whole training dataset and t is the hyperparameter to ad-
just probi. If the number of airplanes of category i is small,
the probability of random copy-paste operation is larger. As a
result, the number of airplanes in different categories can be
balanced. The pseudocode of the CC-DA strategy is provided
in Algorithm 1. The proposed copy-paste data augmentation
strategy is similar to that in [46], [47], and [48], which has
been demonstrated to provide solid gains on a fairly balanced
detection dataset. However, these methods are not dedicated to
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Fig. 5. Distribution of instances number and size for different classes in the
MFAD dataset. (a) Number of instances for the train set. (b) Number of instances
for the test set.

the long-tail distribution dataset and are unsuitable for solving
class imbalance problems in the multiclass fine-grained object
detection task.

IV. EXPERIMENTS

All the experiments are implemented in the PyTorch 1.7.0
framework and carried out over an NVIDIA 3070 GPU. The
PC operating system is 64-bit Ubuntu 20.04. We conduct exper-
iments on the MFAD dataset and three detection benchmarks [8],
[11], [14] to demonstrate the effectiveness and generalization of
the proposed methods. In addition, we use RetinaNet to perform
the ablation study.

A. Datasets

The “Fine-Grained Airplane Recognition in High-Resolution
SAR Images” track of “2021 GaoFen Challenge on auto-
mated high-resolution earth observation image interpretation”
announces the world’s first MFAD for convenience. The MFAD
contains 2000 high-resolution multiscale images collected from
the GF-3 satellite. There are 1102 images with 600× 600 pixels,
555 images with 1024× 1024 pixels, and 343 images with
2048× 2048 pixels. The MFAD consists of six categories:
A220, A330, A320/A321, Boeing737-800, Boeing787, and
ARJ21. We randomly select 1000 images as training data, and
the remaining 1000 images are used for testing data. Each image
of the training and testing dataset is cropped into 512× 512
pixels with an overlap of 256 pixels, except that images with
600× 600 pixels are directly resized into 512× 512 pixels.
Finally, the new version of MFAD (we use MFAD to indicate
the new version later) contains 3352 training images and 3352
testing images with 512× 512 pixels. Fig. 5(a) and (b) shows the
distribution of instances number and size for different classes in
the train and test dataset, respectively. We divide these instances
into three different sizes: small size (area < 32× 32), middle
size (32× 32 < area < 64× 64), and large size (64× 64 <
area). It can be seen that the class imbalance and the multiscale
instances are two major problems in the MFAD dataset.

B. Parameter Settings

The overall experiments are performed based on MMDe-
tection (https://github.com/open-mmlab/mm-detection). For all
three detectors, we use the pretrained ResNet-50 [61] on the
ImageNet [62] to initialize the backbone network. All the base-
lines are trained with stochastic gradient descent for 24 epochs
(usually called 2× schedule) with eight images per minibatch.
The initial learning rate is set as 0.005 and then divided by
10 at the 16th and 22nd epochs. We use the weight decay of
0.0001 and the momentum of 0.9. Other parameters are set as the
same as that in MMDetection. The intersection over union (IoU)
threshold is set as 0.5 when training and testing for rigorous
filtering of the bounding boxes with low precision. Warm-up [61]
is introduced during the initial training stage to avoid gradient
explosion, and the corresponding number of epochs is set as 2.
As for the SA-FP module, the number of FPN levels for sparse
sampling is set as L = 5, and the number of sampling points in
every level is set as K = 6. We use the same settings for all the
experiments for a fair comparison.

C. Evaluation Metrics

The mean average precision metrics mAPiou under different
IoU thresholds are employed to evaluate the performance of fine-
grained SAR airplane detectors. mAPiou is the mean of APc

iou for
different classes

mAPiou =
1

C

C∑
c=1

APc
iou (8)

where C is the number of categories and iou indicating different
IoU thresholds. The average precision APiou is the area under
the curve of precision–recall and usually be calculated as follows
for convenience:

APiou =
1

101

∑
r∈S

Precisioniou |Recalliou=r (9)

where S = {0, 0.01, . . ., 1} representing a set of equally spaced
recall rates, and we use APiou to denote APc

iou for convenience.
The Precisioniou and Recalliou represent the precision rate and
recall rate under different iou, respectively. For a given iou, they
can be defined as

Precision =
NTP

NTP +NFP
(10)

