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AOSVSSNet: Attention-Guided Optical Satellite
Video Smoke Segmentation Network

Taoyang Wang , Jianzhi Hong , Yuqi Han , Guo Zhang , Shili Chen , Tiancheng Dong,
Yapeng Yang, and Hang Ruan

Abstract—Smoke is more observable than open fires. Optical
satellite video has the advantages of a wide monitoring range, fast
response speed, and good economy in large-scale surface smoke
monitoring tasks. It can be used in wide-area forest wildfire mon-
itoring, battlefield dynamic monitoring, disaster relief decision-
making. The smoke segmentation method based on traditional
handcrafted features is easily limited by the scene and data. This
article introduces the deep learning method to the optical satellite
video smoke target segmentation. However, due to the lack of real
smoke images and the blurred edges of smoke, there are currently
few labeled datasets for smoke segmentation in high-resolution
optical satellite imagery scenes, which cannot provide sufficient
training data for deep learning models. The smoke image from
the satellite perspective also has the characteristics of multiscale
features and ground object background interference. To solve the
abovementioned problems, we construct a set of high-resolution
optical satellite imagery smoke synthesis datasets based on the
optical imaging process of smoke targets, which saves the cost
of manual labeling. In addition, we design an attention-guided
optical satellite video smoke segmentation network model, which
can effectively suppress the ground object background’s false
alarm and extract the smoke’s multiscale features. Synthetic data
faces the transferability problem in real-world applications, so the
physical constraints of the smoke imaging process are introduced
into the loss function to improve the generalization of the model
in real smoke data. The comprehensive evaluation results show
that the method outperforms representative semantic segmentation
networks.
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I. INTRODUCTION

SMOKE is more observable than open fires. Compared with
traditional inductive detectors that need to be close to the

fire source for physical and chemical composition analysis, the
smoke sensing technology based on video image processing
can respond faster to fire alarms, and the noncontact method
can effectively eliminate the loss of the sensor [1]. Compared
with the existing smoke coarse localization based on image
classification and target detection, smoke segmentation effec-
tively integrates location information and attribute information
and obtains accurate pixel-by-pixel information, which helps
rescuers effectively identify the source of fire and reduce the
possibility of fire alarm delays. In addition, it can dynamically
monitor the trend of smoke morphology, effectively reflect the
current environmental conditions of the fire scene from the side,
and provide instructive data support for predicting the spread
trend and speed of the fire, which has significant research value
and practical significance.

In recent years, with the continuous innovation of sensor
technology and the improvement of the quality of spatial data
acquisition, the emergence of optical video satellites that are
capable of high frame rate (frame rate ≥ 24 FPS) imaging in
the same area with dynamic observation capabilities, has made
the research of smoke segmentation method for optical satellite
video data more prominent than ground surveillance video,
which has the advantages of wider monitoring range, faster
response speed, and better economy. It shows great potential
in monitoring fire smoke in vast surface spaces such as forests,
volcanoes, and large oil tank farms.

However, smoke segmentation is a highly challenging com-
puter vision task because smoke has more substantial intraclass
variability than other segmentation targets. It is affected by
lighting and shooting perspective and shows different colors,
poses, and shapes at different times and under different physical
and chemical conditions [2], as shown in Fig. 1(a). Moreover,
compared with ground surveillance video, the scene from the
satellite perspective has complex and similar ground object
backgrounds and multiscale smoke targets, as shown in Fig. 1(b).
Therefore, although the traditional artificially designed feature
expression method can achieve accurate extraction of smoke to
a certain extent, most of these design schemes are relatively

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-6014-5354
https://orcid.org/0000-0003-4059-7131
https://orcid.org/0000-0001-7905-0163
https://orcid.org/0000-0002-3987-5336
https://orcid.org/0000-0001-7691-0033
mailto:wangtaoyang@whu.edu.cn
mailto:hongjianzhi@qq.com
mailto:sl_chen@whu.edu.cn
mailto:yuqi_han@tsinghua.edu.cn
mailto:guozhang@whu.edu.cn
mailto:2021106190028@whu.edu.cn
mailto:yang8304@126.com
mailto:dragonhang9@163.com


WANG et al.: AOSVSSNET: ATTENTION-GUIDED OPTICAL SATELLITE VIDEO SMOKE SEGMENTATION NETWORK 8553

Fig. 1. Challenges of optical remote sensing satellite smoke segmentation. (a)
The irregular shape and blurred edges of the smoke make it difficult for pixel-
by-pixel manual annotation. (b) Interference of similar or complex background
objects in remote sensing images.

complex, and the selection and combination of features lack
unified principles and specifications. It is more susceptible to
scene and data constraints in smoke target extraction [3]. As an
excellent data-driven modeling tool, deep learning can automat-
ically learn the excellent and essential features that conform to
the distribution of the current task image dataset and significantly
reduce the labor cost of feature modeling, which has attracted the
attention of researchers, such as CNN [4], [5], [6], [7], GCN [8],
and Transformer [9]. The performance of deep learning models
largely depends on large-scale, high-quality labeled training
datasets. The slow development of smoke segmentation datasets
for high-resolution optical satellite images restricts related re-
search progress. The main reasons include the following two
points: 1) Since fire and smoke are accidental emergencies in
daily life, there are relatively few fire and smoke scenes on
the ground that can be captured by satellites, resulting in a
small scale of real datasets for research; 2) Because the smoke
target has the characteristics of irregular shape and blurred edge,
it is extremely difficult and inaccurate to manually label the
boundary of the smoke target pixel by pixel.

