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Abstract—Recently, deep learning algorithms, specifically con-
volutional neural networks (CNNs), have played an important role
in remote sensing image classification, including wetland mapping.
However, one limitation of deep CNN for classification is its re-
quirement for a great number of training samples. This limitation
is particularly enhanced when the classes of interest are spectrally
similar, such as that of wetland types, and the training samples are
limited. This article presents a novel approach named 3-D hybrid
generative adversarial network (3-D hybrid GAN) that addresses
the limited training sample issue in the classification of remote sens-
ing imagery with a focus on complex wetland classification. We used
a conditional map unit that generates synthetic training samples for
only classes with a lower number of training samples to improve
the per-class accuracy of wetlands. This procedure overcomes the
issue of imbalanced data in conventional wetland mapping. Based
on the achieved results, better classification accuracy is obtained
by integrating a 3-D generative adversarial network (3-D GAN)
and the CNN network of a 3-D hybrid CNN using both 3-D and
2-D convolutional filters. Experimental results on the avalon pi-
lot site located in eastern Newfoundland, Canada, and covering
five wetland types of bog, fen, marsh, swamp, and shallow water
demonstrate that our model significantly outperforms other CNN
models, including the HybridSN, SpectralNet, MLP-mixer, as well
as a conventional algorithm of random forest for complex wetland
classification by approximately 1% to 51% in terms of F-1 score.

Index Terms—Convolutional neural network (CNN), deep
convolutional neural network (DCNN), generative adversarial
network (GAN), random forest (RF), wetland mapping.

I. INTRODUCTION

W ETLANDS provide various ecological services to the
fauna, flora, and humans [1], including water storage,
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carbon sequestration, as well as flood and shoreline protection.
Wetland’s contributions to the environment originated from their
biogeochemical and hydrological processes. These processes
are regarded as wetland functions, including biomass produc-
tion, nutrient transformation, biogeochemical transformation,
hydraulic recharge and storage, and improving water quality
[2]. Despite these benefits, they are threatened by anthropogenic
activities, such as urban and agricultural developments and
industrialization [3], as well as by the ever-changing climate.
It is reported that recent global droughts can alter wetlands
from carbon sinks to carbon sources by a higher rate of decay
[4]. As such, accurate and up-to-date systematic mapping, and
monitoring of these vital yet in danger natural ecosystems are
crucial for their protection and preservation.

Currently, remote sensing is the state-of-the-art technology
for the accurate and systematic method of collecting coarse- to
very high-resolution images of the earth’s surface. Complexities
such as wetlands’ spectral similarity and vegetation composition
and dynamics (i.e., phenological changes) limit the capability of
conventional machine learning approaches for wetland classifi-
cation [3]. On the other hand, the existence of water near or on
the ground surface or below the vegetation canopy is used to
define various classes of wetlands rather than a common type of
land cover or vegetation that increases the complexity of wet-
land classification [5]. In recent years many advanced machine
learning algorithms have been developed for the classification
of wetlands [6], [7], [8], [9], [10], [11]. Currently, deep learning
(DL) algorithms, specifically the convolutional neural networks
(CNNs), are effectively used for complex wetland classification
[12], [13], [14], [15].

The issue of the DL methods arises from their need for many
training data for their training to reach their full potential of
highly accurate image classification. Collecting training data is
costly, time-consuming, and labor-intensive in remote sensing.
Two techniques can address the issue of the limited number of
wetlands training data: 1) transfer learning [16], [17]; 2) gen-
erating synthetic samples using generative adversarial networks
(GANs) [18], [19], [20], [21]. Various research on hyperspectral
image classification has utilized a limited number of training
data [22], [23], [24], [25], [26]. For example, Liu et al. [24]
proposed a methodology based on a metric space to address the
issue of limited training data in the classification of hyperspectral
imagery. Moreover, an unsupervised cross-data set model based
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on the deep domain adaptation was developed by Ma et al. [26]
to achieve a high level of classification accuracy in hyperspectral
images. Moreover, Qu et al. [25] proposed a transfer learning
methodology using shared abundance space in the classification
of hyperspectral imagery with a few training data.