Recall =
NTP

NTP +NFN
(11)

where TP is true positive, FP is false positive, TN is true
negative, and FN is false negative. NTP, NFP, and NFN is the
number of TP, FP, and FN, respectively. More specifically,
TP indicates the correctly detected airplanes, FP represents the
false alarms, and FN denotes the missing airplanes. A predicted
bounding box is considered a true positive if its IoU with the
ground truth is higher than iou. Otherwise, it is regarded as a
false positive. Moreover, the predicted bounding box with the
highest confidence score is seen as the true positive, if the IoUs
of several ones with the ground truth are all higher than the
threshold. mAPiou is a comprehensive evaluation metric for the
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TABLE I
OVERALL PERFORMANCE OF DETECTORS WITH DIFFERENT COMPONENTS ON THE MFAD DATASET BASED ON FASTER R-CNN [8], RETINANET [11], AND

FCOS [14] BENCHMARKS

quantitative performance of different models by simultaneously
considering the precision rate and the recall rate. AP0.5 denotes
APi with the IoU threshold being 0.5. To evaluate the localiza-
tion performance more accurately, we adoptAP0.5,AP0.75, and
AP metrics. AP indicates the averaged APiou where iou is set
from 0.50 to 0.95 with the step size set as 0.05, which can be
defined as

AP =
1

10

∑
iou∈I

APiou (12)

where I = {0.5, 0.55, . . ., 0.95} representing a set of equally
spaced IoU threshold.

D. Results Analysis

1) Overall Performance: Table I reports the detection perfor-
mance of SAR fine-grained airplane detectors adopting the pro-
posed SA-FP module and the CC-DA strategy based on different
benchmarks. We use SA-det and CC-det to represent the baseline
with only the SA-FP module and the CC-DA strategy applied,
respectively. Similarly, the SA-CC-det denotes the baseline
adopting both the SA-FP module and the CC-DA strategy. It can
be seen that the SA-det can improve the detection performance
under different mAP metrics with slightly increased model
parameters, FLOPs, and running time per image. Specifically,
the SA-det achieves 3.18% higher mAP0.5 than the baseline
based on RetinaNet [11] benchmark. Furthermore, when the IoU
threshold becomes larger, which indicates that the requirement
of localization accuracy gets higher, mAP0.75 and mAP gain
similar improvement of 3.02% and 3.35%, respectively. The
quantitative detection performance increase demonstrates that
the SA-det can conditionally select discriminative local fea-
tures in similar scattering intensities and effectively fuse the
fine-grained feature for fine representation. As for the CC-det

based on RetinaNet, 1.58%, 2.33%, and 2.25% performance
improvement can be achieved in terms of mAP0.5, mAP0.75,
and mAP metrics, respectively. More importantly, because the
CC-DA is a data augmentation method, it is purely cost-free
and does not increase model parameters. All these improved
performances prove that the CC-DA strategy is very constructive
for class balance in fine-grained airplane detection. Finally,
the SA-CC-det based on RetinaNet can further enhance the
detection results and bring 3.41%, 4.54%, and 4.136% gains over
the baseline under the metric of mAP0.5, mAP0.75, and mAP,
respectively. Similar improvements in the other two benchmarks
also demonstrate the effectiveness and generalization capability
of the proposed SA-FP module and CC-DA strategy. In addition
to quantitative comparisons, we also visualize some detection
results in Fig. 6 to show an intuitive understanding of our
proposed methods. We can see that the baseline misses several
airplanes and generates a few false alarms due to the influence of
the background with similar scattering intensity. Moreover, the
misclassification of fine-grained airplanes occurs in the scene of
the second column for baseline because of the small interclass
variance. In contrast, the proposed SA-CC-det performs better
on fine-grained airplane detection in complex scenes. The SA-
CC-det can accurately locate and classify different fine-grained
airplanes and significantly increase the confidence score of the
correctly detected target. Next, we will analyze the multiclass
fine-grained airplane detection performance in more detail.

2) Performance for Each Category: To more clearly illus-
trate the performance improvement that the two proposed meth-
ods bring for multiclass fine-grained aircraft detection, we show
the detection results of each category in terms of AP metric
based on the RetinaNet [11] benchmark in Table II. We count
the number and percentage of airplanes in each category and then
arrange the classes in descending order for easy comparison. It
can be observed that the SA-det can improve the detection results
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Fig. 6. Comparison results of baseline and the SA-CC-det on the MFAD dataset based on RetinaNet [11]. The yellow and orange circles represent the missing
airplanes and false alarms, respectively. The red circles denote the misclassified airplanes, which means not only missing airplanes and also false alarms. The
confidence score is shown in the blue rectangles. (a) Ground truth. (b) Results of baseline. (c) Results of SA-CC-det.

