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Matrix Autoregressive Model for Hyperspectral
Anomaly Detection
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Abstract—For anomaly detection in hyperspectral imagery, the
scene can be treated as a combination of the background and the
anomalies. Once a pure background hyperspectral image (HSI) is
obtained, the anomalies can be easily located. In this article, we
detect the anomalies via a matrix autoregressive model (MARM)
to reconstruct the background HSI. Specifically, some informative
and discriminative bands are first selected and come into a new HSI
with less bands. Second, the new HSI can be treated as a collection
of profiles in the row direction. Based on this, the background
can be regularly reconstructed via the MARM. The regressive
model not only respects the original matrix structure in the row
profiles but also utilizes both the spatial and spectral correlations
for the detection process. Finally, the classical Reed Xiaoli detector
is applied to the difference cube between the band-selected HSI and
the HSI reconstructed by MARM, achieving a final detection map
with higher accuracy. Experimental results and data analysis on
four different sensors captured datasets with different resolutions
have validated the effectiveness of the proposed method.

Index Terms—Anomaly detection, hyperspectral image (HSI),
matrix autoregressive.

I. INTRODUCTION

HYPERSPECTRAL imagery captures both the spatial and
the spectral information of the scene simultaneously,

achieving a 3-D image cube [1]. The 3-D hyperspectral im-
ages (HSIs) are characterized by their rich spectral informa-
tion, which can be utilized to identify the materials by their
unique reflective spectra [2]. In this way, the HSIs have gained
wide applications in addressing the issue of geological appli-
cation, military rescue, and mineral exploration [3]. Among
these applications, anomaly detection seeks to discriminate the
abnormal observations without the prior information about the
target. Anomalous targets have not been exactly defined and are
generally treated as the pixels which derivate from the back-
ground clutter distributions. According to different application
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scenarios, abnormal targets may exhibit different entities, such
as the infected trees in the jungles, the wounded soldiers in the
forests, the spilling oil on the ocean, rare minerals in geological
applications, and some man-made vehicles and airplanes for
aerial searches. In this way, hyperspectral anomaly detection has
drawn extensive attention in both the military and the civilian
aspects [4].

The anomalous locations in the scene are specified as
the following two main differences: the spectral difference
and the spatial difference. On the one hand, spectral curves
of the anomalous locations are severely different from those of
the background locations. Meanwhile, the anomalous locations
usually appear in a format of several pixels (or even sub-pixels),
which are embedded in a local homogeneous region [5]. Based
on these two differences, many works have been proposed to
determine the anomalies in the HSIs [6]. The most classical one
is the Reed–Xiaoli (RX) detector, which assumes that all the
background pixels follow the Gaussian distribution [7]. In this
article, the classical RX detector is also named the Global-RX,
which is different from the other RX related detectors. For the
Global-RX detector, the distribution of the background pixels is
formulated by calculating the mean and the covariance matrix.
By measuring the Mahalanobis distance between the pixels and
the background, the resulting generalized likelihood ratio can
be obtained. Considering that the backgrounds may also consist
of several different types of materials, all the background pixels
follow a uniform distribution deviated from the real scene. In this
way, the local RX detector is proposed, which applies the RX
detector in a local region by sliding the window [8]. The kernel
RX detector maps the original HSI into a feature space with
higher dimension, and the RX detector is applied to the higher
feature, which overcomes the high false alarm rate brought by
the unappropriated model [9], [10]. In addition, many other
preprocessing techniques have also been exploited to make an
improvement of the detection accuracy, such as the fractional
Fourier entropy (FrFT) [11], spectral derivatives (Deriv) [13],
and some others [12]. With the combination of the RX detector,
these preprocessed detection methods are abbreviated as the
FrFT-RX, Deriv-RX, and some others.