Although there have been various research on the use of GANs
for the classification of remote sensing images, specifically for
hyperspectral data, to the best of our knowledge, GANs have
not been fully investigated for wetland classification. Due to
the complex characteristics of wetlands, generating synthetic
samples through GANs may cause errors. The reason is that
generating a fake wetland image may increase the complexity of
the classification task, resulting in a lower wetland classification
accuracy. In this article, to address the issue of limited training
samples in remote sensing, specifically complex wetland map-
ping, we propose a wetland classification method that integrates
and enhances the power of GANs and CNN models. Our method
is called 3-D hybrid Generative Adversarial Network (3-D hy-
brid GAN). Our motivation behind the integration of a hybrid
network and GANs is to establish a robust CNN algorithm to
classify wetlands with a limited number of training samples.
More precisely, our contributions are summarized as follows.

1) We propose a CNN algorithm that optimizes the classi-
fication model and improves the quality and the number
of wetlands training data. Moreover, compared to conven-
tional (or solo) CNNs, the 3-D hybrid GAN overcomes the
problem of limited training samples for complex wetland
classification.

2) We propose using a conditional map unit focusing on the
generation of high-quality wetland samples to address the
issue of imbalanced data in the current complex wetland
mapping. As such, we achieved a high overall accuracy
(OA) level and significantly improved the per-class accu-
racy of wetlands compared to the current CNN algorithms.

3) The generation of wetland samples is costly and requires
expert-level field data acquisition. At the same time, non-
experts can recognize and produce samples of nonwet-
lands through the utilization of very high remote sens-
ing images such as RapidEye satellite data and Google
Earth images. This research studies the generation of
high-quality wetland samples using advanced and state-
of-the-art algorithms (i.e., GANs).

The rest of this article is organized as follows. Related works
on image classification, CNN, and GAN are discussed in Sec-
tion II. The proposed CNN method of 3-D hybrid GAN is
illustrated and formulated in Section III. Experiments, including
the settings, study area, and results, are provided in Section IV.
Finally, Section V concludes this article and summarizes the
findings.

II. RELATED WORK

A. Image Classification

Traditional classifiers, such as maximum likelihood, cannot
effectively interpret the complicated high-dimensional data of
remote sensing [27]. The normal distribution of input data is
one of these algorithms’ assumptions, which is not applicable

to many remote sensing samples. Random forest (RF) [28],
decision trees [29], and support vector machine (SVM) [30]
classifiers, on the other hand, are unaffected by the input data
distribution. Procedures for the classification of remote sensing
images using shallow classifiers, such as RF and SVM include
feature extraction and classification. Spatial, temporal, and spec-
tral data of satellite images are transformed into the feature
vectors in the feature extraction process, while these extracted
features are classified into different land cover types in the
classification stage [31], [32], [33]. It is worth highlighting that
the manual feature engineering of the conventional classification
methods (i.e., the selection of the most appropriate extracted
features in the classification of satellite data) significantly affects
the final classification results.

B. Convolutional Neural Networks

The issue of manual feature engineering was overcome by in-
troducing DL techniques such as CNNs [9], [34], [35], [36], [37].
CNNs are specifically used for image classification, semantic
image segmentation, and object detection. It is worth mentioning
that CNNs extract low-, intermediate-, and high-level features
from images. In each layer (l), based on the weights (W) and
biases (B) of the previous layers, features are extracted. Then,
they are updated in the next iteration (1), (2)

ΔWl (t+ 1) = − xλ

r
Wl − x

n

∂C

∂Wl
+m ΔWl (t) (1)