TABLE II
PERFORMANCE UNDER AP METRIC OF DETECTORS WITH DIFFERENT

COMPONENTS ON THE MFAD DATASET BASED ON THE RETINANET [11]
BENCHMARK FOR EACH CATEGORY

by a large margin ranging from 2.27% to 4.74% for all the cate-
gories, which demonstrates that the SA-FP module helps detect
airplanes of a different class. As for the CC-det, the improvement
becomes larger for small-sample classes, such as “A330” with
9.33% gains, while it becomes smaller for large-sample classes,
such as “other” with only 0.36% improvements. We conjec-
ture that this phenomenon is due to the different copy-paste
probabilities for each category in the CC-DA strategy. It
also illustrates that the CC-DA strategy can relieve the class-
imbalanced problem in fine-grained airplane detection. When
adopting the two proposed methods, the SA-CC-det achieves
the highest performance for all the categories, except for “other”
and “A220,” where performance drops slightly. This interesting
phenomenon further illustrates that the SA-CC-det gives dy-
namic attention to different categories and little sacrifices the
performance for the category with more instances to achieve
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Fig. 7. P–R curves under AP0.5 metric for different categories based on RetinaNet [11]. (a) P–R curve for category “other.” (b) P–R curve for category “A330.”

TABLE III
PRECISION AND RECALL RATE OF DETECTORS BASED ON THE RETINANET [11]

BENCHMARK FOR EACH CATEGORY

the whole performance improvement, leading to the significant
increase in mAP metric. We also report each category’s precision
and recall rate under specific confidence and IoU threshold in
Table III. Our methods can still achieve excellent performance
improvement when the detector is used for a fixed scenario where
the confidence and IoU threshold are both set as 0.5. We can also
observe that the SA-CC-det does not consistently achieve the
best precision and recall rate under specific confidence and IoU
threshold. We conjecture that it is due to the hyperparameters
in this experiment being obtained by monitoring the overall
performance instead of the special performance. In addition
to quantitative comparisons, we also plot P–R curves under
AP0.5 metric in Fig. 7 to intuitively show the improvement
of the proposed methods for different categories. We select
the category “other” and “A330” with the highest and lowest
numbers of instances, respectively. In Fig. 7(a), the orange curve
corresponding to the CC-det is always above the red curve
corresponding to the baseline. However, the green curve corr-
esponding to the SA-CC-det is almost identical to the blue curve
corresponding to the SA-det. In contrast, the orange and green
curves are consistently above the red and blue curves with a
large margin in Fig. 7(b), respectively. This phenomenon also

TABLE IV
ABLATION STUDY FOR THE SA-FP MODULE

illustrates that the proposed SA-FP module is always construc-
tive for fine-grained detection. The proposed CC-DA method is
a strategy of maintaining or even sacrificing the performance
for the category with more instances to improve the detection
accuracy for the category with few instances.

3) Ablation Study for the SA-FP Module: We conducted a
series of ablation studies for the SA-FP module to analyze the in-
fluence of each designed component in Table IV. Generally, the
proposed SA-FP module consists of the MSSS submodule and
the AFF submodule. Furthermore, the MSSS module includes
sparse sampling in each level (denoted as “SS”) and regular
sampling in multiple levels (denoted as “MS”). In contrast,
the AFF module includes adaptive spatial attention (denoted
as “ASA”) and adaptive channel attention (denoted as “ACA”).
As for the baseline without the AFF module, we directly sum
up all sampled pixels. It can be seen that the detection per-
formance increases gradually with the parameters and FLOPs
increasing slightly as each component is added to the baseline.
This phenomenon illustrates the effectiveness of each proposed
component from the SA-FP module. More specifically, the
MSSS module leads to 1.4% higher mAP0.5 than the baseline,
which illustrates that the MSSS module can find fine-grained
local regions from multilevel features. Finally, when adopting
the MSSS module and the AFF module simultaneously, the
SA-CC-det achieves 2.18%, 3.02%, and 3.32% improvement
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TABLE V
IMPACT OF HYPERPARAMETERS IN THE CC-DA STRATEGY

TABLE VI
ABLATION STUDY FOR THE CC-DA STRATEGY

under mAP0.5, mAP0.75, and mAP metrics, respectively. This
phenomenon demonstrates the dynamic spatial and channel at-
tention in the AFF module, which greatly improves fine-grained
representations.