Considering that the original HSI can be treated as a com-
bination of the background and anomalies, many detectors
have been proposed to reconstruct the background HSI [14].
Obviously, the key to success for this type of methods is an
accurate estimation of the background HSI [15]. During the
reconstruction of the background HSI, low rankness [16] and
sparse representation [17], [18] are the most commonly used
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tools. The representative background bases are utilized to build
the overcomplete dictionary [19]. In this way, any background
pixel in the HSI can be expressed as a sparse linear combina-
tion of the prelearned dictionary, while the anomalies cannot.
Difference between the original HSI and the reconstructed HSI
is incorporated to locate the anomalies [20]. To be specific, this
kind of methods depends on that the original HSI can be treated
as a combination of a low-rank background matrix and a sparse
anomaly component or not. Based on this, Li suggested that the
sparse component can be treated as a mixture of Gaussian noises
(LSDM-MoG). In this way, the anomalies can be detected by
the Manhattan distance [21]. Cheng and Wang [22] applied the
graph regularization and total variation regularization into the
low-rank representation of the background (GTVLRR), which
preserves the local structure of the HSI. Considering the noise is
also sparse, some works attempt to separate the noise from the
sparse space and to find the true anomalies, which is formulated
in the classical GoDec method [23]. Similar to this idea, a
component decomposition analysis (CDA) method is proposed
to treat the HSI as a combination of the principal components,
independent components, and a noise component [24].

Besides the low rankness of the dictionary matrix, considering
the intrinsically 3-D characteristics of the HSIs, the three-order
tensor is also widely applied to denote the HSIs [25], [26].
The tensor decomposition-based detector (TenB) is applied to
eliminate the background and highlights the anomalies [27].
The TenB detector abandons the first principal component in the
three dimensions from the original HSI, achieving an acceptable
detection accuracy. Based on the premise that most pixels of
the scene belong to the background, it is convenient to locate
some background pixels. With the located background pixels,
the background pixels can be reconstructed via a tensor com-
pleting method (TCD) [28] and the anomalies can be detected.
Considering the group sparse prior in the HSI, a prior-based
tensor approximation (PTA) method is proposed for detection,
which combines low-rank, sparse, and piecewise smooth with
the advantages of tensor representation [29].

Inspired by the great success of the deep learning method in
computer vision, many works have also been proposed based
on the deep learning to detect the anomalies [30]. Depending on
whether sample support is needed, the deep learning based meth-
ods can be classified into the supervised and unsupervised cat-
egories. Typically unsupervised detection methods include the
autoencoder networks and generative adversarial networks [31],
which aims at achieving the low-dimensional expression of
each pixel. An encoder–decoder long short-term memory-based
anomaly detector has been proposed to reconstruct the HSI [32].
The Mahalanobis distance is utilized to detect the anomalies for
the dimension reduced HSI. The fully convolutional autoencoder
network is also applied to reconstruct the background, in which
the anomalies appear as reconstruction errors [33]. To tackle the
anomalies being mixed in the training process and to preserve the
geometric structure among samples during the learning process,
a robust graph autoencoder (RGAE) detector with a l2,1-norm
is proposed [34]. The supervised deep learning based methods
usually transfer the detection problem into some other tasks,
such as classification [35] or abundance matrix extraction [36].

All the mentioned detectors dealt with the HSIs either from
the spatial (width–height) aspect or from the spatial-spectral
(three-order tensor) aspect. However, seen from the spatial-
spectral (height–depth) aspect, the profiles in the row direction
are also highly correlated. In this way, the row profiles (patches
in the height–depth domain) can be simulated by a matrix
autoregressive model (MARM) to formulate the background
HSI and to highlight the anomalies in the scene. Detection on
the highlighted scene is supposed to be more accurate than that
on the original scene.

The main contributions of the proposed MARM method can
be summarized as follows.

1) As far as we know, it is the first time that the MARM has
been applied to the hyperspectral anomaly detection field
for the background reconstruction. The MARM innova-
tively utilized the spatial-spectral information conveyed
by the row profiles for reconstructing the background.
Meanwhile, an optimal neighborhood reconstruction strat-
egy is first applied to eliminate some redundant or noisy
bands and to reduce the computational cost.

2) There are four HSIs that are captured by three different
sensors, and the scenes in the HSIs and the spatial reso-
lution of the HSIs are different. Row profiles in different
HSIs exhibit different correlations. In this way, the number
of profiles exploited for the regression model is varied for
different HSIs.

3) In addition, different from the traditional vector autore-
gressive model that neglects the close height–width cor-
relation in the row profiles, the matrix regressive model
keeps the original structure in the matrix, and it is more
interpretable.

