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Abstract— Change detection using satellite/aerial images is used
to quantify the impacts of many natural and man-made disasters.
At the occurrence of such events, both prechange optical and
synthetic aperture radar (SAR) images can be obtained by going
back in time. However, the availability of the postchange optical
image is often hindered by the presence of artifacts like clouds.
To circumnavigate this, we propose a novel change detection data
setting that uses both optical and SAR images prechange, yet only
SAR imagery postchange. For this challenging scenario, we propose
a Siamese network that processes the prechange and postchange
SAR inputs using a shared set of weights, while the prechange
optical input is processed using a network that do not share the
weights with the SAR inputs. The encoded weights from the three
networks are fused and finally decoded using a common decoder
to obtain the change map. Our model effectively fuses multisensor
information and can obtain satisfactory result despite the absence
of the postchange optical image. Experimental results on a multi-
sensor urban dataset demonstrate the effectiveness of the proposed
approach.

Index Terms—Change detection (CD), fusion, multisensor
analysis, optical images, Siamese network, synthetic aperture
radar (SAR).

I. INTRODUCTION

LAND surface of our Earth is continuously evolving, caused
by anthropogenic and natural reasons. Rapid climate
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change is causing more and more disaster, e.g., fire events [1],
floods [2], dam disasters [3], altered vegetation response [4],
landslides [5], and earthquakes [6]. Furthermore, events like
wars occasionally cause large-scale destruction and human dis-
placement [7]. Aerial and satellite image-based change detection
(CD) methods [8] are used to quantify the impact of such events.
Optical/multispectral images are used for most such CD appli-
cations [9] as they provide visual cues easily comprehensible
by us. While synthetic aperture radar (SAR)-based CD methods
are also proposed in the literature, they are generally designed to
detect changes in specific objects that show structural changes,
e.g., buildings [10].

Optical images are severely impacted by artifacts like clouds,
fogs, and smokes. Clouds are frequent in some parts of the
Earth, depending on latitude and local climate [11], [12], [13].
Furthermore, some incidents (e.g., volcanic eruptions, wildfires,
wartime bombing) may themselves induce smoke, thus further
reducing the chance of obtaining a clear optical image. Avail-
ability of postchange artifact-free optical image may impact the
postchange response time. As an example, we may consider the
case of recent armed conflict in Ukraine. The first cloud-free
optical (Sentinel-2) acquisition of the city of Mariupol after the
armed conflict started on February 24, 2022, was only available
on March 14, 2022. However, for most applications, even if the
immediate prechange optical image is cloudy, it is possible to
go back further in time to obtain a suitable prechange optical
image.

The SAR sensors are negligibly impacted by the presence
of artifacts [14], [15]. This allows the SAR sensors to be used
at any weather conditions and any time of the day [16], [17].
However, side-looking geometry and inherent characteristics
of SAR images, such as speckle and layover/foreshortening,
makes learning discriminative features more challenging. Thus,
SAR images generally obtain lower classification accuracy in
comparison to the artifact-free optical images for most common
remote sensing datasets [18]. Motivated by the complementary
nature of their information, some existing works have discussed
the importance of fusing optical and SAR data for CD [17],
[19]. Saha et al. [20] and Wan et al. [21], [22] consider the case
where only prechange optical and postchange SAR images are
available. However, in most applications there is no impediment
in collecting prechange SAR images. Thus, a more practical
data scenario would be using prechange optical image and both
prechange and postchange SAR images.
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Siamese networks [23], proposed first in the context of image
matching [24], [25], are popular in supervised CD [26], [27],
[28]. They generally consist of two weight-sharing networks
that ingest two different inputs. Considering the inputs use the
same modality, weight sharing ensures that the network produces
similar feature representation for the two inputs. However, op-
tical and SAR inputs show different characteristics that need
to be processed using different networks [29]. Furthermore, in
our case, prechange input consists of two different modalities
(optical and SAR), while the postchange input contains only
SAR data. Thus, this poses an additional challenge of different
number of prechange and postchange inputs. Considering these
specifications, we design a modified version of the Siamese
network that shares weight for the prechange and postchange
SAR inputs; however, prechange optical input is processed using
a different set of weights. Features learned by the sensor-specific
encoders are concatenated and further processed using a decoder.

The contributions of this work are as follows.
1) We introduce the (prechange) optical-SAR and

(postchange) only SAR data setting in the context of
supervised CD.

2) We propose a supervised Siamese network that can handle
different number of prechange and postchange inputs.