4) Hyperparameters in the SA-FP Module: We conduct a
series of experiments to verify the influence of the hyperparam-
eters in the SA-FP module: the number of sampling points K in
each feature level. As depicted in Table V, as K becomes larger,
the detection performance in terms of APs metrics gradually
increases. However, the parameters and FLOPs increase slightly,
and the inference speed becomes slower. More importantly,
when K grows up to 8, the detection performance of mAP0.75

drops, and that of mAP hardly changes anymore. We conjecture
that this is due to the fine-grained representation no longer
benefiting from the sampled local features, and the arbitrary
collection of useless features does not improve the model much
or even damage the feature representation. Hence, we adopt
K = 6 in all the experiments to achieve the tradeoff between
the speed and accuracy of the proposed method.

5) Ablation Study for the CC-DA Strategy: We conduct a se-
ries of ablation studies for the CC-DA strategy to verify whether
the proposed CC-DA strategy is more efficient in dealing with
the class imbalance problem than the general copy-paste data
augmentation in Table VI. As a commonly used data augmenta-
tion method, the copy-paste strategy without class balance can
improve detection performance. However, the improvement is
relatively small, with only 0.12% gains in terms of mAP espe-
cially. After adopting the classwise probabilistic augmentation,
the detector achieves 1.58%, 2.33%, and 2.25% gains under
the metric of mAP0.5, mAP0.75, and mAP than the baseline,
respectively. This improvement illustrates the effectiveness and
superiority of class-balanced ideas behind the CC-DA strategy.
We also adopt random flip and scale jitters used in [48] to verify
the diversity of instance augmentation. It can be seen that the

TABLE VII
IMPACT OF HYPERPARAMETERS IN THE CC-DA STRATEGY

TABLE VIII
COMPARISON WITH SIMILAR METHODS FOR THE SA-FP MODULE BASED ON

THE RETINANET [11] BENCHMARK

random flip can only improve performance under mAP0.75 met-
ric, while it is slightly harmful to the performance under mAP0.5

and mAP. After adopting the scale jitters, the performance under
all the metrics further drops. We conjecture that it is mainly
because these two enhancements are not suitable for airplane
detection in SAR images with different imaging characteristics
from natural images. Based on the above observation, we adopt
the CC-DA strategy without any instance augmentation in all
our experiments.

6) Hyperparameters in the CC-DA Strategy: Adjusting fac-
tor t is a significant hyperparameter in (7) to determine the final
detection performance of CC-det. The higher the value of t,
the higher the probability of copy-paste data augmentation for
each category. We experimentally evaluate its impact based on
the RetinaNet [11] benchmark with all the settings remaining
identical except for the value of t and compare it with the
baseline. We first adopt the grid search method where t is varied
according to exponential decay to roughly search the range, then
vary twith a step size of 0.025, and finally show detection results
in Table VII. It is observed that the CC-det surpasses baseline
with no class-balanced data augmentation within a large range of
t, presenting high robustness. When t turns to 0.05, the CC-det
achieves the highest results in different degrees.

7) Comparison With Other Similar Methods: We conduct
comparison with other feature pyramid methods based on
the RetinaNet [11] benchmark in Table VIII and other class-
balanced methods based on the Faster R-CNN [8] benchmark
in Table IX. For the SA-FP method, we compare it to some
state-of-the-art FPN-style methods including more advanced
architectures: PANet [51], AugFPN [52], and FPN with attention
mechanisms for refining features: BFP [10] and Dyhead [53]. It
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TABLE IX
COMPARISON WITH SIMILAR METHODS FOR THE CC-DA STRATEGY BASED ON

THE FASTER R-CNN [8] BENCHMARK

Fig. 8. Ranking of competition results for the “Fine-Grained Airplane Recog-
nition in High-Resolution SAR Images” track in 2021 GaoFen challenge.

can be seen from Table VIII that our SA-det outperforms other
methods by a large margin with only a slight increase in terms of
parameters and FLOPs. Our method is elaborately designed to
overcome the small interclass and the large intraclass variance
which other methods do not focus on. As for the CC-DA strategy,
we compare it to other class-balanced methods including Seesaw
loss [41], RFS [43], Forest R-CNN [45], and Instaboost [47]. It
can also be observed that our CC-det achieves the best perfor-
mance under all the metrics. All these better performances can
well demonstrate the superiority of the proposed two methods.