II. RELATED WORKS

A. Spectral-Spatial Modeling of the Background

Since there is no information known for the anomaly de-
tection process, spectral-spatial modeling of the background
information is a direct way for the detecting. The main idea
is to reconstruct the pixels in the background using a certain
dictionary. The low-rankness and sparsity are the common tools
for the regularization process. The reconstruction model can be
expressed as

argmin rank(L) + λ||S||0, s.t.X = L+ S (1)

where X is the HSI to be detected, and L and S are the
low-rankness matrix and the sparse matrix, respectively. ||·||0 is
the l0 norm, which represents the number of nonzeros elements
in the matrix. λ is the weighting factor between the low rankness
and sparsity. This is the classical robust principal comment
analysis formulation [37], [38]. Solving for the loss function
with a l0 norm is an NP-hard problem. In this way, the l0 norm
is usually degenerated into the l1 norm or the l2 norm. The
rank() is usually transferred into the nuclear norm [39]. To
make finer discrimination between the outlier and the noise,
a robust subspace learning detector has been proposed via
argmin rank(L+OT ) + λ||S||0, where the outliers are treated
as additive sparse corruptions [40]. In order to separate the noises



8658 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 1. Architecture of the proposed MARM detector.

from the anomalies, some works also import the noises with
sparsity in the loss function, which can be formulated as

argmin rank(L) + λ1||S||0 + λ2||N ||0, s.t.X = L+ S +N.
(2)

When solving for this equation, it also should be degenerated
into the convex format. A CDA that represents a data space as
a three-component mixture model in orthogonal decomposition
has been proposed [41].

These mentioned detectors reconstruct the background of
the HSIs either from the spatial (width–height) aspect or from
the spatial-spectral (three order tensor) aspect. However, seen
from the height–depth aspect, the profiles in the row direction
are also highly correlated, which can be specially utilized for
reconstructing the background.

B. Autoregressive Model

The vector autoregressive model was first applied to model
the multivariate time series with temporal dependence [42]. As
the time series data were changed from the single variable into
the multivariate ones, the traditional autoregressive model is too
simple to formulate the process [43]. The vector autoregressive
model consists of not only the serial dependence within each
marginal series but also the interdependence across different
marginal series. In this way, it has been utilized in the statical,
economic, and even signal processing aspects [44]. It assumes
that there is a linear relationship between the output variables
and the previous variables. The traditional vector autoregressive
model can be modeled as

yt =

d∑
k=1

αkyt−k + ∈t, t = d+ 1, . . ., T (3)

where αk represents the regression coefficient. Here, d is the
order of the model, and it can also be regarded as the number
of previous series, which are correlated with the current one.
The aim of the loss function is solving for the αk. ∈t is usually
treated as the Gaussian noise. The least square method is utilized
for the solving process. Inspired by the effectiveness of VAR in
predicting the time series, many works have been proposed to
make a further improvement of the VAR, such as the sparse VAR
(sVAR). The sVAR constrains that most of the coefficients are
zero, which suits for the situation that only a few previous series
make a significant influence of the current one [45].

III. PROPOSED MARM

The proposal contains three parts: band selection, background
reconstruction via MARM, and final detection. The detailed
description about these three parts has been presented in the
following sections.

Fig. 1 exhibits the schematic diagram of the proposed method,
which consists of the following steps. First, the bands in the HSI
are selected via an optimal neighboring reconstruction strategy,
an operation neglects the redundant bands or noisy bands. Then,
the previous p observed row profiles are utilized to formulate an
MARM. The model can be utilized to predict the following row
profile, and then a background HSI can be obtained. Finally, the
classical RX detector is applied to the difference cube between
the band-selected HSI and the HSI reconstructed by MARM,
and achieving the final detection map.

To facilitate discussion, some frequently used terms are ex-
pressed here. Let X̄ ∈ Rw×h×B represent the original HSI with
B bands, in which w and h denote the width and the height of
the scene. X ∈ Rw×h×k denotes the selected HSI with k bands,
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and it can be reorganized into a row cube X̂ ∈ Rh×k×w, which
can be viewed as a collection of row profiles. Given a specific
row number i (i ranges from 1 to w), it comes into a matrix
X̂i ∈ Rh×k, and we call it a row profile. For the HSIs, the pixels
in the rows are highly correlated in the spatial domain. Suppose
a series of row profiles have been observed, they can be denoted
as a sequence [X̂i+1 X̂i+2 X̂i+3 · · · X̂i+p] ∈ Rh×k×p and be
utilized to infer the following band X̂i+p+1.