Δ Bl (t+ 1) = − x

n

∂C

∂Bl
+m Δ Bl (t) (2)

where λ, n, and x present a regularization parameter, the total
number of training samples, and the learning rate. In addition, t,
m, and C are updating step, momentum, and cost function, re-
spectively. Based on the dataset, to obtain optimal performance,
the learning rate (x), regularizing parameter (λ), and momen-
tum (m) are fine-tuned. The DL methods use and learn from
representation rather than using an empirical manual feature
engineering in the traditional classifiers (e.g., RF), achieving
much higher accuracies for high-resolution earth observation
data classification [38], [39], [40], [41], [42], [43]. It is reported
that the DL classifiers usually recognize a more generalized
pattern in the satellite data that is regarded as their superior-
ity over the traditional algorithms [3], [44]. In addition, DL
methods, including the CNNs, use spatial and spectral data in
a patch of pixels (e.g., a patch of 15 by 15 pixels) rather than
spectral information of a pixel utilized by conventional shallow
classifiers, such as RF. The issue of deep convolutional neural
networks (DCCNs) arises from their need for a large number of
training data as they have a relatively significantly high number
of parameters to be fine-tuned.

C. Generative Adversarial Network

As discussed, generating new data in remote sensing, specifi-
cally wetland mapping, is time-consuming, labor-intensive, and
costly. On the other hand, although the DL methods have been
successfully employed in different fields of remote sensing, such
as object detection [45], [46], [47], [48], [49] and classification
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Fig. 1. Generator and discriminator networks of GANs.

[50], [51], [52], [53], [54], [55], they have a need for a large
set of training data [3]. This issue can be addressed with the
utilization of the new architecture of GANs that revolutionized
the DL field introduced by Goodfellow et al. [56]. There are two
generator and discriminator networks in the GANs architecture,
as presented in Fig. 1.

As shown in Fig. 1, in the 3-D GAN, using a random noise
vector, the generator network creates new synthetic samples
while the discriminator tries to differentiate between the syn-
thetic and real image data. Thus, the 3-D GAN is trained while
the generator (G) produces more realistic synthetic samples,
and the discriminator network (D) tries to differentiate the real
samples from the synthetic ones [57], [58], [59], [60]. The main
benefit of GAN models in remote sensing image classification
is the possibility of creating high-quality ground-truth data
without any field data collection. This is vital as producing
new ground-truth data for wetland classifications is significantly
costly and time-consuming. Moreover, there is a need for expert-
level knowledge for the recognition of different wetlands in the
field data collection as well. Addressing such issues will sub-
stantially improve the large-scale wetland classification in the
near future and will improve the current wetland classification
accuracies.

III. PROPOSED CNN NETWORK

In this section, we describe the details of the proposed CNN
algorithm of 3-D hybrid GAN, which can generate and classify
complex wetland data through the integration of a 3-D GAN
and a modified version of the hybridSN network [61]. It should
be noted that generating samples for the nonwetland classes
such as urban regions does not require expert knowledge, while

producing wetland samples necessitates the assistance of biolo-
gist experts and field data acquisition. The reason is that, unlike
the nonwetlands, wetlands do not have regular (i.e., clear-cut)
boundaries, and some of them have similar vegetation types and
structures. Thus, we propose a model that mainly focuses on the
generation of synthetic samples of high-resolution wetlands. The
main idea is to generate samples for the classes with minority
training data. As such, we propose the 3-D hybrid GAN for the
generation and classification of wetlands and nonwetlands based
on the generative adversarial minority oversampling (GAMO)
[62] and 3-D-HyperGAMO [60] models.

The overall architecture of the proposed 3-D hybrid GAN is il-
lustrated in Fig. 2. The proposed 3-D GAN model is composed of
three major parts, including the generator (G), the discriminator
(D), and the classifier (C), while the generator has two parts of
the conditional map unit and the 3-D RapidEye patch generator
as described in the next sections. In the 3-D GAN model, the
generator (G) tries to create high-quality wetland samples, while
the discriminator (D) tries to recognize the real samples from the
synthetic ones. On the other hand, the classifier (C) in the 3-D
GAN model uses the synthetic wetland and nonwetland samples
produced by the generator (G) and the real RapidEye image
patches to classify the wetland and nonwetland classes (part I).