8) Comparison With Other Methods in the GaoFen Chal-
lenge: The 2021 GaoFen challenge provides the first related
dataset in fine-grained airplane detection in SAR images. We
compare the proposed SA-CC-det with other state-of-the-art
methods in the “Fine-Grained Airplane Recognition in High-
Resolution SAR Images” track. Fig. 8 shows the final detection
performance and the ranking of our team, termed “TED&DET,”
in the preliminary stage of this competition (http://gaofen-
challenge.com/indexpage). Specifically, we adopt the proposed
SA-FP and CC-DA method based on the Cascade RCNN [9]
benchmark. In addition, we also adopt some commonly used
tricks including mosaic [63], mix-up data augmentation [64],
stochastic weight averaging [65], weighted box fusion [66],
test-time augmentation, and so on. Finally, we achieved 67.28
scores and 1909 s in terms of mAP0.5 and inference speed in
the validation dataset, respectively, and won the fifth place in
the 2021 GaoFen Challenge. The ranking score in Fig. 8 can

further verify the effectiveness and superiority of the proposed
two methods.

V. CONCLUSION

This article analyzes two main challenges in fine-grained
airplane detection in SAR images: the small interclass vari-
ance and the large intraclass variance in complex scenes and
the class imbalance problem. Correspondingly, we propose the
SA-FP module and the CC-DA strategy to deal with the above
two issues. Specifically, the proposed SA-FP module can si-
multaneously sample discriminative pixel-level local features
scattered in multiscale layers and adaptively aggregate them
with fine-grained attention to better classify subordinate-level
airplanes with multiple scales, while the proposed CC-DA strat-
egy randomly copies an aircraft of one category and pastes it
onto an image according to the class-balanced probability for
class balance in the instance level. Various experiments are
conducted to demonstrate the effectiveness and superiority of
these two proposed methods. We hope our method can serve
as a strong baseline for future research in SAR fine-grained air-
plane detection. However, our proposed methods also have some
limitations. Although SA-FP methods can find and leverage the
discriminative pixel-level local features, the local features are
only generated from the individual reference point without any
explicit location information, which may be suboptimal. The
CC-DA strategy directly pastes sampled instances onto an image
randomly without considering the background interference and
characteristics of SAR imaging. Therefore, we will consider
how to effectively select more discriminative local features and
generate more reasonable and higher quality SAR images in the
future.

REFERENCES

[1] F. Sharifzadeh, G. Akbarizadeh, and Y. S. Kavian, “Ship classification in
SAR images using a new hybrid CNN–MLP classifier,” J. Indian Soc.
Remote Sens., vol. 47, no. 4, pp. 551–562, 2019.

[2] W. Bao, M. Huang, Y. Zhang, Y. Xu, X. Liu, and X. Xiang, “Boosting
ship detection in SAR images with complementary pretraining tech-
niques,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14,
pp. 8941–8954, 2021.

[3] G. Akbarizadeh, “A new statistical-based Kurtosis wavelet energy feature
for texture recognition of SAR images,” IEEE Trans. Geosci. Remote Sens.,
vol. 50, no. 11, pp. 4358–4368, Nov. 2012.

[4] Z. Tirandaz and G. Akbarizadeh, “A two-phase algorithm based on Kurto-
sis curvelet energy and unsupervised spectral regression for segmentation
of SAR images,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 9, no. 3, pp. 1244–1264, Mar. 2016.

[5] M. Rahmani and G. Akbarizadeh, “Unsupervised feature learning based on
sparse coding and spectral clustering for segmentation of synthetic aperture
radar images,” IET Comput. Vis., vol. 9, no. 5, pp. 629–638, 2015.

[6] Y. Tan, Q. Li, Y. Li, and J. Tian, “Aircraft detection in high-resolution
SAR images based on a gradient textural saliency map,” Sensors, vol. 15,
no. 9, pp. 23071–23094, 2015.

[7] Tara N. Sainath, A.-R. Mohamed, B. Kingsbury, and B. Ramabhadran,
“Deep convolutional neural networks for LVCSR,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., 2013, pp. 8614–8618.