A. Band Selection

There are hundreds of bands in the HSI that come into their
rich spectral discrimination ability. However, these bands not
only burden the computational complexity but also convey some
redundant or noisy information, which hinders the accuracy of
their applications [46].

In this article, we incorporate the simple but effective optimal
neighboring reconstruction method to select some representative
bands. Suppose there are k bands selected from the original HSI
X̄ , the optimization function is formulated as

argmin
k,W

L(D) s.t.f(X̄) = f([X̄s1X̄s2 . . . X̄sk])W +D (4)

in which W = [w1, w2, . . . , wk] ∈ Rk×B and D =
[d1, d2, . . . , dk] ∈ RM×B denote weight matrix and error
matrix, respectively. f() is a function that reorganizes the
three-order tensor or two-order matrix into their previous order
format, such as the two-order matrix or one-order vector.
s1, s2, . . ., sk are the indices of the selected bands in the X̄ .
The loss function L() is expressed as

L(D) =
k∑

j=1

gτ (||dj ||2) (5)

where gτ () is a noise reducer which limits the upper bound of
the error. It is formulated as

gτ (e) =

{
e e ≤ τ
τ e > τ

. (6)

With the design of gτ (), one single inexactly reconstructed band
will not greatly influence the search process. Optimization func-
tion of expression (4) can be converted into two subproblems and
be optimized by the augmented Lagrangian method [47].

B. Matrix Autoregressive Model

Once obtained the band-selected HSIX , it can be reorganized
into a new HSI X̂ , which can be treated as a collection of w row
profiles. Different from the spectral difference between neigh-
boring bands, it is normal that responses at different wavelengths
are different, which comes into the spectral discrimination. The
neighboring row profiles are supposed to be consistent in the
background scene. It should be noted that the autoregressive
model is a typically statistical model in the time series analysis,
in which the current series is highly correlated with the previous
series [48]. This process can be described as

xt =
∑
i

Aixt−hi + εt (7)

in which xt ∈ RM×1 is the time series, H = {h1, . . ., hd} is a
set of time lags, A is a coefficients matrix, and εt represents the
Gaussian noise.

In this article, we borrow it for analyzing the HSI row pro-
files. Different from the time series which usually presents in
a format of vector, the row profiles are matrices. In this way,
the autoregressive model is named MARM. Let X̂i denote
the matrix with size of h× k at the ith row, and the matrix-
valued row series under the autoregressive framework takes
the form

X̂i = AX̂i−1B
T + Ei (8)

in which both A ∈ Rh×h and B ∈ Rk×k are square matrices,
which are the coefficient matrices of the MARM. Here, h
represents the height of the HSI, and k is the number of bands.
It means the current row profile Xi can be linearly represented
by its former profile Xi−1 in the MARM. Et ∈ Rh×k denotes
the regression error.

To solve for the two coefficient matrices A and B in the
object function, we have minimized the Frobenius norm of the
regression error. In this way, the optimization function can be
formulated as follows:

argmin
A,B

1

2

p∑
i=2

||X̂i −AX̂i−1B
T ||2F . (9)

It should be noted that both the coefficient 1
2 and square oper-

ation of the Frobenius norm are utilized for the convenience of
optimization while making no effect on the optimal variables of
the functions.

Taking partial derivatives of (9) with respect to the entries of
A and B, respectively, the gradient condition for the alternating
least square method can be obtained as∑

i

AXi−1B
TBXT

i−1 −
∑
i

XiBXT
i−1 = 0

∑
i

BXT
i−1A

TAXi−1 −
∑
i

XT
i AXi−1 = 0. (10)

The expression (9) is guaranteed to have at least one global
minimum, so the solutions of expression (10) are guaranteed to
exist. In this way, the optimization of A and B can be expressed
as

Al =

(
p∑

i=2

X̂iB
l−1X̂T

i−1

)(
p∑

i=2

X̂i−1(B
l−1)

T
Bl−1X̂T

i−1

)−1

Bl =

(
p∑

i=2

X̂T
i A

lX̂i−1

)(
p∑

i=2

X̂T
i−1(A

l)
T
AlX̂i−1

)−1

(11)

in which l ranges from 1 to the maximum iteration number.
The maximum iteration number is empirically set as 100 in the
proposed method. When solving for A1, there is a B0 involved,
which is randomly initialized.

