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Abstract—This article presents an operational system for the au-
tomatic production of high-resolution (HR) large-scale land cover
(LC) maps in a fast, efficient, and unsupervised manner. This is
based on a scalable and parallelizable tile-based approach, which
does not require the collection of new training data. The method
leverages the complementary information provided by the existing
LC maps and recent acquisitions of HR Earth observation (EO)
images to identify map units that have the highest probability
of being correctly associated with their labels, and exploit the
obtained “weak” training set to produce an updated HR LC map
by classifying the recently acquired EO data. Both steps, performed
at tile level, can be implemented on a high-performance computing
(HPC) environment, which simultaneously process all required tiles
(independently of each other) for the entire study area. The method
was tested considering the publicly available 2018 Corine LC map
having a minimum mapping unit of 25 ha and the Sentinel-2
images to generate an HR LC map of Italy. The obtained map
has a spatial resolution of 10 m and presents the nine major LC
types (i.e., “artificial land,” “bareland,” “grassland,” “cropland,”
“broadleaves,” “conifers,” “snow,” “water,” and “shrubland”). Val-
idation was performed using the 2018 European Land Use and
Coverage Area Frame Survey database made up of in situ data. The
overall accuracy achieved for the Northern, Southern, and Central
part of Italy and the Italian Islands is 91.29%, 91.63%, 92.21%,
and 91.06%, respectively.

Index Terms—Automatic classification, Corine land cover (CLC)
map, Earth observation (EO), European Land Use and Coverage
Area Frame Survey (LUCAS) database, high-resolution (HR) land
cover (LC) maps, LC map production, Sentinel-2, unsupervised
methods.

I. INTRODUCTION

THE continuous production of high-resolution (HR) land
cover (LC) maps is essential to support environmen-

tal management policies, create environmental indicators, and

Manuscript received 11 July 2022; revised 30 August 2022; accepted 6
September 2022. Date of publication 27 September 2022; date of current version
1 November 2022. This work was supported by the European Space Agency
(ESA) in the framework of the “S2-4Sci Land and Water - Multitemporal
Analysis” project. (Corresponding author: Lorenzo Bruzzone.)

Claudia Paris was with the University of Trento, 38122 Trento, Italy. She
is now with the Department of Natural Resources, Faculty of Geoinformation
Science and Earth Observation, University of Twente, 7514 AE Enschede, The
Netherlands (e-mail: c.paris@utwente.nl).

Luca Gasparella and Lorenzo Bruzzone are with the Department of Informa-
tion Engineering and Computer Science, University of Trento, 38122 Trento,
Italy (e-mail: luca.gasparella@gmail.com; lorenzo.bruzzone@ing.unitn.it).

Digital Object Identifier 10.1109/JSTARS.2022.3209902

monitor land cover change (LCC) [1]. For this reason, over the
past decades, several LC and LCC products have been produced
at the national [2], continental [3], and global level [4] by various
international or national initiatives. The first National Land
Cover Database (NLCD) for the United States was published
in 1992 [5] through the Multiresolution Land Characteristics
consortium. A classification map of 21 LC classes was generated
consistently across 48 states of the United States at a spatial
resolution of 30 m. The classification map was generated using
the 1990 Landsat Thematic Mapper (TM) and ancillary data
(e.g., topography, census, soil properties, and other LC types,
as well as wetland maps). In 1999, Landsat 5 and Landsat 7
images were used to expand and update the 1992 NLCD, thereby
generating subsequent NLCD data products. In particular, the
2006 NLCD was the first mapping project to generate the
Unites States nationwide LCC detection map with 30-m cell
sizes with a minimum mapping of 1 acre [6]. In [7], Robin-
son et al. present a method to classify very-high-resolution
(VHR) aerial images that combines HR labels available at local
level and low-resolution (LR) labels extracted from the 2011
continental NLCD map. An ad hoc deep learning model is
defined to perform the fusion of the considered multiresolution
dataset.

At the European level, a coherent system of long-term LC
maps has been generated by the European Environment Agency,
namely the Corine land cover (CLC) map [8]. The classifica-
tion scheme consists of 44 classes, mixed LC, and land use
(LU) classes, with minimum mapping units of 25 ha for LC
and 5 ha for LCC detected every 6 years [9]. According to
the predefined classification scheme, the LC map is generated
and updated nationwide by visual interpretation of optical/near-
infrared satellite images [10]. Because of the reliability of the
LC map product, the Corine land cover (CLC) map is consid-
ered as a baseline for European LC mapping and subsequent
applications [11]. As an example, in [12], Sentinel-1 images
acquired in 2014 were resampled to 100-m resolution and used to
reproduce the CLC mapping. To increase the temporal resolution
of the CLC map, in [13], Baudoux et al. propose a method to
translate an annually updated french national LC product into
the CLC map. The method was able to achieve an accuracy
of 81% for the entire French Country. In [14], Stoian et al.
combine the 2012 CLC map, the Randolph Glacier Inventory
and two local thematic products available in France to collect
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enough labeled samples to train a fully convolutional deep
learning model. The model is used to produce and HR LC map
using long time series of Sentinel-2 images. The approach show
high variability in the classification accuracy obtained across
different landscapes due to the training of a unique model for the
whole country.