3) We show results on a multisensor Sentinel2-Sentinel1
dataset [17] showing the benefits of the proposed data
setting and method. We also carry out an additional
analysis showing the relative importance of the three in-
puts (prechange optical, prechange SAR, and postchange
SAR).

The rest of this article is organized as follows. Existing works
related to multisensor CD are briefly reviewed in Section II.
Section III describes the proposed method. We detail the exper-
imental results in Section IV. Finally, Section V concludes this
article.

II. RELATED WORK

In this section, we briefly discuss the existing works on SAR
and multisensor CD methods.

A. CD in SAR Images

SAR-based CD is highly challenging owing to the issues
pertaining to intrinsic speckle noise and deformation sensitiv-
ity. To cope with these issues, various approaches have been
proposed. For instance, Gong et al. [30] presented an approach
based on joint classification of prechange and postchange SAR
images. Deep transfer learning is proposed for building CD
using SAR images in [10]. Zhang et al. [31] proposed a deep
spatiotemporal gray-level co-occurrence aware CNN architec-
ture that takes the 3-D gray-level co-occurrence matrix as an
auxiliary feature to better capture the neighborhood relationship.
Gao et al. [32] proposed a multiscale capsule network that is
able to capture the discriminative characteristics between the
changed and unchanged pixels. Similarly, Wang et al. [33] pro-
posed an end-to-end graph level neural network architecture to
robustly extract the local neighborhood for more discriminative
graph learning for CD. Variants for Siamese networks have also
been proposed for SAR CD [34], [35].

B. Multisensor CD

Several architectures have been proposed to perform CD with
prechange and postchange images from same sensor [36], [37].
However, there are very few approaches that can tackle the CD
problem based on bitemporal multisensor inputs [20], [21], [38],
[39], [40]. The reason being that the multisensor images are
affected by the differences in spatial resolution [38] and spectral
characteristics of the sensors [41]. A straightforward approach to
handle multisensor input is to first independently derive the clas-
sification/segmentation maps for multisensory images and later
compare these maps to extract changed regions [21]. However,
such postclassification approaches are prone to errors. The other
popular approach is to project the prechange and postchange
images into a common feature space such that they become
comparable in this new feature space [42], [43]. Such projection
into common feature space can be achieved using different ways,
e.g., by using generative adversarial network [43], by homoge-
neous pixel transformation [42], and by using self-supervised
learning [20]. Another approach is to learn a mapping func-
tion between the prechange and postchange images [38]. Like
same-sensor CD, symmetric and Siamese deep neural networks
have also been used for multisensor CD. In [39], an approxi-
mately symmetric deep neural network was used to project the
images into same feature space. Wang et al. [44] proposed a
deep CNN-based Siamese network with a hybrid convolutional
feature extraction module using multisensor images. Finally,
Ebel et al. [17] proposed a novel Siamese architecture for fusion
of SAR and optical observations for multimodal CD.

C. Siamese Networks

Due to their capability to process input and output using
same set of weights, Siamese networks are preferred in many
supervised CD applications. In one of the first works, Zhan
et al. [26] proposed a Siamese network for CD in optical aerial
images. A Siamese network was used for patch based CD in [45].
Effectiveness of the Siamese networks for CD in Sentinel-2
images was shown in [37]. Zhang et al. [46] proposed a Siamese
network for multimodal CD. More complex networks have been
designed, e.g., by combining Siamese networks with recurrent
neural networks [47]. As already discussed in Sections II-A and
II-B, Siamese networks have also been adopted for SAR CD and
fusing multisensor CD.

Our work is related to the works in Section II-A, as we also use
SAR images as the main data source for CD. However, we also
use prechange optical image, which makes our work relatable to
Section II-B. Furthermore, we use Siamese networks, as in the
works in Section II-C.

III. PROPOSED METHOD

When prechange and postchange images are acquired using
the same sensor, Siamese (i.e., weight-sharing) networks are
popularly used for CD [26], [45]. Following the benefits and
practicality of Siamese networks in supervised CD, our method
adapts it in our novel challenging data scenario. However, to
characterize the differences of multisensor (optical and SAR)
input, only prechange and postchange SAR inputs are processed



8172 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

using weight-sharing networks, as detailed in Section III-A.
Optical and SAR images show strong difference, both in terms
of characteristics and input bands. Thus, to learn better the
sensor-specific features, the optical and SAR inputs are pro-
cessed using separate encoders. Furthermore, skip connections
are used between encoder and decoder modules to propagate
fine-grained input specific details, as detailed in Section III-B.
The network is trained using weighted cross entropy, as ex-
plained in Section III-C. Test time adaptation (see Section III-D)
is further applied to enhance the performance of the proposed
model.