It should be noted that the major class is chosen based on
the number of training data in part I. The reason is that train-
ing the generator network (G) is a costly and time-consuming
procedure. After obtaining a high level of wetland classifi-
cation accuracy by the 3-D classifier (C) in the 3-D GAN
network, based on the number of test data, a much higher
number of synthetic data is produced. The reason is that af-
ter the proper training of the generator network (G), a much
higher number of new synthetic RapidEye samples can be
generated in just a few minutes. Then, the real and synthetic
data generated by the 3-D generator (G) are fed to the 3-
D hybrid CNN classifier for precise wetland classification
(part II).

A. 3-D Tensor

In this study, we consider a RapidEye image as a 3-D tensor
(Xoriginal ∈ RW×H×B) defined by width (W ), height (H), and
the number of bands (B). The wetland classification is done
by classifying the RapidEye image pixels into lc wetland and
nonwetland classes, denoted by Y = y1 , y2, . . . , ylc . As such,
a pixel (xi,j ∈ Xoriginal), is defined as a spectral vector ( xi,j =
xi,j,1 , . . . ., xi,j,B ∈ ∈ RB , where i = 1, 2, . . . , W and j =
1, 2, . . . ., H). In this study, we are interested in the extraction
of 3-D patches of the wetland and nonwetland samples defined
by Rai ∈ RS×S×B , where the S × S is the size of the image
patches and B is the number of spectral bands. In our model, a
sliding window of size S × S is used to extract the spectral and
spatial information of the RapidEye imagery, which is then used
as the input of the 3-D patch generator and the classifier and
discriminator networks. To use the developed 3-D DL model,
we stack all generated 3-D RapidEye image patches into a 3-D
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Fig. 2. Architecture of the proposed 3-D Hybrid GAN.

Fig. 3. Architecture of the implemented 3-D Hybrid CNN classifier.

tensor (X = {Ra1, Ra2, . . . , Ran}, where Rai ∈ RS×S×B

and n is the number of training data).

B. Generator Network

For the generation of the synthetic wetland samples, like both
models of GAMO and 3-D-HyperGAMO, we used a conditional
map unit to generate samples from a random noise vector, only
for classes with a lower number of training data (Table I). The
advantage of this model is solving the issue of imbalanced data
that is common in wetland mapping. Then, the output of the
conditional map unit is flattened to form a conditional feature
vector. Afterward, the output of the conditional map unit is linked
to a 3-D patch generator according to the label information. The

TABLE I
ARCHITECTURE OF THE CONDITIONAL FEATURE MAPPING UNIT

patch generator creates a different number of 3-D patches for
classes with the minor number of training samples that were
sent by the conditional mapping unit. The process is described
as follows.

In the proposed 3-D patch generator, the urban class with the
highest number of training data is considered the majority class,
while the other wetland and nonwetland classes are the minority
classes. As a result, the 3-D patch generator uses seven (c− 1,
c presents the number of classes) units, one unit for each of the
minor classes. The unit Ui generates γg

i samples as defined by

γg
i = γm − γi (3)

where γm is equal to 1899 and γi presents the number of training
data belonging to the minor classes. Each Ui uses two inputs of
the 3-D patches of RapidEye image samples with the dimension
of γi × S × S ×B, as well as the output of the conditional unit
map. In our model, a dense layer is used to transform the output
of the conditional unit map (intermediate feature presented by
If ) to a feature with the length of γi, followed by a softmax
layer. The feature vector is repeated by n = S × S ×B times
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Fig. 4. Map of the study area. (a) Location of the pilot site of the Avalon, Newfoundland, Canada. (b) Ground-truth wetland samples acquired by the biologist
team across the study area.

for the generation of the class-specific random feature (Im) with
the dimension of n× γ. The 3-D RapidEye patches with the
dimension of γi × S × S ×B are then reshaped into a matrix
of Pm with a dimension of n× γ. Then, the wetland and non-
wetland class-specific feature matrix (Fm) with the dimension
of n× γ is calculated as shown in

Fm = Im .(Fm)T (4)

where (Fm)T is the transpose of the matrix Fm and (.) is the dot
product. It is followed by a flattened vector (Fv) with a dimension
of n that is calculated through the sum of column-wise of each
row belonging to the Fm matrix. Afterward, Fv is reshaped into
the dimension of S × S ×B for the generation of the synthetic
wetland and nonwetland samples for the classes with a minor
number of training data.