Focusing on global scale, various LC and LCC products [15],
[16], [17], [18] have been produced over the years. Although
different EO data and different classification schemes were
considered, all of these maps aimed at monitoring the extent and
distribution of major LC classes globally. In [19], Hua et al. ana-
lyze the spatial consistency (at different elevations and climatic
zones) of five LC maps produced between 2000 and 2013 at the
global and continent scales. The results show that the overall
consistency of the five thematic products ranges from 49.2% to
67.63%, with the highest consistency recorded in Europe and
the lowest in Oceania. As expected, the consistency is relatively
low since these LC maps were produced considering different
data sources (i.e., both ground reference data and EO data),
classification schemes, and different classification approaches.
Similar results are presented in [20], where Tchuente et al.
compared four global maps focusing on the African continent.
To compare the different LC maps, the four thematic legends
were converted into more aggregated categories after a projec-
tion in the same spatial resolution. The results confirm that the
agreement between the thematic maps ranges between 56% and
69%. In particular, although all the LC maps show reasonable
agreement in terms of surface types and spatial distribution
patterns, when focusing on heterogeneous landscapes they differ
strongly from each other.

It is worth mentioning that all the aforementioned global
products were generated at a coarse spatial resolution, i.e., from
300 m to 1 km. With the recent availability of Sentinel-1 and
Sentinel-2 data acquired in the framework of the Copernicus
Programme, much effort has been devoted to produce HR
thematic products [21]. These data offer the ability to perform
continuous monitoring of the Earth’s surface at high temporal
and spatial resolutions. With dozens of observations throughout
the year, Sentinel-1 and Sentinel-2 sensors are a powerful
source of information for the regular generation of HR LC
classification maps. For instance, in [22], d’Andrimont et al.
exploit the Sentinel-1 data to generate the first European crop
type map at 10-m spatial resolution representing the major 19
crops cultivated all over Europe using the 2018 European Land
Use and Coverage Area Frame Survey (LUCAS) Copernicus
in situ survey. Similarly, in [23], Venter et al. used the LUCAS
samples to train a random forest classification model to generate
a 10-m spatial resolution LC map at European level. To this end,
700 GB of Sentinel-1 and Sentinel-2 images were considered,
leveraging the computing power of the Google Earth Engine
platform. Recently, the European space agency (ESA) released
the WorldCover product (ESA-WorldCover, 2020) [24], a freely
accessible LC map produced at 10-m resolution at global scale
using both Sentinel-1 and Sentinel-2 data. The product depicts
11 LC categories (i.e., tree cover, shrubland, grassland, cropland,
built-up, bare/sparse vegetation, snow and ice, permanent water

bodies, herbaceous wetland, mangroves, and moss and lichen)
and has an overall accuracy (OA) of 74.4% [24]. In [25], Brown
et al. presented a novel approach to continuous generation
of HR LC maps at global level at 10-m spatial resolution
by exploiting deep learning and Sentinel-2 images. To train
the fully convolutional neural network, a huge effort was
devoted to the collection of the reference data. About 4000
Sentinel-2 images were manually annotated by experienced
photointerpreters. All annotators were asked to label at least
70% of a tile in a maximum amount of time of 60 min per tile.

Although the availability of Sentinel-1 and Sentinel-2 data
has significantly increased the possibility of frequently acquiring
EO data, producing LC maps is expensive and time-consuming,
especially when performed at country, continental, or global
level [13]. In particular, the most challenging part is the col-
lection of constantly updated annotated samples, which is ex-
tremely demanding on a large-scale through ground surveys
or photointerpretation [26]. In addition, when dealing with
large-scale LC mapping, distributed computing architectures are
required to generate the output quickly and efficiently [22]. To
solve these issues, this article presents a system architecture
for automatically producing HR LC maps that does not require
the collection of ground reference data (i.e., it is completely
unsupervised), has been defined to work at the Sentinel-2 tile
level to be scalable and parallelizable, and has been implemented
in a distributed computing architecture to enable the produc-
tion of large-scale LC maps in a short time. Specifically, the
presented system architecture is based on the method proposed
in [27], which was tested on a small study area of 1549 km2.
The method automatically extracts a “weak” training set by
combining information provided by an existing LC map, and
a Sentinel-2 time series acquired during the target year to be
classified. The obtained training set is then used to classify the
considered Sentinel-2 image time series. The main advantage of
this approach consists in its ability to utilize the complementary
information provided by the considered data sources. While the
thematic map has the advantage of providing LC information
for the entire study area, the Sentinel-2 data can be used to verify
the consistency of these classes with those actually present in
the scene. Therefore, combining the two data sources allows
us to extract training samples over the entire study area, and
select “weak” labeled units having the highest probability of
still being valid. Exploiting these two properties, in this ar-
ticle, we present the parallelized version of [27], defining a
tilewise system architecture, i.e., the training set is extracted
from the map for each Sentinel-2 tile and the classification is
performed tile based. This condition allows us to implement the
method on a distributed high-performance computing (HPC)
platform, which can simultaneously process all required tiles
(independently of each other) for the entire study area. The
method was scaled to a national level, i.e., a study area of
301338 km2, to generate an HR updated map for the Italian
country. It is worth noting that due to its high climatic variabil-
ity, Italy presents different landscape and environmental condi-
tions, allowing us to assess the robustness of the approach at a
large scale.
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Fig. 1. Study area considered. Sentinel-2 tiles covering the entire country are
reported.