Once the optimal A and B are achieved, the p+ 1th
row profiles can be reconstructed. Let i iterates from 1
to w − p, w − p subsets ([X̂1, X̂i+2, X̂i+3, · · · , X̂p] , . . . ,

[X̂w−p, X̂w−p+1, X̂w−p+2, · · · , X̂w−1]) can be obtained, thus
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TABLE I
INFORMATION OF THE FOUR TEST HSIS

Algorithm 1: Pseudocode of the MARM Algorithm.

Input:The original HSI, X̄; The number of bands to be
selected, k; The number of rows to utilized for regression, p;

Output:The detection map;
1: Extracting k bands from the X̄ via exp 4, and achieving

the HSI X;
2: Reorganize the X into X̂;
3: for i = 0; i < w − p; i++ do
4: The continuous p row profiles (X̂i+1, X̂i+2, . . ., X̂i+p)

in X̂ are utilized for solving A and B;
5: Achieving the Ĥi+p+1;
6: end for
7: reorganize the Ĥ into H;
8: The Global-RX applied to X-H;
9: return Detection map;

reconstructing the row profiles (Ĥp+1, . . ., Ĥw). The former p
profiles are inherited from X̂ . The reconstructed background
HSI Ĥ ∈ Rh×k×w can be transposed into H ∈ Rw×h×k, whose
first p rows are the same with those of the band-selected HSI X .

C. Final Detection via the Global-RX Detector

The difference between the band-selected HSI X and the
background HSI H can be denoted via a simple subtraction
operation

C = X −H (12)

in whichH is another format of the row profiles reconstructed by
A, X , and B. In this way, C can be viewed as the reconstruction
error of theX andH , which are supposed to follow the Gaussian
distribution. In this way, the classical Global-RX detector is
applied to C achieving the final detection map. The proposed
MARM can be summarized in Algorithm 1.

IV. EXPERIMENTS

A. Datasets

To verify the effectiveness of our proposed MARM for hy-
perspectral anomaly detection, four HSIs captured by three
different sensors with different resolutions are utilized, which
are described in detail as follows.

1) HSIs Captured by the Airborne Visible Infrared Imaging
Spectrometer (AVIRIS) Sensor: There are two HSIs captured
by the AVIRIS being applied to the experiment. The first one
depicts the airport region over the San Diego airport, CA, USA,
in 1998, whose spatial resolution is 3.5 m per pixel. There are 224
bands ranging from the ultraviolet 370 nm to the near-infrared

TABLE II
ABLATION STUDY OF THE MODEL

2510 nm. After removing the low-SNR and water absorption
bands, 189 bands are left for the experiment, whose spatial size
is 100× 100. The three aircrafts are marked as anomalies, with
a number of 58 pixels. The second HSI is the airport-2 HSI,
which were captured during a flight over the Los Angeles region
in 2011, whose spatial resolution is 7.1 m per pixel [50]. After
removing the bands with low quality, the size of the HSI utilized
for the experiment is 100× 100× 205, among which 87 pixels
are marked as anomalies.

2) HSI Captured by the Hyperspectral Digital Imagery Col-
lection Experiment (HYDICE) Sensor: There is an HSI cap-
tured by the HYDICE sensor being utilized for the experiment.
It is collected over an urban area, CA, USA, whose size is
80× 100× 175. There are 21 pixels being marked as anomalies,
which are cars and roofs. The spectrum ranges from 400 to
2500 nm. Its spatial resolution is 1.56 m per pixel and the spectral
resolution is 10 nm per band. The background land-cover types
include parking lot and some others.