C. 3-D Classifiers and Discriminator Networks

For our proposed 3-D GAN classifier and discriminator net-
works, we used a modified architecture of the hybrid SpectralNet
(i.e., HybridSN) proposed by Roy et al. (2020) [61]. The archi-
tecture of the proposed model is presented in Fig. 3.

As seen in Fig. 3, the proposed classifier and discriminator
have three 3-D convolutional layers, followed by two 2-D con-
volutional layers. It is followed by a 2-D global average pooling
and a flatten layer. We included two dense layers with sizes of
20 and 8 at the end of the proposed 3-D hybrid classifiers. It
should be noted that the last dense layer for the discriminator
network has a size of 1.

D. Objective Function

Considering our generator (G), discriminator (D), and clas-
sifier (C), the objective function of the 3-D GAN model is
formulated as

min
G

max
D

max
C

O (G,D,C) =
∑

i∈c
Oi (5)

where Oi = (Oi1 +Oi2 +Oi3 +Oi4 +Oi5 +Oi6) and c is
the number of classes. As such, the objective of the generator
network (G) is described as fooling the discriminator network
(Oi6), while the discriminator network (D) should classify the
extracted features of the RapidEye image as real Oi5 and the
generated synthetic samples as fake samples (Oi6). The classifier
(C) should maximize the wetland and nonwetlands class score
for the ith class with respect to the real and synthetic samples
of class ith (Oi1 and Oi3), while trying to minimize the class
score with respect to the other wetland and nonwetland classes
(Oi2 and Oi4), simultaneously. In other words, the probability
of belonging to the real and synthetic sample for class ith should
be high (i.e., a high-class score), while the probability of that
real or synthetic sample belonging to the other classes should be
low (i.e., a low score for the rest of the classes).

IV. EXPERIMENTS

In the experiments, we validate the effectiveness of the pro-
posed 3-D hybrid GAN model for the generation and classifica-
tion of complex wetland and nonwetland regions.
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Fig. 5. Confusion matrices of test data based on the prediction of each shallow and CNN algorithms of (a) 3-D hybrid, (b) HybridSN, (c) MLP-mixer, (d) RF,
(e) SpectralNet, and (f) the proposed 3-D hybrid GAN.
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Fig. 6. Wetland classification maps using the shallow and DCNN models of
(a) 3-D hybrid, (b) HybridSN, (c) MLP-mixer, (d) RF, (e) SpectralNet, and (f)
the proposed 3-D hybrid GAN.

A. Study Area and Data Descriptions

This article uses the RapidEye Image of the Avalon pilot
site to evaluate the proposed method of 3-D hybrid GAN. As
shown in Fig. 4, the pilot site is on the most eastern side of
Newfoundland, Canada. In the pilot site of Avalon, five wetland
classes of shallow water, bog, marsh, fen, and swamp defined by
the canadian wetland classification system (CWSC) are present,
where the bog and fen classes (i.e., peatlands) are the most
dominant. In the study area, the capital and the largest city
of Newfoundland, the St. John’s town, with a population of
approximately 226 000, is situated. The ground truth data have
been collected from the years 2015 to 2017. The wetlands ref-
erence data has been collected and labeled by a team of experts,
including wetland specialists and biologists in the field, and
high-resolution imagery has also been employed as a reference
to minimize the uncertainty of reference data labeling. It is worth
mentioning that the possible wetland areas were recognized

TABLE II
NUMBER OF WETLANDS AND NONWETLANDS TRAINING AND

TESTING SAMPLES

with the utilization of very high-resolution images of RapidEye
and Google Earth prior to the ground truth data acquisition.
Moreover, GPS points, notes, and photographs were taken to
improve the delineation of the wetland regions. Fig. 4 presents
several samples of wetlands acquired by the wetland experts
(i.e., biologists).