II. STUDY AREA AND DATA PREPARATION

To generate an HR LC map of Italy, we considered the CLC
map and the Sentinel-2 images. The map was generated for
2018 due to the availability of the 2018 LUCAS Copernicus in
situ surveys, which allows objective validation of the obtained
map. The considered study area is the entire Italian peninsula
characterized by a spatial extent of ∼ 301.338 km2. The whole
country is covered by the 60 Sentinel-2 granules reported in
Fig. 1. The Sentinel-2 tiles are reported in the UTM projection
and WGS 84 geographic coordinate system. Italy falls within the
following two longitude fuses (i.e., longitude—east to west):

1) 30 tiles in UTM WGS84 32 N;
2) 30 tiles in UTM WGS84 33 N;
and the following two latitudinal strips (i.e., latitude—south

to north):
1) 15 tiles S (from 32° to 40° latitude north);
2) 45 tiles T (from 40° to 48° latitude north).
In the following, details on the considered data and their

preparation for the processing are reported.

A. Considered Thematic Map: CLC Map

The considered thematic product is the 2018 CLC map, which
has a spatial resolution of 100 m, with a minimum mapping unit
of 25 ha. The classification scheme is based on a hierarchical
structure made up of three levels and 44 classes. The first
level is composed of five items, which correspond to the major
LC types, namely “artificial areas,” “agricultural land,” “forests
and seminatural areas,” “wetlands,” and “water surfaces.” The

TABLE I
TRANSLATION OF THE 2018 CLC LEGEND INTO THE PROPOSED TARGET

LEGEND FOR THE CONSIDERED STUDY AREA

second level is made up of 15 items, i.e., “urban fabric,” “in-
dustrial, commercial, and transport units,” “mine, dump, and
construction sites,” “artificial non-agricultural vegetated areas,”
“arable land,” “permanent crops,” “pastures,” “heterogeneous
agricultural areas,” “forests,” “shrub and/or herbaceous vegeta-
tion associations,” “open spaces with little or no vegetation,” “in-
land wetlands,” “coastal wetlands,” “inland waters,” and “marine
waters.” However, the highest level of detail is provided in the
third level, which presents the whole CLC nomenclature [28].

The production of this map is based on the visual interpre-
tation of optical/near-infrared satellite images for locating, de-
lineating, and identifying LC units. In particular, the production
of the 2018 CLC map is performed by integrating the data of
LCC between the years 2012–2018—as primary product—with
the revised LC map of year 2012 (revised CLC2012)—as side
product [29]. The LCC detected every 6 years have a minimum
mapping unit of 5 ha, thus leading to the presence of many
missed LCC. Moreover, due to the coarse spatial resolution of the
map, compared to the spatial resolution of the Sentinel-2 images,
many Sentinel-2 pixels are associated to the wrong LC. For all
these reasons, the aim of the proposed system is to generate an
HR map, which represents the LC classes present in 2018.

First, The CLC map is rescaled at the highest spatial resolution
of Sentinel-2 data, i.e., 10 m. Then, its legend is converted into
a set of LC classes, which can be discriminated according to
the spatial and spectral properties of Sentinel-2. For this reason,
we excluded the LU classes (e.g., “sport and leisure facilities,”)
that cannot be discriminated using the spectral information of
Sentinel-2 only, as well as spatially mixed classes (e.g., “mixed
forest”) that are not expected to be present at the 10-m spatial res-
olution. Table I reports the CLC classes present in the considered
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TABLE II
SENTINEL-2 IMAGE TIMES SERIES USED TO PRODUCE THE HR LC MAP

study area. First, the CLC classes are converted into a detailed
legend aimed to generate the training set. This condition allows
us to accurately model the LC present in the final target legend.
For instance, to accurately model the “Cropland” target class,
it is necessary to include samples belonging to all its natural
classes, i.e., “non-irrigated crops,” “irrigated crops,” “annual
crops,” and “rice fields.” Neglecting the samples of any of these
classes would affect the quality of the final classification result,
which is converted into the desired target legend. This conversion
is performed according to the land cover classification system
(LCCS) [30], which is the common standard used for trans-
lating a comparing legends. The final target legend represents

a set of widespread LC classes: “artificial land,” “grassland,”
“cropland,” “bareland,” “broadleaves,” “conifers,” “shrubland,”
“water,” and “snow.”