3) HSI Captured by the Reflective Optics System Imaging
Spectrometer (ROSIS) Sensor: The beach-4 was captured by the
ROSIS, which depicts the Pavia region. Its size is 150× 150×
102, whose spatial resolution is 1.3 m per pixel. The vehicles
on the bridge are marked as the anomalies. The background
includes the bridge, river, bare soil, and buildings.

The corresponding detail of these four test datasets has been
listed in Table I.

B. Experimental Setup

In the experiments, comparison is made with several other
methods, which also preprocessed the original HSI via some
typical methods, including the Deriv-RX, the FrFT-RX, and the
classical Global-RX. Meanwhile, two typical matrix decompo-
sition methods are also applied for the comparison, including
the LSDM-MoG and PTA. The parameters are set according
to the suggestion in the corresponding paper, such as the initial
rank and number of mixture Gaussian noise in the LSDM-MoG,
the truncated low-rank, and some other penalty parameters. In
addition, comparison has also been made with two deep learning
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Fig. 2. Visual difference of different methods on the SanDiego.

Fig. 3. Visual difference of different methods on the HYDICE.

based anomaly detection method RGAE and the fully convolu-
tional autoencoder (Auto-AD). For the RGAE, three parameters
are adjusted according to the paper to find the best performance.
It should be noted that there are two parameters involved in the
MARM, including the number of bands being selected (k) and
the number of row profiles (p) exploited in the MARM. The k
is empirically iterated from 20 to 30 via a stride 1, and the p is
iterated from 5 to 15 to obtain the optimal detection performance.
The 3-D receiver operating characteristics (ROC) analysis [49]
is incorporated to make a measurement of the proposed method,
which includes three area under the curves (AUCs). The three
AUCs are the AUC(D,F ), AUC(D,τ), and AUC(F,τ). These
three measurements, respectively, measure the effectiveness of
the detector, the target detection ability of the detector, and the
background suppression ability of the detector. For the first
two measurements, the higher, the better. The AUC(F,τ) is
on the contrary. Moreover, visual detection maps achieved by

different detectors have also been exhibited to make a visual
assessment.

C. Ablation Study

Experiments have been conducted to illustrate the effective-
ness of the model parameters, including the band selection and
the MARM model. The corresponding AUCs of the four HSIs
have been listed in Table II, in which “BS” and “MAR” represent
the band selection module and the matrix autoregressive module,
respectively. The first column data illustrate the AUC values of
the Global-RX detector directly applied to the band-selected
HSI, which has been denoted by a superscript◦. Performance
comparison between the Global-RX and the MARM-RX◦ has
validated the effectiveness of the band selection strategy. Mean-
while, comparison between the MARM-RX◦ and the MARM-
RX has further validated the effectiveness of the MARM.
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Fig. 4. Visual difference of different methods on the airport-2.

Fig. 5. Visual difference of different methods on the beach-4.

In addition, the second column denotes the whole band being
sent into the MARM, which has been marked by a superscript∗.
Comparison between the MARM-RX∗ and MARM-RX has
demonstrated the effectiveness of the band selection.

D. Data Analysis

Figs. 2–5 and have exhibited the visual detection maps of the
proposed MARM and its competitors, in which the blue rect-
angles denote the regions which do not contain the anomalies,
and the red rectangles represent the regions which contain the
anomalies. The first column denotes the 100th band of the test
HSIs, and the second column is the referenced detection map.
All the rest of columns represent the maps achieved by the other
detectors.

The corresponding objective measurements have been listed
in Table III, in which the optimal and the suboptimum AUC(D,F )

have been highlighted by the bold and underline format,
respectively. The AUC(D,F ) is utilized to measure the
effectiveness of the detector, the AUC(D,τ) is utilized to detect
the target detection ability of the detector, and AUC(F,τ) is
utilized to measure the background suppression ability of the
detector. It is noted that the MARM always effectively sup-
presses the background and achieves the acceptable detection
performance.