This article constructs a set of high-resolution optical satellite
image smoke target synthesis datasets based on the optical
imaging principle of smoke targets to solve the problem of
the lack of reliable training datasets and the difficulty of la-
beling in the optical satellite video smoke segmentation task,
which significantly saves the cost of manual labeling. Compared
with typical smoke images, the smoke targets in satellite video
have stronger visual saliency than other ground objects. For
the problem that the multiscale segmentation results of optical
satellite video smoke are easily disturbed by background objects,
an attention-guided optical satellite video smoke segmentation
network model called attention-guided optical satellite video
smoke segmentation network model (AOSVSSNet) is proposed
in this article to improve the segmentation accuracy. For the
transferability of the synthetic dataset training model on the real

test dataset, this article introduces the physical constraints of the
smoke imaging process into the loss function of the segmentation
network, which has good generalization.

In summary, this article has the following three main contri-
butions.

1) This article constructs a set of high-resolution optical
satellite image smog target synthesis datasets. As far as
we know, this is the first high-resolution optical satellite
smoke dataset, which effectively solves the issues of lack
of training samples for smoke segmentation and labeling
difficulty.

2) This article proposes a convolutional neural network
model for smoke segmentation, which to our knowledge
is the first deep learning model for smoke segmentation
in optical satellite video. It can achieve end-to-end train-
ing and prediction, and effectively suppress background
interference while extracting smoke pixels.

3) In this article, the physical constraints of the smoke imag-
ing process are introduced into the loss function of the
segmentation network, which improves the generalization
of the synthetic dataset training model on the real test
dataset.

The rest of this article is organized as follows. Section II
presents related work on semantic segmentation of smoke im-
ages. Section III details the optical satellite imagery smoke
training data synthesis method and smoke segmentation model
for optical satellite video. Section IV presents and analyzes the
experimental results of the proposed method. Finally, Section V
concludes this article.

II. RELATED LITERATURE

Currently, there is no public report on the research of smoke
segmentation for optical satellite video. Therefore, the existing
algorithm can be adapted by referring to the research on smoke
segmentation based on natural images. The mainstream smoke
segmentation methods can be divided into traditional manual
features and deep learning methods.

A. Traditional Smoke Segmentation Methods

Smoke targets have rich image information, including static
features such as color, texture, and shape, and dynamic char-
acteristics such as diffusion, displacement, and flickering [2].
Therefore, traditional smoke segmentation methods focus on
using various smoke image information to form a feature rep-
resentation method with sufficient recognition. Among them,
the focus of research is color, texture, frequency, and motion
features.

In terms of color features, the characteristics of smoke in
the red-green-blue (RGB) color model are mainly manifested in
that the gray values of the R, G, and B channels are relatively
similar, roughly distributed in the range of 80–220 [10], [11]. The
salience of the hue-saturation-value (HSV) and hue-saturation-
intensity (HSI) color models is mainly focused on the saturation
component [12], [13], [14]. In terms of texture features, gray
level co-occurrence matrix [15], local binary pattern (LBP)
[16], and Pyramid LBP [17], [18] are the more commonly used
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methods. Additionally, dynamic textures have the potential to
characterize temporal invariance and have also been applied to
describe smoke [19]. In terms of frequency features, a single
frequency feature can achieve a good recognition effect [20],
[21], as different frequency information in the frequency domain
corresponds to the image information in the spatial domain.
The high, medium, and low-frequency information reflect the
image’s edge details, structure, and main components. Among
them, wavelet transform is the most commonly used frequency
feature extraction method [22], [23], [24]. By fusing the target
features in the spatial domain and the frequency domain, and
using ensemble classifier learning, the translation, and rotation
invariant features of the target can be expressed, thereby improv-
ing the detection accuracy [25], [26], [27], [28], [29]. In terms of
motion features, the drift, diffusion, and other motion character-
istics of smoke are the focus of research [30], [31]. The feature
extraction mainly adopts statistical features, including optical
flow estimation method, area, and centroid change statistics of
suspected smoke areas, and movement direction change statis-
tics [11], [22], [32]. Smoke segmentation can also be seen as the
process of background and moving foreground segmentation,
extracted by methods such as anomaly detection [33], linear
unmixing [34], object tracking [35], or modal translation [36].

In general, although these traditional methods can achieve ac-
curate smoke extraction to a certain extent, they usually require
manual feature design and classifier selection, which requires
designers to have solid empirical knowledge in specific fields
such as the extraction method and combination of features, the
setting of hyperparameters, resulting in high cost. In addition,
the migration of artificially designed features is poor, and the
testing effect is generally good only on the current task dataset.
However, it is difficult to adapt to the smoke targets with different
data quality and scene changes, resulting in unstable or poor
segmentation accuracy.

B. Deep-Learning-Based Smoke Segmentation Methods

The emerging deep learning algorithm avoids the complex
feature design process to the greatest extent. By designing
a reasonable neural network structure, people can enable the
model to automatically and efficiently learn excellent features
adapted to the current task with less manual intervention, and
bring significant improvements to visual smoke monitoring tasks
of various granularities [37], [38], [39], [40]. The performance
of smoke semantic segmentation network models largely relies
on large-scale pixel-by-pixel labeled data. At present, the open-
source smoke datasets of natural images mainly include the lab-
oratory dataset of Bilken University, Turkey [41], the laboratory
dataset of Keimyung University, South Korea [42], the Chino
flame smoke image dataset BoWFire [43], the dataset of the
State Key Laboratory of Fire Science, University of Science and
Technology of China [44], and Jiangxi University of Finance and
Economics Yuan Feiniu Laboratory datasets [45]. Among these,
only the last two datasets have pixel-by-pixel annotations of
smoke. The rest of the labeled datasets are used for classification

or detection, with the scene mainly based on the ground perspec-
tive. Remote sensing images have a wide observational perspec-
tive and rich and diverse data sources, including optical, SAR,
hyperspectral, and video. Data obtained from different platforms
can provide diverse and complementary information [46], [47].
The smoke datasets for optical satellite images mostly come
from low-resolution multispectral images such as MODIS [48],
Himawari-8 [49], LandSat-8 [50], and GOES-16 [51]. The lack
of large-scale, open-source, high-resolution labeled datasets for
segmentation restricts the development of smoke segmentation
network models for high-resolution optical satellite imagery.