B. EO Data: Sentinel-2 Data

The HR LC map is produced by using a times series made up
of four Sentinel-2 images acquired between April and Septem-
ber. For each tile, the less cloudy images within this period were
automatically selected leveraging on the cloud cover information
estimated by the Sen2cor tool provided by the European Space
Agency (ESA) [31]. These time series of images allow us to
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Fig. 2. Flowchart of the proposed scalable HR map production system.

better discriminate the LC types present in the target legend with
respect of the classification of a single Sentinel-2 acquisition.
For instance, classes such as “Crop” and “Grass” may have
similar spectral signatures for some Sentinel-2 acquisitions (e.g.,
April or May), but show different temporal profiles due to the
crop’s unique phenological properties. According to the level
of detail of the desired target legend, the user can decide to
consider denser time series of images (e.g., to capture rapid rate
of changes) or longer time series of images (e.g., to distinguish
different crop types).

Table II reports the time series of Sentinel-2 images used
for generating the HR LC map of the Northern, Central, and
Southern part of Italy and Italian Islands (Sardinia and Sicily).
For each Sentinel-2 tile, the considered images are reported.
We considered only the spectral bands acquired at the spatial
resolution of 10 m (i.e., Band 2, Band 3, Band 4, and Band 8)
and 20 m (i.e., Band 5, Band 6, Band 7, Band 8a, Band 11,
and Band 12), which are interpolated at 10 m considering the
nearest neighboring technique. Each pixel is characterized by a
multitemporal spectral signature of 40 features, i.e., ten spectral
channels per four Sentinel-2 images.

III. SCALABLE HR LC MAP PRODUCTION SYSTEM

The objective of this study is to present a scalable high-
performance approach that can be used to generate HR LC maps
in a fast, efficient, and unsupervised way. The peculiarity of the
considered system architecture is its tile-based implementation.
This condition allows us to exploit the advantage of parallel com-
puting offered by high-performance computing (HPC) systems.
By increasing the number of tasks up to the required number of
tiles, the time required to produce the nationwide LC map can be
the same as that performed at the single tile level. The presented
system architecture is based on the method proposed in [27],
which was tested on a small study area of 1549 km2. Fig. 2
shows the flowchart of the proposed scalable HR map production
system based on the following four main steps: tile-based data
preparation, tile-based training set extraction, tile-based LC map
production, and postprocessing.

A. Tile-Based Data Preparation

Let M ∈ Rm×n be the considered thematic map used to
extract the “weak” training set, having size m× n and char-
acterized by a set of LC classes Ωc = {ωu}u. Let TS =
(X1,X2, . . . ,Xq) be the times series of recent EO data made up
of q images, where Xj ∈ Rm×n×b is a multispectral image hav-
ing m× n pixels and b spectral channels, with j = [1, . . . , q].
To efficiently produce the HR map,M is divided into k tiles, i.e.,
Mi ∈ Rl×p associated with the corresponding times seriesTSi,
where i = [1, . . . , k] and l < m and p < n. In order to generate
a harmonized final thematic product, tiles must be produced to
guarantee a degree of overlap between adjacent tiles.

B. Tile-Based Training Set Extraction

Due to the coarse spatial resolution of the considered LC map,
compared to the spatial resolution of the Sentinel-2 images,
many Sentinel-2 pixels are associated with the wrong LC. To
solve this problem, this step aims to identify the map labeled
units having high probability of being correctly associated with
their labels at the spatial resolution of the considered HR EO
data [27]. In addition, both labeled units and EO data cover
the entire study area, therefore, the first step of the method
can extract a training set at tile level. To identity valid map
labeled units, in [27], Paris et al. perform a data-driven clustering
analysis per map-polygon. Indeed many LC maps are aggregated
at the polygon level, where most of the pixels in the polygon are
expected to be correctly associated with their LC classes. On
the one hand, this is an effective strategy to reduce classification
noise at pixel level and to facilitate the LC update (i.e., the
CLC map is updated at polygon level for changes having a
minimum mapping unit of 5 ha). On the other hand, this spatial
aggregation leads to the presence of many pixels that are not
correctly associated with their labels. In addition, the map may
have classification errors. Therefore, it is necessary to select
map units having the highest probability of being correctly
associated with their labels to generate a reliable training set.
In the considered implementation of the method, the clustering
analysis is performed at class level, thus increasing the ability
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TABLE III
SPECTRAL INDICES ADOPTED IN THE METHOD

of the method to handle possible large LCC and reduce the
computational burden of this step. When working at class level,
the clustering step should be repeated for each class in the scene
(e.g., for the experiments considered 9 times as we have nine
classes). In contrast, when performed at the polygon level, it
should be repeated thousands of times, depending on the number
of polygons in the tile. Furthermore, while at the polygon level,
the most abundant cluster may not be the one correctly associated
with the polygon label due to changes, at the class level, it is
reasonable to assume that most pixels are correctly associated
with their labels. Let us focus the attention on the ith tile. For
each LC class ωu present in Mi, the samples associated with
ωu are partitioned into tu clusters {CMi