When it comes to the visual exhibition of the SanDiego in
Fig. 2, it is noticed that both the RGAE and the Auto-AD detec-
tors exhibit comparatively low responses to the backgrounds,
which is consistent to the AUC(F,τ) of these two detectors
in Table III. However, the Auto-AD detector also exhibits a
low response to the anomalies, resulting its low detection rate.
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TABLE III
MEASUREMENTS OF THE PROPOSED METHOD AND THE COMPETITORS ON THE FOUR HSIS

Both the low false alarm rate and the low detection rate lead
to their unsatisfaction. The Global-RX, Deriv-RX, and the PTA
exhibit higher false alarm rates, especially for the runway. When
compared with the Deriv-RX detector, it is visually observed
that the proposed MARM-RX detector tackles the right-up
background regions more precisely. In this way, the AUC(F,τ)

achieved by the proposed method outperforms that of the Deriv-
RX. The FrFT-RX achieves high responses for the region around
the upper red rectangle, which is easily mistaken as the anoma-
lies. Compared with both the reconstruction-based methods,
LSDM-MoG and PTA, the proposed MARM-RX exhibits the
lowest response to the blue rectangle regions. It illustrates the
best background suppression ability of the proposed MARM-
RX, which is further proved by the AUC(F,τ) in Table III. In
addition, the visual detection map of the proposed MARM-RX
demonstrates a comparable performance with contrast to that of
the RGAE. Nevertheless, the performance of the RGAE is highly
related to the training process, which can be unstable with the
variation of the datasets.

To make a comprehensive evaluation of the performance, the
box plots are applied to tabular the distributions of the back-
grounds and the anomalies in the response maps and to improve
the interpretation of the data [51]. Fig. 6 demonstrates the distri-
bution of the SanDiego detection maps. Different indices in the
x-axis represent different detectors, which are listed at the right
top of the figure. The green boxes and the blue boxes denote the
distribution of the background and the anomalies, respectively.
According to the data in Fig. 6, it is noticed that for the Deriv-RX,
the RGAE, and the proposed MARM-RX, their lower hinges of
the anomalies are still larger than the extremely large responses
of the background. This proves the discrimination ability of these
three detectors. For the LSDM-MoG and the PTA, their median
responses of the backgrounds are almost next to those of the
anomalies, which is difficult to distinguish the anomalies from
the backgrounds.

For the HYDICE, the detection maps of different detectors
have been plotted in Fig. 3, and it is noticed that both the
PTA and the RGAE exhibit poor detection performance for
this data, which is consistent with the AUC(D,F ) in Table III.

Fig. 6. Box plot of different methods on the SanDiego.

Meanwhile, the Auto-AD still exhibits the low responses to
the whole scene and achieves the lowest AUC(F,τ). For the
blue rectangle regions which are backgrounds, the proposed
MARM-RX and the Auto-AD exhibit the optimal suppression
performance. All the other competitors exhibit comparatively
large responses to the background and are with comparatively
higher false alarm rates. In addition, it is observed from all the
detection maps that the Auto-AD always exhibits low responses
to both the backgrounds and the anomalies. In this way, it can
achieve the appealing background suppression performance but
can miss some anomalies at the same time.

According to the corresponding box plot in Fig. 7, it is
noticed that for the PTA and the RGAE detectors, the extremely
large responses of the background are larger than the median
responses of the anomalies. This phenomenon has explained the
poor detection accuracy of both detectors in Table III. Compared
with the FrFT-RX and Auto-AD, the anomalous box of the
proposed MARM-RX is much more balanced. To be specific,
the half-upper boxes (from the median value to the upper hinge)
of the FrFT-RX and Auto AD are severally imbalanced from
their half-lower boxes (from the lower hinge to the median
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Fig. 7. Box plot of different methods on the HYDICE.

Fig. 8. Box plot of different methods on the airport-2.

value). This imbalance illustrates the distribution skewness of
the anomalies in the maps.

As to the airport-2 HSI, all the Global-RX, Deriv-RX,
and LSDM-MoG exhibit poor background suppression perfor-
mance, especially for the blue rectangle regions. The FrFT-RX
shows an overall low response neither to the anomalies nor to the
backgrounds. Visually observed from Fig. 4, the PTA achieves a
nearly same detection performance as the proposed MARM-RX.
However, for the left-bottom background region, the proposed
MARM-RX is with lower responses, which shows its better
background suppression performance over the PTA. Both the
deep learning based methods, RGAE and Auto-AD, mistakenly
take the left buildings as the anomalies. This leads to their poor
detection rate AUC(D,τ) in Table III.