In addition, compared to image classification and object detec-
tion tasks, fine-grained semantic segmentation tasks rely more
on contextual feature information to obtain higher segmentation
accuracy. At present, the main ideas of semantic segmentation
networks include fully convolutional neural networks (such as
FCN [52]), encoder-decoder structures (such as U-Net [53],
SegNet [54], PSPNet [55]), and dilated convolutional networks
(such as DeepLab series algorithms [56], [57], [58], [59]).
Existing smoke segmentation methods are also mainly based
on it.

Regarding how the algorithm utilizes the input data stream,
video smoke segmentation can be divided into single-frame
image smoke segmentation that only uses static appearance fea-
tures and video smoke segmentation methods that fuse dynamic
spatiotemporal features.

In terms of single-frame image smoke segmentation research,
Xu et al. [60] proposed an end-to-end framework for smoke
saliency detection, which consists of a region proposal net-
work and an autoencoder structure to achieve smoke frame-
level recognition and pixel-level fine segmentation. Yuan et al.
[45] proposed an end-to-end segmentation network that fuses
dual-branch features for blurred, semitransparent, and nonrigid
boundaries of smoke targets, which outputs a soft segmentation
probability map with 0-1 continuous values and gains pixel-
by-pixel density estimation. Yuan et al. [61] believed that the
full fusion of information between the high and low layers of
the codec could improve the segmentation accuracy of fuzzy
objects such as smoke and clouds and proposed a deep neural
network with a wave structure using a synthetic smoke dataset
for training to achieve smoke density estimation. Yuan et al.
[62] proposed a classification-assisted gated regression semantic
segmentation network for the problem of interclass similarity of
smoke and small smoke segmentation, which can learn long-
distance feature relationships and contextual information and
improve the accuracy of smoke segmentation. It is not difficult
to see from the abovementioned methods that the natural image
smoke segmentation network basically innovates and transforms
around the goal of how to enhance the contextual features.
These strategies include dual-branch feature fusion, high-level
and low-level feature fusion, and visual attention mechanisms to
improve the accuracy of smoke segmentation, which are worthy
of reference and study.

Currently, there are relatively few deep learning smoke seg-
mentation methods for the overall processing of video form. Li
et al. [63] applied a 3-D fully convolutional neural network to
the video wildfire smoke segmentation task for the first time
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and reduced the false detection rate of smoke segmentation
by fusing the information between high and low layers and
expanding the receptive field. The unsupervised video target
segmentation network that has emerged in recent years has also
attracted attention. It mainly realizes the classification of the
target in the initial frame and the tracking in the subsequent
frame from the pixel level according to some salient features of
the target to be segmented, such as motion features, which shows
potential in video smoke object segmentation that is difficult
to manually annotate. Two-stream networks fusing motion and
appearance features and recurrent neural networks are two im-
portant ideas to achieve unsupervised video object segmentation.
The representative methods include MP-Net [64], LVO [65],
FSEG [66], PDB [67], CosNet [68], and AGNN [69]. Although
these methods perform better in the segmentation of rigid objects
with translational motion, the motion pattern of smoke generally
presents a diffuse motion from the source point to the surround-
ing; i.e., the edge pixels move while the interior pixels remain
stationary. Therefore, the influence of the video frame sequence
is mainly on the edge of the smoke. Although the model that
introduces motion information will further refine the edge of
the smoke or enhance the feature expression of little smoke, it
also introduces more motion noise. The repeated texture inside
the smoke makes the description of the motion optical flow
feature unreliable, resulting in poor smoke segmentation results
or missed detections.

Satellite video processing methods can be divided into multi-
frame processing methods using timing information and frame-
by-frame processing methods. Considering that video annota-
tion is expensive, to extract the main area of the smoke target as
much as possible, this article adopts the idea of frame-by-frame
processing of the deframed video, takes the improved version
UNet++ of the classic semantic segmentation network UNet as
the basic framework, and realizes high and low-level features
through a dense skip connection structure. The complete inte-
gration of the convolutional attention module guides the model
to pay more attention to the smoke target and suppress the back-
ground of irrelevant objects to achieve accurate segmentation of
the smoke area based on optical satellite video.

III. PROPOSED METHOD

A. Smoke Segmentation Synthetic Dataset Construction

Currently, optical satellite image smoke datasets mainly
focus on low-resolution scenes and coarse-grained detection
and recognition tasks, lacking large-scale high-resolution open-
source segmentation datasets. To solve the problem of the
scarcity of training data for the deep learning model of smoke
segmentation, we uses the existing open-source datasets for
natural image smoke segmentation based on the optical smoke
imaging principle to construct a rich and diverse optical satellite
image smoke target segmentation synthetic dataset and validates
the generalization performance on synthetic datasets through
real data.

1) Optical Imaging Principle of Smoke Target: Smoke is
usually composed of incompletely burned tiny solid particles
floating in the air. Through scattering and absorption of light

Fig. 2. Optical imaging process of the smoke target [61].

sources or reflected light, the light is continuously weakened
during the propagation process and finally imaged in the camera
under observation [70]. Fig. 2 shows the optical imaging process
of smoke targets [61].