The number of wetlands training and test samples is shown
in Table II. We used a random sampling strategy where 5% of
the ground truth data were used as training and the other 95%
as our test data.

For the complex wetland classification, we used five bands
of blue, green, red, red edge, and near-infrared of two level-3a
RapidEye images with spatial resolutions of 5 m acquired on
18 June and 22 October 2015. Moreover, several spectral in-
dices, including the ratio-vegetation index, the red edge normal-
ized difference vegetation index (RENDVI), and green NDVI
(GNDVI), were used to improve the final wetland classification
accuracy (Table III).

B. Experimental Settings

In this research, we selected RapidEye image patch sizes of
6×6 experimentally. The reason was that although selecting
a larger image patch size would result in higher classification
accuracy (e.g., we achieved a high classification accuracy of
97% with RapidEye patch sizes of 11×11), linear features such
as buildings and road areas will lose their sharp and linear shape.
Moreover, smaller objects inside larger features will be lost as
well. As such, we selected a smaller RapidEye patch size to
preserve the linear objects’ shape and maintain information on
smaller ground features.

Hyper-parameters: We used Adam optimizer to train our 3-D
hybrid GAN network with a learning rate of 0.0002. We set the
maximum training iteration to 30 000 epochs in the 3-D GAN
network. Moreover, we set the noise dimension and training
batch size as 100 and 16, respectively. The training iteration in
the other CNN networks was set to 100 epochs.
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Fig. 7. Feature visualization using the t-SNE algorithm for (a) 3-D hybrid, (b) HybridSN, (c) MLP-mixer, (d) RF, (e) SpectralNet, and (f) the proposed 3-D
hybrid GAN.

TABLE III
SPECTRAL BANDS AND INDICES USED IN THIS STUDY
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Fig. 8. Example of real and synthetic wetland samples generated by the proposed 3-D GAN network.

C. Evaluation Metrics

To assess the quantitative performance of the developed mod-
els, we adopted F1-score, as well as the OA, average accuracy
(AA), and Kappa index (KI) as our evaluation metrics (6–9)

F1− score = 2× Precision × Recall

Precision + Recall
(6)

Overall Accuracy =
(TP + TN)

Total number of pixels
× 100 (7)

Average Accuracy =

∑n
i=1 Recalli

n
,

Recall =
True positive

(True positive + False negative)
(8)

Kappa =
p0 − pe
1− pe

, p0=

∑
xii

N
, pe =

∑
xi+xi+

N2

(9)

where xi+ is the marginal total of row I, the total number of
observations is shown by N, and xii is observation in row i and
column i. TP, FN , and FP are true positive, false negative, and
false positive values, respectively.

D. Comparison With Other Deep Convolutional Neural
Networks

For the evaluation of the efficiency of the proposed 3-D hybrid
GAN model, the wetland classification results were compared
with several state-of-the-art algorithms in remote sensing and
computer vision, including the HybridSN [61], SpectralNet
[63], multi-layer perceptron (MLP)-mixer [64], and RF [65]
classifiers.

E. Results

Comparison results on the pilot site of Avalon are shown in
Table IV, including the results of the HybridSN, SpectralNet,
MLP-mixer, and RF. Table IV shows that the proposed 3-D
hybrid GAN significantly outperformed other CNN techniques
and the RF classifier in terms of F-1 score for wetland classi-
fication by 1%–51%. It should be noted that we fed only the
real data to other implemented classifiers, while for the training
of the proposed wetland classifier, both real and synthetic data
generated by the 3-D GAN generator were utilized. The F-1
score values of swamp, marsh, bog, fen, and shallow water
wetland classes obtained by the 3-D hybrid GAN methodology
were 0.92, 0.93, 0.94, 0.94, and 0.97, respectively, as shown in
Table IV. It is worth highlighting that for a better understanding,
the accuracy obtained by the 3-D GAN classifier, with an AA of
87.38%, is also shown in Table IV. By generating high-quality
synthetic wetland samples, in terms of F-1 score, the 3-D hybrid
GAN method improved classification results of the original 3-D
hybrid CNN network for the recognition of bog, shallow water,
marsh, swamp, and fen wetlands by 2%, 5%, 16%, 31%, and
38%, respectively.