ωu,1
,CMi

ωu,2
, . . . ,CMi

ωu,tu
}

according to their spectral similarity. To this end, we employ
an unsupervised k-means clustering algorithm because of its
computational efficiency [32].

The feature space used to perform the clustering analysis is
made up of nf robust spectral indices strictly connected to the
physical meaning of the considered LC classes (see Table III).
For simplicity, these features are extracted from the least cloudy
image of TSi, i.e., Xq

i (see Table II). Let xr ∈ R1×nf be the
rth pixel ofωu associated with the nf spectral features extracted
from Xq

i . Starting from an initial random set of centroids, i.e.,
{m1,m2, . . . ,mtu}, the k-means clustering algorithm asso-
ciates each xr to the nearest centroid computed according to
the Euclidean distance metric. In order to achieve a global
minimum, the position of the centroids {m1,m2, . . . ,mtu} is
progressively adjusted by minimizing

tu∑

w=1

∑

xr∈ωu

||xr −mw||2 (1)

where mw is the centroid of the wth cluster CMi
ωu,w

, with
w ∈ [1, . . . , tu]. To increase the probability of selecting the most
reliable samples, we analyze the sample distribution of each
cluster in order to keep only the samples closer to its centroid.
In particular, for each CMi

ωu,w
, the samples having distances from

mw higher than the 75th percentile of all the cluster samples
distances are discarded. Moreover, for most of the classes, the
k-means is applied to detect tu cluster, in order to keep tu − 1
clusters, i.e., remove the spurious samples that are not correctly
associated with ωu (i.e., possible LCC, misclassified pixels,
polygon spatial aggregation). Note that this strategy allows us to
handle multimode classes, i.e., classes including pixels having
different spectral properties.

Fig. 3. Example of clustering algorithm results obtained for the “artificial
land” class. (a) True color representation of Sentinel-2 data. (b) Most abundant
cluster (i.e., pixels belonging to the red roofs). (c) Second most abundant cluster
(i.e., pixels belonging to the white roofs). (d) Smallest cluster (i.e., pixels
belonging to urban green areas).

A qualitative example of the map spatial aggregation problem
is reported in Fig. 3, where pixels belonging to the LC class
“artificial land” are divided into three clusters. While the first
two clusters are correctly associated with their label (i.e., red
and white roof are correctly associated with the label “artificial
land”), the minor cluster represents the spurious pixels associ-
ated with the urban green areas. Once the clustering is completed
and the noisy map labeled units are discarded, a stratified random
sampling strategy is applied to generate h “weak” training sets
having LC prior probabilities proportionate to what reported in
Mi, i.e., {TrSet1i ,TrSet2i , . . . ,TrSethi }. Taking advantage
from the availability of the many samples present in the map,
the considered training sets are generated according to a boot-
strap strategy without replacement. This condition allows us to
generate a set of h “weak” training sets, independent form the
statistical view point.

C. Tile-Based LC Map Production

The second step of the method performs the tile-based LC
map production. For each Mi, we generate the HR LC map
by classifying the corresponding TSi of images using the
h “weak” training sets computed in the previous step, i.e.,
{TrSet1i ,TrSet2i , . . . ,TrSethi }. First, a feature selection step
is carried out to select only the most relevant ng features of
TSi, in order to reduce the feature space dimensions, and
thus, the computation time. Note that this step also allows the
increase of the classification accuracy, since it reduces noise
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TABLE IV
NUMBER OF LUCAS POINTS USED FOR THE VALIDATION PER LC TYPE

and redundant information. The feature selection is performed
considering the simple and fair Sequential Forward Floating
Selection method, based on the Jeffrey–Matusita distance as
separability criterion [33], [34]. This step is done once, in order
to define the same set of features for all the tiles.