The optical imaging process of a smoke target from a 3-D
space to a 2-D plane means each pixel value i(x) can be sim-
plified as a weighted sum of pure background pixel values and
pure smoke pixel values in mathematical description

i (x) = b (x) (1− α (x)) + s (x)α (x) . (1)

In (1), b(x) represents the background color, s(x) represents
the smoke color, and α(x) represents the transparency coef-
ficient or alpha channel of the smoke. Since this equation is
essentially a linear color synthesis equation in the mathematical
form [71], [72], this article regards α(x) as the optical density
of smoke, which helps us to synthesize smoke images by quan-
titative methods later, and incorporate physical constraints into
the model to improve segmentation accuracy.

2) Synthesis Method of the Smoke Target Image: The smoke
optical density α(x) is a value ranging from 0 to 255, and it
is neither possible nor accurate to calibrate the transparency
of each pixel manually. Existing studies have used computer
graphics methods to simulate and visualize smoke based on the
principle of fluid dynamics. The most representative one is a set
of open-source smoke datasets constructed by the team of Prof.
Y. Feiniu from Jiangxi University of Finance and Economics
using the open-source 3-D modeling software Blender [45].
The research team has generated a large amount of synthetic
smoke data, including background, smoke, and transparency
maps, by setting physical parameters such as wind, motion, and
gravity. These smokes had different shapes, densities, lighting,
and backgrounds, which have a realistic vision of real smoke.
It significantly has saved the cost of manually collecting real
smoke images and provides a sufficient database for deep learn-
ing model training.

The smoke targets in the ground cameras and remote sensing
images have similar diffusion motion patterns, but the scales
of the smoke targets in the remote sensing images are more
different, and there are complex ground object backgrounds.
Therefore, on the basis of the abovementioned open-source
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Fig. 3. Example of synthetic smoke dataset from satellite images.

smoke dataset, this article selected remote sensing images of dif-
ferent scenes as the background, and constructed a set of optical
satellite image smoke target segmentation synthetic datasets.

1) First, deframe and block the optical satellite video to
obtain a pure background image b(x).

2) Then, for the pure background image b(x) and the exist-
ing pure smoke image s(x) and the corresponding trans-
parency image α(x), perform linear stacking and set a
random factor γ to generate a composite image I(x) of
smoke with different colors. The extended smoke target
synthesis equation can be expressed as follows:⎧⎨
⎩

IR (x) = (1− α (x)) BR (x) + α (x) γ1SR (x)
IG (x) = (1− α (x)) BG (x) + α (x) γ2SG (x)
IB (x) = (1− α (x)) BB (x) + α (x) γ3SB (x) .

(2)
Among them, γ1, γ2, γ3 are random numbers in the range of

[01].
3) Next, take the data enhancement operation of horizontal

and vertical flipping on the composite smoke image I(x),
which can reduce the overfitting of the model to a particu-
lar feature and improve its robustness and generalization.

4) Finally, set the threshold Th for the transparency map
α(x) corresponding to the smoke synthesis image I(x),
and generate its corresponding binary mask image accord-
ing to the following equation as the ground-truth map of
the semantic segmentation task. Th is set to 128 in this
article. Fig. 3 shows the synthetic dataset

β =

{
1 if α ≥ Th
0 else.

(3)

B. AOSVSSNet Network Structure

Existing semantic segmentation networks are based on U-Net.
U-Net includes four-time down-sampling and up-sampling en-
coders and decoders and a long-skip connection structure, which
realizes the splicing of high-level semantic and low-level geo-
metric features and improves segmentation accuracy. However,
some questions can still be explored in the design of the U-Net
network, including the degree of influence of sampling times on

Fig. 4. Framework of the proposed AOSVSSNet algorithm.

feature extraction and the actual performance of long-connection
structures in bridging the semantic gap. In response to these
problems, Zhou et al. [73] extended the U-Net network and
proposed an encoder-decoder structure UNet++ composed of
nested dense short-skip connection layers by stacking U-Net
networks of different levels, which helps to reduce the semantic
gap between the feature map and the decoded feature map. It
has a strong ability to capture image feature details, adapt to
the high-resolution remote sensing images with rich details,
multiscale features, and complex structure of ground objects
characteristics, and has better segmentation performance.

Therefore, an attention-guided optical satellite video smoke
segmentation network with the pruned version of UNet++ as
the basic structure was designed.

1) CBAM was introduced between the original encoder lay-
ers to adaptively select and enhance features, so that the
network could focus more on the smoke target content
and global location information, suppress other irrelevant
ground objects and noise information, and improve the
accuracy of smoke segmentation.

2) Select the lightweight network MobileNetV2 as the con-
volution unit of the network to reduce the number of
parameters required for training.

3) According to the smoke optical imaging process, a com-
plex loss function with multiple constraints was intro-
duced into the model, which could achieve fine segmen-
tation of smoke targets based on the optical concentration
estimation results, and improve the generalization perfor-
mance of the model tested on real data.

Correspondingly, according to the loss function, the number
of channels at the input and output of the network was adjusted.
Details are shown in Fig. 4.

1) UNet++ Network Structure: The network structure of
UNet++ is shown in Fig. 5, which mainly includes five parts:
input interface, encoder, decoder, skip connection, and deep
supervision.

The encoder part consists of five down sampling layers X00,
X10,X20,X30,X40. Each downsampling layer is implemented
by a VGG block and a pooling layer, and each VGG block is
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Fig. 5. UNet++ network structure.

concatenated with two convolutional layers with a kernel size of
3× 3 pixels and a sliding stride of 1 pixel. The number of VGG
block convolution kernels in each layer is 64, 128, 256, 512,
and 512, respectively. The implementation of the downsampling
layer can choose other convolutional neural network structures
according to actual needs, and the number of convolution kernels
can also be adjusted as needed.