[8] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time
object detection with region proposal networks,” in Proc. Int. Conf. Neural
Inf. Process. Syst., 2015, pp. 91–99.

[9] Z. Cai and N. Vasconcelos, “Cascade R-CNN: Delving into high quality
object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2018, pp. 6154–6162.

[10] J. Pang, K. Chen, J. Shi, H. Feng, W. Ouyang, and D. Lin, “Libra R-CNN:
Towards balanced learning for object detection,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2019, pp. 821–830.



8598 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

[11] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp. 2980–2988.

[12] J. Redmon and A. Farhadi, “YOLOV3: An incremental improvement,”
2018, arXiv:1804.02767.

[13] Z. Yang, S. Liu, H. Hu, L. Wang, and S. Lin, “RepPoints: Point set
representation for object detection,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis., 2019, pp. 9657–9666.

[14] Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: Fully convolutional one-
stage object detection,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019,
pp. 9627–9636.

[15] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S.
Zagoruyko, “End-to-end object detection with transformers,” in Proc. Eur.
Conf. Comput. Vis., 2020, pp. 213–229.

[16] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable DETR:
Deformable transformers for end-to-end object detection,” in Proc. Int.
Conf. Learn. Representations, 2020.

[17] W. Diao, F. Dou, K. Fu, and X. Sun, “Aircraft detection in SAR images
using saliency based location regression network,” in Proc. IEEE Int.
Geosci. Remote Sens. Symp., 2018, pp. 2334–2337.

[18] C. He, M. Tu, D. Xiong, F. Tu, and M. Liao, “A component-based multi-
layer parallel network for airplane detection in SAR imagery,” Remote
Sens., vol. 10, no. 7, 2018, Art. no. 1016.

[19] L. Zhang, C. Li, L. Zhao, B. Xiong, S. Quan, and G. Kuang, “A cascaded
three-look network for aircraft detection in SAR images,” Remote Sens.
Lett., vol. 11, no. 1, pp. 57–65, 2020.

[20] Y. Zhao, L. Zhao, C. Li, and G. Kuang, “Pyramid attention dilated network
for aircraft detection in SAR images,” IEEE Geosci. Remote Sens. Lett.,
vol. 18, no. 4, pp. 662–666, Apr. 2021.

[21] Q. Guo, H. Wang, and F. Xu, “Scattering enhanced attention pyramid
network for aircraft detection in SAR images,” IEEE Trans. Geosci.
Remote Sens., vol. 59, no. 9, pp. 7570–7587, Sep. 2021.

[22] Y. Zhao, L.-J. Zhao, and G.-Y. Kuang, “Attention feature fusion network
for rapid aircraft detection in SAR images,” ACTA Electron. Sinica, vol. 49,
no. 9, 2021, Art. no. 1665.

[23] Y. Zhao, L. Zhao, B. Xiong, and G. Kuang, “Attention receptive pyramid
network for ship detection in sar images,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 13, pp. 2738–2756, 2020.

[24] Y. Zhao, L. Zhao, B. Xiong, and G. Kuang, “Attention receptive pyramid
network for ship detection in SAR images,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 13, pp. 2738–2756, 2020.

[25] Z. Sun et al., “An anchor-free detection method for ship targets in high-
resolution SAR images,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 14, pp. 7799–7816, 2021.

[26] J. Fu, X. Sun, Z. Wang, and K. Fu, “An anchor-free method based on feature
balancing and refinement network for multiscale ship detection in SAR
images,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 2, pp. 1331–1344,
Feb. 2021.

[27] F. Dou, W. Diao, X. Sun, S. Wang, K. Fu, and G. Xu, “Aircraft recognition
in high resolution SAR images using saliency map and scattering structure
features,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2016, pp. 1575–
1578.

[28] S. Feng, K. Ji, L. Zhang, X. Ma, and G. Kuang, “SAR target clas-
sification based on integration of ASC parts model and deep learning
algorithm,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14,
pp. 10213–10225, 2021.

[29] T.-Y. Lin, A. RoyChowdhury, and S. Maji, “Bilinear CNN models for
fine-grained visual recognition,” in Proc. IEEE Int. Conf. Comput. Vis.,
2015, pp. 1449–1457.

[30] Y. Gao, O. Beijbom, N. Zhang, and T. Darrell, “Compact bilinear
pooling,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 317–326.