The classification model is based on support vector machines
(SVM) classifiers with the “Gaussian radial basis function” [35]
because of their generalization ability and capability to handle
noisy training sets [36]. Indeed, since the training set extraction
phase is completely unsupervised, it is reasonable to assume
the presence of noisy labeled units. For this reason, the trained
SVM classifiers are considered as “weak” learners. To mitigate
the possible presence of noisy training samples, the final clas-
sification result is obtained by adopting a bagging technique
to define the ensemble of SVMs, which are trained with the
independent training sets {TrSet1i ,TrSet2i , . . . ,TrSethi }. Let
us define the decision functions of the h trained SVM models as
{φ1

i , φ
2
i , . . . , φ

h
i }. Let xv ∈ R1×ng be the vth pixel representing

the set of ng selected features extracted from the TSi by the
SFFS method. The final label associated with xv is determined
through the majority voting rule as follows:

φmv
i (xv) = argmax

ωu∈Ωc

(#{φs
i (xv) = ωu})

with s = [1, . . . , h] (2)

where #{φs
i (xv) = ωu} is the number of SVM models whose

classification result is ωu for xv. Because of the statistically
uncorrelated training sets, the classification errors are expected
to be uncorrelated as well. Therefore, the aggregation results is
expected to be more reliable that the one obtained using only
one classifier [37].

D. Postprocessing

Once all the tiles are generated, a postprocessing step is
performed to merge them into a whole consistent product. In
particular, this step aims to harmonize the overlapping areas
among neighboring tiles. To this end, a majority rule approach is
considered, by taking into account all the classifications results
computed by the SVM classifiers. Let us focus again on the
generic vth pixel xv ∈ R1×ng , assuming that it belongs to both
the ith and the (i+ 1)th tile. To define its classification value, we
considered both {φ1

i , φ
2
i , . . . , φ

h
i } and {φ1

i+1, φ
2
i+1, . . . , φ

h
i+1}

Fig. 4. Features selected according to the SFFS approach applied to the time
series of Sentinel-2 data. The features selected from the first, second, third, and
fourth images of the time series are reported in blue, orange, yellow, and green,
respectively.

Fig. 5. Spatial distribution of the 2018 LUCAS samples over Italy.

to compute the following aggregation:

φmv
i (xv)=argmax

ωu∈Ωc

(#{φs
i (xv) = ωu}+#{φs

i+1(xv) = ωu})

with s = [1, . . . , h]. (3)

At the end of this step, the harmonized HR LC map is available
at the tile level.

IV. DESIGN OF THE EXPERIMENTS AND VALIDATION

PROCEDURE

This section presents the implementation details used to
design the experiments. Moreover, it presents the procedure
employed to validate the generated HR LC map. To this end, the
2018 LUCAS database in situ survey was used, thus providing
an objective quantitative validation of the results obtained for
the whole study area.
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Fig. 6. Comparison between: (a) CLC map after the legend conversion and (b) HR LC map generated at 10-m spatial resolution.

Fig. 7. Example of HR LC map result obtained for a portion of the 32TPS Sentinel-2 tile. (a) Produced HR LC map. (b) Sentinel-2 image. (c) Converted 2018
CLC.

A. Design of the Experiments

In the considered implementation of the method, we adopted
the Sentinel-2 tiling grid, thus dividing the CLC map into 60
tiles having size l × p equal to 10980× 10980 pixels. For all

the considered LC classes, the number of clusters to identify
is equal to 4 in order to keep only 3 of them except for “non-
irrigated arable land,” “permanently irrigated land,” and “annual
crops.” For these classes, the samples belonging to all the four
clusters were kept because of the low percentage of noisy pixels
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Fig. 8. Example of HR LC map result obtained for a portion of the 32TQM Sentinel-2 tile. (a) Produced HR LC map. (b) Sentinel-2 image. (c) Converted 2018
CLC.

Fig. 9. Example of HR LC map result obtained for a portion of the 33TUL Sentinel-2 tile. (a) Produced HR LC map. (b) Sentinel-2 image. (c) Converted 2018
CLC.
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Fig. 10. Example of HR LC map result obtained for a portion of the 32TPN Sentinel-2 tile. (a) Produced HR LC map. (b) Sentinel-2 image. (c) Converted 2018
CLC.

in the CLC map for these classes, and the fact that they include
several natural classes (i.e., different crops). Please note that
these numbers were set according to the a priori knowledge of
the properties of both the target legend and the CLC map for the
considered study area.

Regarding the feature selection step, the Jeffrey–Matusita
average distance reached saturation when the number of features
was 25 out of 40, thus indicating that adding the remaining
15 features does not change the separability between the LC
classes. The Sentinel-2 bands selected are reported in Fig. 4.
This result demonstrates the importance of using a time series
of images. Indeed, for all the Sentinel-2 acquisitions, we have at
least 4 spectral bands selected. As expected the spectral bands
acquired in the shortwave infrared portion of the electromagnetic
spectrum were selected for all the images of the time series. In
contrast, the Band 8a was not selected for any image of the time
series.

For each tile, we extracted three training sets according to
the bootstrap strategy without replacement. To retrieve the best
model parameters for each SVM model, we considered a three-
fold cross-validation strategy. The standard grid search approach
was applied to select C and γ parameters in a range of [100,

325, 550, 775, 1000] and [0.0001, 0.5, 1, 1.5, 2], respectively.
Please note that, the tile-based approach allows us to customize
the classification result at local scale. Indeed, it allows the
detection of the best model parameters for each local training
set representative of the considered tile.