The decoder part mainly includes four branches. These
branches upsample the feature maps extracted by X10, X20,
X30, X40, and fuse the shallow features of the same layer,
and iteratively process from top to bottom to obtain the output
graph of four branches. Similar to the encoder, the specific
implementation of each layer unit of the decoder can also be
designed as needed. The calculation result of each unit of the
codec part can be expressed by the following equation:

xi,j=

⎧⎨
⎩
H
(
P
(
xi−1,j

))
j = 0, i = 1, 2, . . . , 5

H
([[
xi,k

]j−1

k=0
, U

(
xi+1,j−1

)])
j > 0, i = 1, 2, . . . , 5

.

(4)

In (4), H(·) represents the convolution computation, P (·)
represents the max-pooling computation with a size of 2 × 2 for
downsampling, U(·) represents the deconvolution computation
for upsampling, and [·] represents feature connections in the
channel dimension.

The blue solid line path is the deep supervision layer,
which can combine the output results of each branch of the
decoder to obtain the final segmentation result. Combination

Fig. 6. Pruned form of the UNet++ model.

the four branches of the decoder between the corresponding
level of the encoder can be regarded as four subnetworks of
different levels. A separate model corresponding to the four ver-
sions can be formed through pruning: UNet++L1, UNet++L2,
UNet++L3, and UNet++L4, as shown in Fig. 6. Compared
with training four subnetworks separately and selecting the
model, UNet++ adopts the strategy of training the overall model
and then pruning, which has stronger operability and is less
time-consuming. When the scale of the subnetwork reaches a
specific target prediction accuracy, the model with the smallest
memory footprint or calculation amount can be obtained by
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Fig. 7. Calculation process of CBAM.

the approach, which reflects the flexibility and efficiency of the
model.

2) Convolutional Attention Module CBAM: While providing
sufficient, discriminative, multiscale deep features for image
classification or regression tasks, convolutional neural networks
also introduce more redundant and noisy information, increasing
computational cost and affecting segmentation performance.
Feature optimization can select the most useful features for
the segmentation task from the original feature set. Inspired
by human vision research, the convolutional attention mecha-
nism, an excellent deep feature selection method, can learn the
weight distribution of output feature maps, highlight the target
content and location information, and ignore other irrelevant
information. Currently, the convolutional attention mechanism
is mainly divided into three categories: spatial attention mecha-
nism, channel attention mechanism, and hybrid attention mech-
anism. Among them, the hybrid attention mechanism considers
spatial and channel similarity. The main methods include CBAM
[74], DANet [75].

Optical satellite video is a high-resolution remote sensing
time series image. The complex background of ground objects
is the primary interference information for the task of smoke
segmentation. At the same time, the smoke mainly moves up-
ward and is less constrained by the structure of ground objects.
Therefore, a lightweight, efficient, and plug-and-play CBAM
module was integrated into the UNet++ model to adjust the
feature weights in the spatial and channel directions, improve
the semantic expression ability of the network for the smoke
target, and realize end-to-end training.

The working principle of CBAM can be shown in Fig. 7.
Assuming that the size of the input feature mapF isH ×W and
the number of channels is C, then CBAM first uses the channel
attention module to calculate the feature map F to obtain a 1-D
channel attention weight distribution AC (size is 1× 1× C)
and then calculate the dot product of the feature map F and
AC to obtain the channel-oriented salient feature map FC , and
the calculation process is expressed by (5). Then, use the spatial
attention module to calculateFC to obtain a 2-D spatial attention
weight distribution AS (the size is H ×W × 1). Finally, the dot
product of the feature map FC and AS is calculated to obtain the
spatially significant feature mapFM , and the calculation process
is expressed by (6) as follows:

FC = AC (F )⊗ F (5)

FM = AS (FC)⊗ FC (6)

represents the dot product operation in the equation.

TABLE I
ORIGINAL LAYER STRUCTURE OF MOBILENETV2 MODEL

3) Lightweight Convolutional Neural Network Mo-
bileNetV2: Compared with UNet, UNet++ has a stronger
multiscale semantic feature expression ability. However, it also
has more convolution computing units, which will reduce the
processing speed of optical satellite video data. It is challenging
to meet the future onboard processing need with limited
computing and memory resources. In the context of the needs of
embedded mobile devices and real-time processing, lightweight
convolutional neural networks have emerged, and MobileNet
series algorithms are an excellent representative of them.

MobileNetV2 [76] is a lightweight network proposed by
Google in 2018. It inherits the depthwise separable convolution
adopted by MobileNetV1 [77] and adds a new structure called
bottleneck residual module, mainly composed of two substruc-
tures of reverse residual and linear bottleneck. Compared with
the accuracy of the ordinary convolution layer, it significantly re-
duces the number of model parameters and computing resource
consumption and has better comprehensive performance. The
layer structure of the original MobileNetV2 model is shown in
Table I.

a) Depthwise Separable Convolution: The most promi-
nent feature of depthwise separable convolution is that it can
significantly reduce the number of parameters required for con-
volution calculation without affecting the performance of the
model. The depthwise separable convolution splits the tradi-
tional convolution calculation into two stages: depthwise convo-
lution and point convolution. The computation ratio of depthwise
separable convolution and traditional standard convolution can
be expressed as

O(Depthwise Separable Convolution)

O(Standard convolution)

=
O(Depthwise convolution) +O(1×1 convolution)

O(Standard convolution)

=
K ×K ×H ×W ×M + 1× 1×H ×W ×M ×N

K ×K ×H ×W ×M × N
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Fig. 8. Residual module and inverse residual module.