A. Modality-Specific Weight Sharing Network

Siamese networks are popular in remote sensing CD, as
discussed in Section II-C. Generally, prechange and postchange
inputs are images acquired using the same sensor with same
number of channels. To process such inputs, a Siamese network
consists of twin weight-sharing networks. However, in our case
only, the SAR data are common in the prechange and postchange
inputs. In addition, the prechange input also has optical input that
is missing in the postchange input. Thus, we propose a modality-
specific weight sharing scheme where prechange and postchange
SAR images are processed using weight sharing twin encoders,
ESAR1 and ESAR2. Furthermore, the prechange optical input is
processed using a separate encoder, EOPT1. Number of features
increase in each layer of the encoder and output of the encoder
(bottleneck) is the widest part of the network. The bottleneck
representations obtained by ESAR1, ESAR2, and EOPT1 are
concatenated to form a unified bottleneck representation that
is further processed using a decoder network. Using a series of
layers, the decoder network reprojects the bottleneck represen-
tation to the same spatial dimension as input patch with only two
outputs at the final layer, corresponding to changed/unchanged.

We design each encoder using ten convolution layers. Each
convolution layer uses kernels of spatial size 3*3 and a stride
of 1 pixel. Postprocessing units (batch normalization, rectified
linear unit, and dropout) follow the convolution layers. Further-
more, a max pooling (2×2) follows each convolution layer, thus
shrinking the spatial size as we progress through the encoder.
The decoder unit consists of 14 transposed convolution layers
that are also followed by the same postprocessing units as the
input. A schematic of the proposed architecture is shown in
Fig. 1.

B. Skip Connections From Encoder to Decoder

U-Net [48], a popular semantic segmentation architecture,
uses skip connections between encoder and decoder to propagate
the fine-grained details learned in the encoder part to construct
an image in the decoder part. Following this, we pass the
features from the three encoders (ESAR1, ESAR2, and EOPT1)
and connect them to the appropriate depth of the decoder. We
argue that in this fashion, we are able to retain the fine-grained
input-specific details while decoding the bottleneck representa-
tion to obtain the final output map. Skip connections are shown
as “concat” units in Fig. 1.

C. Weighted Loss

Generally, the unchanged pixels are significantly more fre-
quent than the changed pixels in the training data. To account
for this, we use weighted cross-entropy loss to train the model
M on the training data. Weighted cross-entropy loss is a variant
of the cross-entropy loss function weighted by class, varying the
relative penalty of a probabilistic false negative for an individual
class [49], [50]. In our case, we deal with two classes—changed
and unchanged, weights of which (βc and βnc) are derived from
their inverse ratio in the training data. For a certain pixel x, given
reference label whether the pixel is changed as y and softmax
output corresponding to the changed class as p(x), loss function
is given as

�(x) = −βcylog(p(x))− βnc(1− y)log(1− p(x)). (1)

Weighted loss is aggregated over all samples in a training mini-
batch [51].

D. Test Time Adaptation

The model trained in the above step may be suboptimal for
applying on the test regions unseen during training time [52],
[53]. This is furthermore challenging in the considered data
scenario, as the postchange optical image is not seen in our case.
Dong et al. [54] showed that the model activation’s mean can
be used to effectively model the domain differences. Inspired
by this, we propose a simple test time adaptation strategy to
adapt the trained model to the test cities. For each pixel, the
model M produces two unnormalized predictions (also called
logits) θuc and θc, corresponding to the unchanged and changed
class, respectively. Let the mean of θuc, estimated on the entire
training data, be θTr

uc . For a given test patch, if the mean of
θuc is estimated as θTe

uc , then the θuc values for each pixel in
this patch are added to (θTr

uc − θTe
uc )/θ

Tr
uc . This ensures that the

neural mean activations are similar for the training and test data.
The impact of this adaptation may vary depending on the size
of the test patch on which the adaptation is performed. Let say
a given test scene is divided into p× p patches. A smaller value
of p performs adaptation only at a global scale, while a larger
value of p implies adaptation at more local scale.

IV. EXPERIMENTAL VALIDATION

A. Dataset

The Onera Satellite CD (OSCD) dataset [55] is a popular
urban CD dataset. While originally proposed for only optical
CD, a multisensor version of this is available in [17]. The dataset
uses ascending orbit Sentinel-1 SAR observations coordinate-
transformed via GDAL [56] to match the coordinate system of
the original optical data.