B. Validation Procedure

To quantitatively evaluate the accuracy of the generated LC
maps, we took advantage of the publication of the 2018 LUCAS
database. The LUCAS survey is coordinated by the Statistical
Office of the European Commission (Eurostat). It aims to collect
harmonized data LC/LU, agroenvironmental, and soil data by
field observation of geographically referenced points. The sys-
tem is based on a set of independent rules that allow correlation
with any classification scheme regardless of the scale and the
source of the map. The LC labels present in the LUCAS database
are defined according to the LCCS [38]. In particular, for each
sample, there are both the LC and the LU indications. Hence,
the LU information strongly improves the flexibility of the LC
codes, since by combining different LC and LU classes, it is
possible to retrieve specific information. These labels were used
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TABLE V
QUANTITATIVE EVALUATION OF THE OBTAINED HR LC MAP IN TERMS OF USER ACCURACY (UA%), PRODUCER ACCURACY (PA%), AND OVERALL ACCURACY

(OA%)

to match the surveyed samples into the set of classes present
in the target legend (see Table I). We could translate 26 423
samples out of the 29 359 collected in Italy.

To spatially match the LUCAS points and the Sentinel-2 data,
we considered a window of 3×3 Sentinel-2 pixels. The window
is centered in the theoretical latitude and longitude coordinates
of the LUCAS point associated with the surveyed point. If at
least one of the pixels in the grid is associated with the LUCAS
label, the point is considered correctly classified. Please note
that the 3×3 window allows us to: address possible GPS errors
and handle those classes for which the LUCAS observation
is relative to an observation area defined by a 20-m radius
around the point. The spatial distribution of the reference data
is represented in Fig. 5, while Table IV shows the number of
samples divided per class. The LUCAS samples are represented
with the corresponding colors of the considered target legend.
The samples are equally distributed throughout the country and
allow for accurate validation of the obtained HR map.

V. EXPERIMENTAL RESULTS

In this section, we first present the quantitative results ob-
tained according to the validation carried out using the LUCAS
database. Then, qualitative results of the obtained map are re-
ported and discussed. Finally, the computational effort required
to generate the HR LC map for the whole country using an HPC
is presented.

A. HR LC Map: Quantitative Results

To quantitatively evaluate the results obtained, we considered
the standard classification metrics, i.e., the overall accuracy
(OA%), the producer accuracy (PA%), the user accuracy (UA%),
and the F-score (F1%). To perform this analysis, the Sentinel-2
tiles were split into islands, Northern, Southern, and Central
part of Italy as presented in Table II. Table V shows the results
achieved the PA% and UA%, while Table VI shows the compar-
ison in terms of F1% and OA% obtained for the whole Italian

TABLE VI
QUANTITATIVE EVALUATION OF THE OBTAINED HR LC MAP

country, the north, the central, the south, and the islands, respec-
tively. Due to the capability of the proposed system of extracting
the training set at tile level, it adaptively handles the different
landscape and environmental conditions of the whole Italian
country by obtaining similar results regardless of the latitude.
Indeed, the method is completely data driven. Moreover, the
results obtained confirm that the proposed system architecture
allows for the extraction of an informative and representative
training set in an unsupervised but reliable way.

As expected, the minimum F1% is achieved on the “snow”
(66.67%), since this peculiar LC class is not permanent for the
whole year. The highest F1% are achieved by both the “artificial
land” and “cropland” having on the whole country 94.39%
and 95.42%, respectively. As demonstrated by the UA% and
PA%, the method was able to accurately model the complex
“cropland” class, by properly capturing the main natural classes
aggregated under this label. In contrast, several samples are
wrongly assigned to the “shrubland” class according to its UA%
(i.e., 69.58%). This is also due to the fact that the size of the
shrubs is smaller than the spatial resolution of Sentinel-2, thus
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Fig. 11. Example of HR LC map result obtained for a portion of the 32TNS Sentinel-2 tile. (a) Produced HR LC map. (b) Sentinel-2 image. (c) Converted 2018
CLC.

leading to mixed spectral signatures associated to this class. For
this reason, the “shrubland” class is confused with the “bareland”
one, thus leading to a UA% of 61.30%. It is worth noting that the
problem of confusing “bareland,” “shrubland,” and “grassland”
classes at the 10-m spatial resolution of Sentinel-2 is well known
when dealing with large-scale LC mapping [23], [39]. However,
the F1% averaged over the nine LC classes is 82.80%, 82.43%,
84.88%, 84.64%, and 82.37% for the whole country, the north,
the central, the south, and the Italian Islands, respectively. It is
worth mentioning that such results demonstrate the possibility
of generating HR updated maps in an unsupervised way.