=
1

N
+

1

K2
. (7)

In (7), K represents the size of the convolution kernel, H , W ,
andM represent the height, width, and the number of channels of
the input feature map, respectively, andN represents the number
of channels of the output feature map. In reality, since the number
of channels N of the output feature map is often large, when
using a convolution kernel with a size of 3×3 to calculate the
output feature map of 8 channels, the calculation amount of
the depthwise separable convolution is reduced by nearly 80%,
compared with traditional standard convolution.

b) Inverse Residual Structure: The emergence of the
residual structure has well compensated for the difficulty of
training caused by the depth of the neural network and brought
a significant improvement to the performance of the model.
Therefore, MobileNetV2 also draws on this design to form a new
structure called the inverse residual structure, as shown in Fig. 8.
Considering that the channel compression of the input feature
map will reduce the accuracy of the model, its calculation pro-
cess is designed into three steps: feature enhancement, feature
extraction, and feature dimensionality reduction. In addition,
to prevent network performance degradation, the structure also
replaces the ReLU6 function used for feature mapping from
high-dimensional to low-dimensional with a linear function,
forming the final linear bottleneck structure. In conjunction with
the depthwise separable convolution mentioned previously, it
can effectively reduce the computational cost of the reverse
residual structure in the high-dimensional feature extraction
process and achieve the unification of model performance and
efficiency. Therefore, this paper used MobileNetV2 as the basic
unit of convolution calculation of the network model to improve
the efficiency of the algorithm.

4) Loss Function: In this article, the input interface of the
segmentation network was set to a three-channel RGB smoke
synthesized image, and the output interface was set to a seven-
channel feature map. The first, second, and third channels of
the output were used to predict the three-channel pure back-
ground pixel values of RGB. The output’s fourth, fifth, and
sixth channels were used to predict the three-channel pure smoke
pixel values of RGB, and the output’s seventh channel was used
to predict the values of the RGB synthesized smoke images.
Correspondingly, the segmentation network adopted a complex
loss function [61] containing four error terms with physical
constraints, which was defined as the following equation:

L = wα Lα + wsLs + wbLb + wcLc. (8)

Among them,Lα,Ls,Lb, andLc represented the mean square
error of the four predicted values including the smoke density,
RGB pure smoke pixel value, RGB pure background pixel value,
and the RGB synthesized smoke image pixel value, as shown
in (9)–(12). wα, ws, wb, and wc, respectively, represented the
weight coefficients of the four error terms in the final error, all
of which were taken as 0.25 in this article

Lα =
1

2
‖α− αgt‖2 (9)

Ls =
1

2
‖s− sgt‖2 (10)

Lb =
1

2
‖b− bgt‖2 (11)

Lc =
1

2
‖i− c‖2 =

1

2
‖i− b (1− α)− sα‖2. (12)

In (9)–(11), α, s, and b represented the predicted values of
the smoke density, RGB pure smoke pixels and RGB pure
background pixels, respectively; αgt, sgt, and bgt represented
the corresponding ground truth; In (12), i and c denoted the
ground truth and predicted values of the RGB synthesized smoke
images, respectively. The setting of these four error terms can
constrain the predicted value of each component in a mixed pixel
of the smoke image, thereby improving the accuracy of smoke
concentration prediction.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setups

a) Synthetic Dataset and Real Dataset: The experimental
data included two parts: synthetic dataset and real dataset. The
synthetic dataset was used for training and testing the network
model, and the real dataset was used to test the network model
trained based on the synthetic data to verify the transferability
of the smoke synthetic dataset.

The synthetic dataset was made according to the method de-
scribed in Section III. The experiments in this chapter construct a
smoke synthesis dataset containing 10000 synthetic images and
labels with a size of 256×256. Its background types include
airports, highways, forests, built-up areas, and water bodies
from the perspective of satellite remote sensing. The synthetic
smoke targets had different colors and shapes. In total, 80%
of the samples were randomly selected as the training set in the
experiments in this chapter, and the remaining 20% were equally
divided into the validation set and the test set. The samples are
placed according to the file structure of the Pascal VOC public
dataset.

The real dataset adopted a set of real-shot optical satellite
videos (a total of 200 frames of images) and the corresponding
artificially labeled data to test the effectiveness of the synthetic
data and the methods in this chapter, as shown in Table II and
Fig. 9.

b) Evaluation Metric: Moving object segmentation algo-
rithms can evaluate their performance in terms of both accuracy
and efficiency.

In terms of accuracy, the most commonly used evaluation
index for image segmentation is intersection over union (IoU),
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TABLE II
SPECIFICATIONS OF OPTICAL SATELLITE VIDEO REAL DATA

Fig. 9. Example on real data segmentation labels.

which represents the ratio of the area of the intersection between
the prediction and the label area to the total area covered by the
two, indicating the accuracy of the algorithm prediction. PT
represents the set of pixel locations within the prediction area,
and GT represents the set of pixel locations within the true label
area. The IoU can be represented by the following equation:

IoU =
|PT ∩GT |
|PT ∩GT | . (13)

In the case of multiclassification, the abovementioned equa-
tion can be extended to mean IoU (mIoU):

mIoU =
1

c

c∑
i = 1

IoUi. (14)

In (14), c is the number of categories, and IoUi is the intersec-
tion ratio of the ith category. The task of smoke segmentation is
a binary classification problem, so this article took the average
of IoU of smoke pixels and background pixels as the processing
accuracy of a single-frame image, and calculated the average of
mIoU of multiple frames to obtain the processing accuracy of
our method.