The dataset consists of 24 cities distributed across the world.
Originally, the OSCD dataset [17], [55] and works using this
dataset [57] split 24 cities into a training set of 14 cities and a
test set of ten cities, with no validation set. However, the use
of separate validation set to optimize the hyperparameters is
generally recommended in deep learning [58]. So, departing
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Fig. 1. Proposed Architecture. A − > B − > C refers to 2 Conv. (or transposed conv.) layers that projects feature dimension from A to B and B to C, respectively.
UP refers to the spatial upsampling.

from previous usual practice w.r.t. this dataset, we divide the
24 cities into three sets:

1) Training: Aguasclaras, Beihai, Beirut, Bercy, Bordeaux,
Hong Kong, Nantes, Abudhabi, Rennes, Saclay E, Pisa,
Mumbai.

2) Validation: Cupertino, Paris.
3) Test: Brasilia, Chongqing, Dubai, Lasvegas, Milano,

Montpellier, Norcia, Rio, Saclay W, Valencia.

B. Metrics and Settings

To measure the performance, we use precision (TP/(TP+FP)),
recall (TP/(TP+FN)), F1 score (harmonic mean of the precision
and recall), and accuracy, where TP indicates true positive, FP
indicates false positive, and FN indicates false negative.

We set the number of training epochs by inspecting perfor-
mance evolution on validation subset (see Section IV-A). Models
are trained for 50 epochs with a learning rate of 0.0001 and Adam
optimizer [60]. Result of the proposed method is shown as an
average of three runs with random seeds.

C. Compared Methods and Ablation Studies

To verify the effectiveness of the proposed setting and method,
we need to investigate the following two aspects:

1) whether the proposed data setting (prechange: opti-
cal+SAR, postchange: SAR) is outperformed by more
simpler data settings (prechange: SAR, postchange: SAR)
or (prechange: optical, postchange: SAR) or (prechange:
SAR, postchange: optical);
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TABLE I
CD RESULTS FOR PROPOSED METHOD/SETTING VERSUS EXISTING METHODS/SETTINGS

2) whether the proposed Siamese architecture can be out-
performed by other popular CD architectures, e.g., fully
convolutional network or Vanilla Siamese.

We investigate the abovementioned two aspects by comparing
to the following methods (first six are for the first aspect and the
remaining are for the second aspect).

1) An Early Fusion fully convolutional network using only
prechange and postchange SAR images. Input to the
network is a stacked version of the prechange and
postchange SAR data.

2) Data setting same as above, however using a Siamese
network similar to the proposed approach.

3) An early fusion fully convolutional network using only
prechange optical and postchange SAR images.

4) Data setting same as above, however using an encoder–
decoder network-based method that projects prechange
optical image into SAR image [59].

5) An early fusion fully convolutional network using only
prechange SAR and postchange optical images.

6) Data setting same as above, however using an encoder–
decoder network-based method that projects prechange
SAR image into optical image [59].

7) Data setting same as the proposed method, i.e., prechange
optical and SAR images and postchange SAR image are
used. However, instead of the proposed Siamese setting,
a fully convolutional network [37] is used where the all
three input images are stacked and fed to the network. For
fairness of comparison, the fully convolutional network
uses same number of layers as the proposed method.

8) Data setting same as the proposed method, however us-
ing an encoder–decoder-based approach, similar to [59],
where input of encoder is stacked prechange optical and
SAR images.

9) Data setting same as the proposed method, however using
a Vanilla Siamese network.

10) Proposed method without test time adaptation.
In addition, we also perform the following additional ablation

studies:
1) By varying the value of p for test time adaptation.
2) By inserting a test-time dropout layer with high dropout

rate (probability 0.9) after the first convolution layer in

the encoder processing the prechange optical input or
prechange SAR input or postchange SAR input. This study
helps us to understand the relative importance of every of
the three inputs, e.g., hypothesizing that the postchange
SAR input is vital for the proposed CD architecture, then
applying test-time dropout to its encoder will severely
impact the CD performance.

D. Results

Table I shows the result from different data settings and
methods.

Prechange: SAR, postchange: SAR: For this data setting,
Siamese network outperforms the early fusion-based method,
both in terms of F1 score (difference of 0.2) and accuracy
(difference of 8.61%).

Prechange: Optical, postchange: SAR: While early fusion
outperforms the encoder–decoder-based method, overall this
data setting performs poorly compared to the SAR–SAR setting.
This shows that merely setting up correspondence between
prechange and postchange images from two different modalities
is difficult.

Prechange: SAR, postchange: Optical: This data setting also
performs poorly compared to the SAR–SAR setting. This leads
to the same conclusion as above that merely setting up corre-
spondence between prechange and postchange images from two
different modalities is challenging.