B. HR LC Map: Qualitative Results

Fig. 6 shows the CLC map after the legend conversion and the
HR LC map generated at a 10-m spatial resolution. The obtained
map shows much sharper geometric details than the initial
thematic product. Analyzing the obtained map in detail, the
qualitative analysis confirms the quantitative results. Figs. 7–11
show some examples of the results obtained by comparing the:
generated HR LC map, true color composition of one Sentinel-2
image, and the CLC map after the legend conversion.

Let us first focus on Fig. 7, which shows the obtained HR map
of the 32TPS Sentinel-2 tile. The obtained map accurately cap-
tures the details present in the scene by identifying the cultivated
and urban areas located in the lower left part of the image. This
is due to the fact that the considered map is generated at 10-m
spatial resolution, while the original CLC map is provided with
a minimum mapping unit of 25 ha. Similar results can be seen
in Figs. 8–10 for the Sentinel-2 tiles 32TQM, 33TUL, 32TPN,
respectively. Also in these cases, the level of detail provided to
represent both the urban and the cultivated areas is much better
than that present in the original map, where strong aggregations
are visible. Finally, Fig. 11 represents the HR result obtained
for the Sentinel-2 tiles 32TNS. The geometrical details of the
urban area, the lakes, and the forest area present in tile 32TNS
are consistent with what is visible in the Sentinel-2 image.
These qualitative examples, randomly chosen from different

locations of Italy, demonstrate the effectiveness of the method
in accurately extracting a reliable training set and its ability to
generate HR LC maps in an automatic and unsupervised manner.

C. HR LC Map: Computational Time

The production of the HR LC map was carried out on an
HPC cluster composed by 63 nodes for a total of 4052 cores and
36 TB of RAM interconnected using 10-Gbs Ethernet having
InfiniBand network at 40 GBits. The cluster is run by the Linux
CentOS 7 operating system and the job scheduling is managed
by the portable batch systems (PBS) Professional software.
Python 3.7.5 was adopted as programming language. The main
libraries used by the developed workflow are numpy, gdal, scipy,
scikit-image for processing geo-referenced images and scikit-
learn for performing the classification the SVM classification.
The whole processing chain took in average 200 min per tile,
which correspond to one job executed on one node having 27
cores. Due to the availability of the 63 nodes, all the 60 Italian
tiles were processed in parallel. Hence, the computational time
was 200 min for the whole Italian country. As reference, the
theoretical execution on an 8 core machine with 32 GB of
RAM would require about 800 min for computing just one tile.
By considering the resources needed by each single tile, the
total number of resources used to compute the Italy coverage
simultaneously were 120 cores, 2.4TiB RAM, 0.8TiB of disk.

VI. DISCUSSION AND CONCLUSION

This article has presented an operational system for producing
large-scale HR LC maps. The proposed method is scalable and
parallelizable in order to perform the map production in a fast,
efficient, and unsupervised manner. To this end, the system
architecture is defined to work at tile level, by exploiting the
complementary information provided by an existing LC map
and the recent EO data to extract a local training set for each tile
leveraging the LC information provided by the 2018 CLC map,
and generate the HR LC map tile based. To validate the proposed
system, we generated 10-m spatial resolution LC map of the
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whole Italian country (which is covered by 60 Sentinel-2 tiles
having a total extent of 301 338 km2). The results were validated
using the in situ surveys of LUCAS database, which provided
ground reference samples collected all over the country.

The quantitative and qualitative results obtained demonstrate
the effectiveness of the proposed approach, which was imple-
mented on an HPC with 63 nodes that enables the production of
the HR map in 200 min, which is the time required to produce
a tile map. From the results obtained for the whole country,
the islands, the north, the south, and the central part of Italy,
it turned out that the method is able to extract a representative
training set for each tile, thus leading to a reliable production
of the map regardless of the LC types present in the scene. In
particular, the possibility of extracting a local training set for
each Sentinel-2 tile both enables the parallel approach and an
accurate classification of the heterogeneous landscape of the
Italian country. The adopted data-parallel strategy distributes the
production of the LC map over multiple nodes, thus mitigating
the computational load of the map production at the country
level. Moreover, each Sentinel-2 tile (having size 10980 ×
10980) was split into 25 subtiles (having size 2196 × 2196),
which are processed in parallel by the cores of the node to
further speed up the process. Note that the scalability of the
workflow in handling more Sentinel-2 tiles depends on the
number of nodes available in the HPC considered. According to
the experiments conducted, by increasing the number of nodes
to the number of tiles, the relationship between the speedup and
the level of parallelism is linear. To work at the European level
(covered by almost 1300 Sentinel-2 tiles) with the considered
HPC, the production of the map would take approximately
three days.

As future developments, we aim to test the proposed system
architecture to work at continental scale. To this end, we plan
to exploit the possibility of generating monthly or seasonal
composites to harmonize the Sentinel-2 acquisitions of different
tiles. Moreover, we aim to explore the possibility of using a
convolution deep learning model to improve the classification
results obtained. Finally, we aim to test the method with more
complex classification schemes.
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