In terms of efficiency, this chapter adopted the number of
predicted frames per second (FPS) to evaluate the segmentation
speed of our method.

c) Environment: The experimental environment was the
Ubuntu 20.04 operating system. The PyTorch environment was
configured, the Visual Studio Code editor was used, and the
NVIDIA GeForce RTX 3090 graphics card was used to complete
the algorithm implementation, training, and prediction.

We adopted the end-to-end training method and the Adam
parameter optimization algorithm. The hyperparameters were
set as follows: the initial learning rate was set to 1e-4, the learning
rate decay coefficient was 0.98, the number of batches was set
to 8, the training epoch was set to 50 times, the momentum was
set to 0.9, and the weight decay was 1e-4.

B. Ablation Experiments

To verify the effectiveness of each module in the method
in this chapter, this section took UNet++ as the basic frame-
work to design a series of ablation experiments, as shown in
Table III. The first line is the UNet++ network. The sec-
ond line embeds the attention mechanism module CBAM into
the UNet++ encoder. The third line replaces all VGGNet
used for feature extraction in UNet++ with MobileNetV2.
The fourth line replaces the binary cross-entropy loss func-
tion in UNet++ is the composite loss function described in
Section III. The fifth line is AOSVSSNet and the sixth line
prunes it.

The test performance of each model in the ablation experiment
on the synthetic smoke dataset is shown in Table IV. It can be
seen that models 5, 2, and 6, namely ASSNet without pruning,
UNet++&CBAM, and AOSVSSNet with pruning, have higher
segmentation accuracy, which are 72.58%, 72.23%, and 70.51%,
respectively. Models 6, 1, and 2, namely AOSVSSNet with prun-
ing, UNet++, UNet++ & CBAM, have higher segmentation
efficiencies 227FPS, 190FPS, and 185FPS, respectively.

As shown in Fig. 10, model 2 added the convolutional at-
tention module CBAM to UNet++, which could incorporate
global context information in training, eliminate the interference
of irrelevant ground object background information, enhance
the distinguishability of smoke areas. Compared with model 1,
namely UNet++, its segmentation accuracy was improved by
0.56%. CBAM only introduced a small number of parameters, so
that the segmentation efficiency of model 2 was slightly lower
than that of model 1, taking into account both accuracy and
efficiency.

Model 3 used the lightweight module MobileNetV2 in the
feature extraction. The segmentation accuracy of Model 3 on
the test data was low, and overfitting occurs. This might be
because the expansion coefficient of the inverse residual module
is set larger - when the coefficient was set to 6, there were
more features used for model fitting, and its segmentation ac-
curacy and efficiency were 61.50% and 104FPS, respectively;
when it was set to 2, its segmentation accuracy and efficiency
were 67.54% and 245FPS, respectively. In Model 2, CBAM
could alleviate the overfitting effect of training data by ad-
justing the feature weights of space and channels. To fully
express the characteristics of smoke images, the expansion
coefficient of the inverse residual module in this method was
still set to 6, and the pruning operation improves segmentation
efficiency.

Model 4 redesigned the UNet ++ loss function to obtain
a more refined segmentation edge for pixel-by-pixel smoke
density estimation and also introduced noise caused by similar
ground object backgrounds, resulting in a decrease in the overall
segmentation accuracy to 61.50%. The introduction of multiple
loss terms computation also reduced the segmentation efficiency
to 164FPS.

Model 5 introduced the convolutional attention module,
lightweight module, and composite loss function into the basic
framework of UNet++, which realized fine segmentation of
smoke edges and reduced false alarms caused by incorrect
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TABLE III
STRUCTURE DESIGN OF EACH MODEL IN THE ABLATION EXPERIMENT

Fig. 10. Synthetic smoke dataset segmentation results for each model in ablation experiments.

TABLE IV
PERFORMANCE OF MODELS IN ABLATION EXPERIMENTS ON SYNTHETIC

SMOKE DATASETS

segmentation of ground objects and backgrounds. Compared
with UNet++, the accuracy was improved by 0.91%. Its pruned
version, Model 6, significantly improves the segmentation effi-
ciency, reaching 227FPS, while slightly reducing the segmen-
tation accuracy, which was 19.47% and 141.49% higher than
Model 1 and Model 5, respectively.

TABLE V
PERFORMANCE OF MODELS IN ABLATION EXPERIMENTS ON REAL SMOKE

DATASETS

The test performance of each model in the ablation experiment
on the real smoke dataset is shown in Table V. It could be
seen that the segmentation accuracy of models 4, 6, and 5,
namely UNet++ and composite loss function, AOSVSSNet
without pruning, and AOSVSSNet with pruning, are 73.56%,
72.84%, and 68.81%, respectively. Models 2, 4, 1, and 6,
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Fig. 11. Segmentation results of real smoke datasets for each model in ablation experiments.

Fig. 12. Synthetic smoke dataset segmentation results for each model in
comparative experiments.

namely UNet++&CBAM, UNet++&composite loss function,
UNet++, and AOSVSSNet with pruning had higher segmenta-
tion efficiency, 16FPS, 16FPS, 15FPS, and 12FPS, respectively.

Among them, Model 4 achieved the highest segmentation
accuracy on the real smoke dataset, indicating that the com-
posite loss function based on the physical process constraints
of the optical imaging of the smoke target could effectively
improve the generalization of the UNet++ network model,
and the synthetic smoke dataset had better performance. The
segmentation edge of model 4 was relatively stable between
video frames, indicating that the composite loss function based
on concentration estimation helped to enhance the smoothness
of video object segmentation. As shown in Fig. 11, Model
2 with CBAM module could effectively focus on the smoke
information and eliminate the interference of similar ground
objects. Compared with Model 1, its segmentation accuracy was
significantly improved by 24.32%, indicating that the enhance-
ment of spatial dependencies between pixels played an important
role in aggregating homogeneous smoke pixels and enhancing
the distinguishability of similar ground objects. Model 3 had an
overfitting problem, and the training accuracy was high but the
test accuracy on synthetic and real smoke datasets was lower,
at 59.42%, and loosed more smoke pixels. The segmentation

Fig. 13. Segmentation results of different scales of synthetic smoke datasets
for each model in the comparative experiment.