Table IV shows that although the shallow RF classifier
achieved a high OA of 90.242%, there is a low level of agreement
between the ground truth data and the predicted class values
for wetlands. The reason is that for the RF and other CNNs,
we are dealing with the imbalanced data issue where the OA
is relatively high, but the final predicted wetlands are not as
accurate as nonwetland regions due to the lower number of
training data for wetland classes. For example, the RF clas-
sifier obtained F-1 scores of 0.45, 0.58, 0.67, 0.88, and 0.89
for the prediction of fen, swamp, marsh, bog, and shallow
water wetland classes, respectively, much lower compared to
the proposed classification algorithm. In terms of F-1 score, the
3-D hybrid GAN method achieved a much higher agreement
between the predicted wetland classes and ground truth data
than that of the RF classifier by 6%, 8%, 26%, 34%, and 49% for
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TABLE IV
RESULTS OF THE MACHINE LEARNING ALGORITHMS OF THE HYBRIDSN, SPECTRALNET, MLP-MIXER, RF, AND THE PROPOSED 3-D HYBRID GAN IN TERMS OF

F1-SCORE, AA, KI, AND OA BASED ON THE TEST DATA

the recognition of bog, shallow water, marsh, swamp, and fen
wetlands, respectively. In addition, although the implemented
CNN models similar to the RF classifier obtained a relatively
high level of agreement between the ground truth nonwetland
values and their predicted classes, they demonstrated relatively
much lower per-class classification accuracy for the prediction
of wetlands in terms of F-1 score, as seen by Table IV.

It should also be noticed that the MLP-mixer algorithm,
with an average accuracy of 88.45%, outperformed other algo-
rithms of RF (79.02%), HybridSN (87.97%), and SpectralNet
(68.55%), demonstrating the better performance of state-of-the-
art computer vision algorithms over the current remote sensing
techniques.

F. Confusion Matrices

To further investigate which wetland and nonwetland classes
are more confused with each other, the confusion matrices of
testing results on the Avalon pilot site are presented in Fig. 5.
As seen in Fig. 5, it is clear that there is a high level of confu-
sion between wetland classes predicted by the CNN models of
HybridSN, SpectralNet, and MLP-mixer, as well as the shallow
classifier of RF. Nevertheless, the wetland classes are far less
distinguishable by the RF algorithm and other CNN models
compared to the proposed methodology. It can be explained
as follows. First and foremost, the number of training data for
wetland classes compared to the nonwetlands was relatively low.
Second, there is a high level of similarity shared between fen,
bog, and marsh regions in terms of vegetation structure and
pattern (i.e., saturated vegetation, wet soils, and some emergent
vegetation), besides the similarity between the upland forest and
swamp in terms of tree dominance, resulting in similar spectral
reflectance in the RapidEye optical imagery. We can see from
Fig. 5 that the general results obtained by the CNN models are
similar; a high level of per-class accuracy for non-wetlands and
a much lower level of per-class accuracy for the wetland samples
that is resulted due to the intrinsic complexity of wetlands, as

well as the limited number of training data. Although generating
high-quality synthetic samples for the classes with a minor
number of training and test data by the proposed 3-D hybrid
GAN model, the confusion between wetland classes substan-
tially decreased (Fig. 5).

G. Classification Maps

To better understand the performance of the shallow algorithm
of RF and other CNN models, namely HybridSN, Spectral-
Net, and MLP-mixer for wetland classification, their predicted
wetland maps are presented in Fig. 6. In order to support the
presented visual results, Fig. 7 presents the distributions of
features for the developed classifiers, as well as the proposed
3-D hybrid GAN model in 2-D space using the t-distributed
stochastic neighbor embedding (t-SNE) algorithm [66]. As seen
in Fig. 6, almost all shallow and CNN models presented high
separability in the recognition of shallow and deep waters. Based
on the visual interpretation and results of the t-SNE algorithm,
there is a high level of over-classification for recognizing the
swamp wetland class by the SpectralNet model. Based on the
visual and statistical metrics, the proposed 3-D hybrid GAN
model showed the best results compared to the other classifiers
(Figs. 6 and 7).