Proposed, prechange: Optical+SAR, postchange: SAR: Ben-
efiting from the availability of both prechange optical and
prechange SAR images, the proposed data setting outperforms
other data settings irrespective of architecture. As an example,
early fusion using proposed setting obtains an F1 score of
27.72 in comparison to 22.88 obtained using prechange SAR
and postchange SAR. Similarly, the encoder–decoder-based ap-
proach obtains a better F1 score than the same approach for other
data settings.

Remarkably, early fusion obtains slightly better scores than
Vanilla Siamese. The early fusion obtains an F1 score of 27.72
and accuracy of 89.70%. The proposed architecture outperforms
both early fusion and Vanilla Siamese by a significant margin.
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Fig. 2. Montpellier (one of the test cities). (a) Prechange (optical). (b) Prechange (SAR). (c) Postchange (SAR). (d) Reference image (white—unchanged,
black—changed), and CD maps. (e) Early fusion. (f) Proposed. It is evident that early fusion produces much more false alarms compared to the proposed Siamese
approach.

The proposed method (with p = 5) obtains an F1 score of 32.14
and accuracy of 91.28%.

Qualitative result for the early fusion and proposed architec-
ture (both using proposed data setting) for the Montpellier city
are shown in Fig. 2(e) and (f), respectively. It is evident that the
proposed approach is less prone to false alarms than the early
fusion approach.

Performance of the proposed method is better with proposed
test time adaptation (F1 score: 32.14 in comparison to 30.25).
This is because, by homogenizing the neural mean activation
between test and training data, model makes the test features

more similar to training features, for which it was originally
trained.

Variation of p: In Table II, we show the variation of the
performance of the proposed method as p is varied during test
time adaptation. While the best F1 score is obtained at p = 5,
we observe a relatively stable performance w.r.t. variation of p.
This is an advantage of the proposed method, as we would not
need to focus on setting its value for practical applications.

Weighted loss: Due to the strong class imbalance between
changed and unchanged class, we have used weighted cross-
entropy loss, similar to previous works on Siamese supervised
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TABLE II
VARIATION OF THE PERFORMANCE OF THE PROPOSED METHOD AS TEST TIME

ADAPTATION IS PERFORMED AT MORE LOCAL SCALE BY INCREASING

VALUE OF p

TABLE III
PERFORMANCE DROP OF THE PROPOSED METHOD AS A HIGH TEST-TIME

DROPOUT IS APPLIED TO THE FIRST CONVOLUTION LAYER IN THE ENCODER

OF THE DIFFERENT INPUTS

CD [55]. To further validate this, we experimented with the
nonweighted version of cross-entropy loss and found that it fails
to obtain satisfactory result (F1 score 11.54 only).

Relative importance of three inputs: Table III shows the fall
in performance (accuracy and F1 score) as test-time dropout
is applied to the first convolution layer of encoder of some of
the three inputs. We observe that most significant decrease in
performance is observed when dropout is applied to postchange
SAR input. This is intuitive as we have only one postchange
input, and thus, the information from it is essential to make
decision about change. Similar decrease in performance is also
observed if dropout is applied simultaneously to both prechange
inputs. Among the prechange optical and prechange SAR inputs,
decrease in performance is more in the case of prechange optical
input. While dropout applied to the prechange optical input leads
to drop in F1 score of 7.04, the drop for the prechange SAR is
4.81. This shows that for the proposed data setting, the network
extracts the prechange information more from the optical input
than the SAR input.

V. CONCLUSION

This article presents a new data setting for remote sensing
CD, using prechange optical and SAR images and postchange
SAR image. Using a set of experiments, we show that this
setting obtains superior performance to only SAR scenario.
This data setting is especially useful, since at occurrence of any
disaster/incident, it is indeed possible in most cases to obtain an
artifact-free prechange optical image; however, it is not always
practical to wait for acquisition of an artifact-free postchange
optical image. The article also presents a novel Siamese architec-
ture for this data setting, where prechange and postchange SAR

images share the same encoder, while prechange optical data are
processed using a separate encoder. The proposed architecture
effectively fuses information from different data modalities and
processes them using a common decoder to obtain the change
map. Our analysis also shows the relative importance of three in-
puts for our data setting, ordered as postchange SAR, prechange
optical, and prechange SAR. Our future work will focus on
designing more robust architecture for the proposed data setting.
We will furthermore investigate the combination with image
reconstruction methods for spatio-temporal cloud removal [61].
We will also like to extend the method for fine grained changed
objection detection [62], [63].
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