According to the box plot in Fig. 8, it is noticed that the
responses of FrFT-RX, RGAE, and Auto-AD are much smaller
than the other detectors. It further proves the aforementioned
low responses of these three detectors in the visual detection
maps. Seen from Fig. 8, the separation between the background
and the anomalies achieved by the proposed MARM-RX is the
largest among the other competitors. The extremely large value

Fig. 9. Box plot of different methods on the beach-4.

of the background is still smaller than the lower hinge of the
anomalies. In this way, the proposed MARM-RX achieves the
best detection accuracy for the airport-2.

For the beach-4 dataset, neither the Global-RX nor Deriv-
RX achieves the acceptable performance for the red rectangle
anomalous regions. All the FrFT-RX, LSDM-MoG, and RGAE
exhibit high responses for the blue background rectangles, which
result in the high false alarm rates. The rest PTA, Auto-AD, and
the proposed MARM-RX exhibit the acceptable performance
in the background regions. However, when detecting the upper
anomalies, both the PTA and the Auto-AD are less sensitive
than the proposed MARM-RX making their comparatively low
detection rates.

Fig. 9 has listed the box plots of these detectors. It is noticed
that the Auto-AD still exhibits the low responses to the whole
scene. Meanwhile, for the PTA, the extremely large value of the
background is larger than the upper hinge of the background,
which indicates its poor AUC(D,τ) in Table III.

Furthermore, the corresponding ROC curves of the data in
Table III have been plotted in Fig. 10. The detectors that belong
to the same category have been marked by the same color, and
different markers are utilized to make an intra differentiation.
The proposed MARM-RX is plotted by red. It is noticed that
the proposed MARM-RX is always with the least false alarm
rate to achieve the 100% detection rate. This have demonstrated
the effectiveness of the proposed detector in the anomalies-prior
situation. Comparison between the matrix-decomposed LSDM-
MoG and PTA has demonstrated that the proposed MARM-RX
always obtains a better background suppression ability. This is
achieved by exploiting the neighboring correlations between the
row profiles, which proves more stable to the scene.

Computational costs of different detectors have been listed in
Table IV. All the experiments have been conducted on the same
platform. It is noted that the RX-based methods are much faster
than the background reconstruction-based methods. For the
reconstruction-based methods, including the LSDM-MoG, PTA,
and the proposed method, searching for the optimal variables
takes the main time of the detection process. Compared with
both the LSDM-MoG and PTA, the proposed method is faster.
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TABLE IV
COMPUTATIONAL COST (IN SECONDS) OF AFOREMENTIONED DETECTORS FOR THREE EXPERIMENTAL DATA

Fig. 10. 3-D ROC curves of different methods on different HSIs. (a) SanDiego.
(b) HYDICE. (c) airport-2. (d) beach-4.

To be specific, for the LSDM-MoG, there are two variables
to be determined. The main computational cost is caused by
estimation of the low-rank component and noise component;
for the PTA, there are five parameters to be determined, including
the truncated low-rank r and four other hyperparameters. Among
the four hyperparameters, three ones are fixed for simplification.
In this way, there are two remaining variables that should be iter-
ated for the optimal value. However, when solving for the tensor
approximation, four new variables have been imported to make
the loss function into an auxiliary Lagrangian function, making
the detection process time-consuming; for the proposed method,
there are two parameters involved. The main computational
complexity is caused by the regressive representation process.
However, with the band selection module, the input matrix is
much smaller than the original one, which lessens the compu-
tational costs at a large degree. For the RGAE detector, there
are three parameters being involved. The training is processed
for all the probable parameters, making its heavy computational
burden. In addition, compared with the MARM-RX∗ without
band selection, the proposed method not only achieves the higher
detection accuracy but also achieves a less computational cost.

V. CONCLUSION

A novel hyperspectral anomaly detection method has been
proposed via MARM in this article. It follows the original matrix
structure in the row profiles, and both the spatial and spectral

correlation are utilized for the detection process. Meanwhile,
band selection is first applied to eliminate some noisy bands and
redundant bands, and it also reduces the computational cost of
the proposed methods. Experimental results and data analysis
on four HSIs, which were captured by three different sensors
and with different resolutions, have validated the effectiveness
of the proposed method.
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