H. Synthetic Wetland Generation

To better understand and evaluate how the generation of high-
quality wetland samples can improve the per-class and overall
wetland classification accuracy, we included the proposed 3-D
hybrid classifier’s results with and without synthetic samples, as
shown in Table IV. It can be seen that the overall and per-class
wetland classification accuracies of the 3-D hybrid classifier
were considerably improved with the inclusion of synthetic
RapidEye samples. The OA, KI, and AA of the 3-D hybrid
classifier improved by 2.88%, 3.73%, and 12.73%, respectively,
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Fig. 9. Visualization of the generated synthetic RapidEye data using the t-SNE algorithm.

with the inclusion of the synthetic RapidEye image data. More-
over, Fig.8 illustrates several synthetic wetland and nonwetland
samples generated by the 3-D GAN generator. Additionally, to
visually present the quality of synthetic RapidEye samples, we
used the t-SNE algorithm, as presented in Fig. 9.

I. Computation Cost

The computation cost of the proposed CNN model of the 3-D
hybrid GAN model in terms of time is relatively high compared
to the other classifiers. The required time for the RF classifier
with 200 trees was about 2 min, achieving the least computa-
tion cost in terms of time as it uses only spectral information.
The CNN models of SpectralNet, MLP-mixer, and hybridSN
required approximately 18, 10, and 5 min, respectively, for
their training. On the other hand, the 3-D hybrid GAN model
required approximately 120 min for its training, which is much
higher than that of the other classifiers. The reason is that unlike
other CNN models, the 3-D hybrid GAN model is composed of
three main networks: 1) the classifier; 2) the generator; 3) the
discriminator. It is worth mentioning that the experiments were
done with an Intel processor (i.e., i7-10750H Central Processing
Unit (CPU) of 2.60 GHz), a Graphical Processing Unit (GPU)
of NVIDIA GeForce RTX 2070, and a 16 GB Random Access
Memory (RAM) operating on 64-bit Windows 10.

V. CONCLUSION

The CNN models require a large number of training sam-
ples to fine-tune their many parameters compared to the shal-
low classifiers, such as RF. Collecting and generating training
samples in remote sensing (i.e., ground truth data) is costly,
time-consuming, and labor-intensive. To address the issue of
limited training samples, we proposed the 3-D hybrid GAN
model for the classification of complex wetlands and applied it
to a pilot site located in the Avalon Peninsula of Newfoundland,
Canada. The proposed CNN model uses a modified architecture
of the hybridSN model. It is important to take full advantage
of the recently developed state-of-the-art algorithms such as

GANs to solve the issues that we are dealing with in remote
sensing, including a limited number of high-quality ground
truth data for ecological mapping. As such, to tackle the usual
imbalance data issue, we utilized the idea of generating synthetic
samples only for the classes with a lower number of training data
using a conditional mapping unit. Based on the results, the 3-D
hybrid GAN with an average accuracy of 95.49% significantly
outperformed the RF (79.02%), HybridSN (87.97%), Spectral-
Net (68.55%), and MLP-mixer (88.45%) classifiers in terms
of both average accuracies and per-class F-1 score. Although
other CNN algorithms reached a high level of overall accuracy,
they demonstrated relatively poor results for the wetlands per-
class accuracies. However, with the utilization of a 3-D Hybrid
classifier, as well as a 3-D synthetic sample generator, the 3-D
hybrid GAN method achieved the F-1 scores of 0.92, 0.93, 0.94,
0.94, and 0.97 for the classification of swamp, marsh, bog, fen,
and shallow water wetland regions, respectively; significantly
improving the wetland classification accuracies compared to the
other CNN techniques, and the RF classifier by approximately
1%–51%. As such, this article presented the power and high
capabilities of the current advanced machine learning models for
complex ecological classification with the integration of GANs
and DCNN models.
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