[31] S. Kong and C. Fowlkes, “Low-rank bilinear pooling for fine-grained
classification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 365–374.

[32] N. Zhang, J. Donahue, R. Girshick, and T. Darrell, “Part-based R-CNNs for
fine-grained category detection,” in Proc. Eur. Conf. Comput. Vis., 2014,
pp. 834–849.

[33] S. Huang, Z. Xu, D. Tao, and Y. Zhang, “Part-stacked CNN for fine-grained
visual categorization,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2016, pp. 1173–1182.

[34] J. Han, X. Yao, G. Cheng, X. Feng, and D. Xu, “P-CNN: Part-based
convolutional neural networks for fine-grained visual categorization,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 2, pp. 579–590,
Feb. 2022.

[35] T. Xiao, Y. Xu, K. Yang, J. Zhang, Y. Peng, and Z. Zhang, “The application
of two-level attention models in deep convolutional neural network for
fine-grained image classification,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2015, pp. 842–850.

[36] M. Sun, Y. Yuan, F. Zhou, and E. Ding, “Multi-attention multi-class
constraint for fine-grained image recognition,” in Proc. Eur. Conf. Comput.
Vis., 2018, pp. 805–821.

[37] F. Zhang, M. Li, G. Zhai, and Y. Liu, “Multi-branch and multi-scale
attention learning for fine-grained visual categorization,” in Proc. Int. Conf.
Multimedia Model., 2021, pp. 136–147.

[38] X.-S. Wei et al., “Fine-grained image analysis with deep learning:
A survey,” IEEE Trans. Pattern Anal. Mach. Intell., early access,
doi: 10.1109/TPAMI.2021.3126648.

[39] Y. Han, X. Yang, T. Pu, and Z. Peng, “Fine-grained recognition for oriented
ship against complex scenes in optical remote sensing images,” IEEE
Trans. Geosci. Remote Sens., vol. 60, 2022, Art no. 5612318.

[40] L. Song et al., “Fine-grained dynamic head for object detection,” in Proc.
Int. Conf. Neural Inf. Process. Syst., 2020, vol. 33, pp. 11131–11141.

[41] J. Wang et al., “Seesaw loss for long-tailed instance segmentation,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021,
pp. 9695–9704.

[42] C. Feng, Y. Zhong, and W. Huang, “Exploring classification equilibrium
in long-tailed object detection,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis., 2021, pp. 3417–3426.

[43] A. Gupta, P. Dollar, and R. Girshick, “LVIS: A dataset for large vocabulary
instance segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2019, pp. 5356–5364.

[44] T. Wang et al., “The devil is in classification: A simple framework for
long-tail instance segmentation,” in Proc. Eur. Conf. Comput. Vis., 2020,
pp. 728–744.

[45] J. Wu, L. Song, T. Wang, Q. Zhang, and J. Yuan, “Forest R-CNN:
Large-vocabulary long-tailed object detection and instance segmentation,”
in Proc. 28th ACM Int. Conf. Multimedia, 2020, pp. 1570–1578.

[46] D. Dwibedi, I. Misra, and M. Hebert, “Cut, paste and learn: Surprisingly
easy synthesis for instance detection,” in Proc. IEEE Int. Conf. Comput.
Vis., 2017, pp. 1301–1310.

[47] H.-S. Fang, J. Sun, R. Wang, M. Gou, Y.-L. Li, and C. Lu, “InstaBoost:
Boosting instance segmentation via probability map guided copy-pasting,”
in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 682–691.

[48] G. Ghiasi et al., “Simple copy-paste is a strong data augmentation method
for instance segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2021, pp. 2918–2928.

[49] J. Dai et al., “Deformable convolutional networks,” in Proc. IEEE Int.
Conf. Comput. Vis., 2017, pp. 764–773.

[50] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 2117–2125.

[51] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network
for instance segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2018, pp. 8759–8768.

[52] C. Guo, B. Fan, Q. Zhang, S. Xiang, and C. Pan, “AugFPN: Improving
multi-scale feature learning for object detection,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2020, pp. 12595–12604.

[53] X. Dai et al., “Dynamic head: Unifying object detection heads with
attentions,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2021, pp. 7373–7382.

[54] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 7132–7141.

[55] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolutional block
attention module,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 3–19.