Fig. 14. Smoke-free image segmentation results of each model in the com-
parative experiment.

accuracy of model 6 was 4.03% higher than that of model 5,
and it could segment the pixels with lower concentration at one
end of the smoke diffusion. This might be because the pruning
operation not only reduces the computational complexity of the
model, but also alleviated the degree of overfitting of the model
on the training dataset.
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Fig. 15. Segmentation results of real smoke datasets for each model in comparative experiments.

TABLE VI
PERFORMANCE OF MODELS IN COMPARATIVE EXPERIMENT ON REAL SMOKE

DATASETS

C. Comparative Experiments

This section selected FCN, UNet, and DeepLabV3+ as the
representatives of the three main structures of the classic se-
mantic segmentation network to verify the effectiveness of
AOSVSSNet with pruning.

In the comparison experiment, the test performance of each
model in the synthetic smoke dataset is shown in Table VI. It can
be seen that models 4 and 3, namely AOSVSSNet with pruning
and DeepLabV3+, had higher segmentation accuracy, 70.51%
and 69.33%, respectively. Models 1 and 4, namely FCN and
AOSVSSNet with pruning, had higher segmentation efficiency,
233FPS and 227FPS, respectively.

As shown in Fig. 12, in addition to the smoke target, the
segmentation results of Model 1, FCN, more background objects
present, and the segmentation accuracy was 54.13%. This was
because although FCN combined the segmentation results of
the rough layer and the fine layer, so that the prediction of local
pixels followed the global ground object distribution structure
to a certain extent, it still didn’t fully consider the relationship
between pixels and lacks local information consistency. This
leaded to the appearance of a large number of missegmented
patches of similar ground objects. Model 2, UNet, fused the
high and low-level features output by the same layer of the
encoder and decoder and upsampled them layer-by-layer, which
narrowed the semantic gap and greatly improved the segmen-
tation accuracy to 68.79%, which was 14.66% higher than

TABLE VII
PERFORMANCE OF MODELS IN COMPARATIVE EXPERIMENT ON SYNTHETIC

SMOKE DATASETS

Model 1. Model 3, DeepLabV3+, could fuse information of
various scales without reducing the feature resolution through
the hole convolution pyramid, equivalent to incorporating more
fine global context information, and its segmentation accuracy
was 69.33%. The accuracy of AOSVSSNet with pruning was
70.51%, but the segmentation efficiency was higher, which was
36.75% higher than that of DeepLabV3+, realizing the unity of
accuracy and efficiency.

The synthetic smoke dataset shown in Fig. 13 contains small,
medium, and large-sized smoke targets. The segmentation re-
sults showed that our method could adapt to the segmentation
of smoke targets of different sizes and could simulate different
spatial scales from the perspective of satellite remote sensing
and the actual smoke scene at different periods. In addition, as
shown in Fig. 14, our method and model 3 of this article, namely
DeepLabV3+, had lower false alarms in smoke-free images.
It resulted from the enhancement of the global context infor-
mation feature make the false alarms of similar ground objects
suppressed, thereby improving smoke segmentation accuracy of
the target.

The test performance of each model in the comparison experi-
ment on the real smoke dataset is shown in Table VII and Fig. 15.
It can be seen that models 4 and 3, AOSVSSNet with pruning and
DeepLabV3+, had higher segmentation accuracy, 72.84% and
72.14%, respectively, indicating good generalization. Models
2 and 1, U-Net and FCN, had higher segmentation efficiency
but lower accuracy. Combined with the ablation experiments,
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the reason was that the methods of Model 4 and 3 integrated
more spatial context information in the training process in dif-
ferent ways. DeepLabV3+ utilized atrous convolution pyramid
structure to fuse multilevel fine feature information. Our method
combined the convolutional attention module and the complex
loss function to enhance the expression of spatial dependencies
between pixels, making the features of the smoke target and the
background features more distinguishable, and improving the
segmentation accuracy.

V. CONCLUSION

In this article, a deep learning method is innovatively intro-
duced into optical satellite video smoke object segmentation.
An attention-guided optical satellite video smoke segmentation
network model for optical satellite video is proposed to aim at the
multiscale segmentation of satellite video smoke targets and the
background interference of complex and similar ground objects.
Based on UNet++, a lightweight attention module CBAM
enhances the smoke target features, effectively suppresses the
false alarm of the ground object background, and achieves high
segmentation accuracy on the synthetic dataset. A synthetic
dataset is constructed based on the optical imaging process of
smoke targets to solve the difficulty of manual labeling and
model segmentation of deep learning samples due to blurred
smoke edges, which saves manual labeling costs. In addition, it
introduces the physical constraints of the smoke imaging process
into the loss function and improves the generalization of the
model to real smoke data.

Future work mainly focuses on optimizing the context feature
extraction method, improving the network’s ability to fuse global
and local features, further reducing the missegmentation and
missing pixels of smoke, and testing in different real smoke
scenes. In addition, there are differences in the imaging process
between satellite video and natural images. Remote sensing
physical mechanisms such as atmospheric radiative transfer
models can be considered as constraints and integrated into the
model to enhance the interpretability and generalization of the
smog segmentation network.
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