[56] Y. Cao, J. Xu, S. Lin, F. Wei, and H. Hu, “GCNet: Non-local networks
meet squeeze-excitation networks and beyond,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis. Workshops, 2019, pp. 1971–1980.

[57] A. Vaswani et al., “Attention is all you need,” in Proc. Int. Conf. Neural
Inf. Process. Syst., 2017, vol. 30, pp. 6000–6010.

[58] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Proc.
IEEE Int. Conf. Comput. Vis., 2017, pp. 2961–2969.

[59] S. Liu, D. Huang, and Y. Wang, “Learning spatial fusion for single-shot
object detection,” 2019, arXiv:1911.09516.

[60] H. Choi, K. Cho, and Y. Bengio, “Fine-grained attention mechanism
for neural machine translation,” Neurocomputing, vol. 284, pp. 171–176,
2018.

[61] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

https://dx.doi.org/10.1109/TPAMI.2021.3126648


BAO et al.: DETECTING FINE-GRAINED AIRPLANES IN SAR IMAGES 8599

[62] O. Russakovsky et al., “ImageNet large scale visual recognition challenge,”
Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.

[63] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOV4: Optimal
speed and accuracy of object detection,” 2020, arXiv:2004.10934.

[64] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” in Proc. Int. Conf. Learn. Representations,
2018.

[65] H. Zhang, Y. Wang, F. Dayoub, and N. Sünderhauf, “SWA object detec-
tion,” 2020, arXiv:2012.12645.

[66] R. Solovyev, W. Wang, and T. Gabruseva, “Weighted boxes fusion: Ensem-
bling boxes from different object detection models,” Image Vis. Comput.,
vol. 107, 2021, Art. no. 104117.

Wei Bao received the B.S. degree in communication
engineering from Nanjing Tech University, Nanjing,
China, in 2018, and the M.S. degree in information
and communication engineering from the Beijing In-
stitute of Technology, Beijing, China, in 2021, where
he is currently working toward the Ph.D. degree.

He is also performing cooperation research with re-
searchers with the Qian Xuesen Laboratory of Space
Technology, China Academy of Space Technology,
Beijing. His research interests include multimodal
learning and remote sensing object detection.

Jingjing Hu received the Ph.D. degree in computer
science from the Beijing Institute of Technology,
Beijing, China.

She is currently an Associate Professor with the
School of Computer, Beijing Institute of Technology.
Her research interests include service computing, web
intelligence, and information security.

Meiyu Huang received the B.S. degree in computer
science and technology from the Huazhong Univer-
sity of Science and Technology, Wuhan, China, in
2010, and the Ph.D. degree in computer application
technology from the University of Chinese Academy
of Sciences, Beijing, China, in 2016.

She is currently an Assistant Researcher with the
Qian Xuesen Laboratory of Space Technology, China
Academy of Space Technology, Beijing, China. Her
research interests include machine learning, ubiqui-
tous computing, human–computer interaction, com-

puter vision, and image processing.

Yao Xu received the B.S. degree in electrical and
computer engineering from Shanghai Jiao Tong Uni-
versity, Shanghai, China, in 2013, and the M.S. de-
gree in electrical and computer engineering from the
University of California Irvine, Irvine, CA, USA, in
2016.

He is currently an Assistant Researcher with the
Qian Xuesen Laboratory of Space Technology, China
Academy of Space Technology, Beijing, China. His
research interests include deep learning, data fusion,
distributed systems, and computer architecture.

Nan Ji received the Ph.D. degree from the School
of Mathematics and Systems Science, University of
Chinese Academy of Sciences, Beijing, China, in
2019.

She is currently an Assistant Researcher with the
Qian Xuesen Laboratory of Space Technology, China
Academy of Space Technology, Beijing, China. Her
research interests include the security of deep learning
algorithm and image segmentation.

Xueshuang Xiang received the B.S. degree in
computational mathematics from Wuhan University,
Wuhan, China, in 2009, and the Ph.D. degree in com-
putational mathematics from the Academy of Math-
ematics and Systems Science, Chinese Academy of
Sciences, Beijing, China, in 2014.

He was a Postdoctoral Researcher with the De-
partment of Mathematics, National University of
Singapore, Singapore, in 2016. He is currently an As-
sociate Researcher with the Qian Xuesen Laboratory
of Space Technology, China Academy of Space Tech-

nology. His research interests include numerical methods for partial differential
equations, image processing, and deep learning.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


