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Anomaly Detection in Hyperspectral Images via
Regularization by Denoising
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Eduardo Rodrigues de Lima, and Renato da Rocha Lopes

Abstract—In a recent work, Fu et al. (2021) proposed an anomaly
detector (AD) for hyperspectral images called DeCNN-AD, which
decomposes the image in a low rank representation of the back-
ground and the anomalies. DeCNN-AD is regularized by an implicit
plug and play prior (PnP), providing state-of-the-art anomaly de-
tection performance in hyperspectral images. In this article, we pro-
pose a different AD using the Regularization by Denoising (RED)
framework. The regularizer that emerges in RED algorithms is
advantageous in the sense that it can be minimized by many solvers,
unlike PnP, which has to be rederived for each specific solver like the
alternating direction method of multipliers or the proximal gradi-
ent method. The proposed detector was compared to DeCNN-AD
in several experiments, and was shown to present a more stable
behavior better convergence properties, to be less sensitive to the
choice of parameters, while leading to very similar performance in
terms of optimal AUC of receiver operating characteristic curves.

Index Terms—Anomaly detection, hyperspectral images,
regularization by denoising.

I. INTRODUCTION

HYPERSPECTRAL anomaly detectors (ADs) aim to find
pixels that stand out from the cluttered background [1].

This is an important task in the field of hyperspectral images,
as the extra dimension of such data often allows one to distin-
guish between different materials and phenomena. A relevant
application of such automatic ADs is predictive maintenance in
electric power substations, in which equipment downtime must
be reduced to a minimum.

Classically, it is assumed that anomalies occur rarely when
compared to background pixels. Based on this assumption, the
Reed–Xiaoli (RX) method and its variants [2], [3], [4], [5] are
derived as hypothesis tests on a given statistical background
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model. Other classical strategies include the collaborative rep-
resentation detector (CRD) [6], which exploits the fact that
background pixels can be approximately represented using its
spatial neighbors, and support vector data description (SVDD)
detectors [7], [8], which attempt to model the support of the
background distribution.

Over the years, several ADs based on pattern recognition
using different statistical priors have been proposed [9], [10],
[11] with increasingly superior anomaly detection performance.
Recently, Fu et al. [12] proposed an AD that decomposes the
image as the sum of a low-rank background and an anomaly
image. Their method achieves state-of-the-art performance by
using the plug and play prior (PnP) framework [13] to regularize
the decomposition. Since it uses the deep convolutional neural
network (DeCNN) denoiser [14], [15], the method is called the
DeCNN-AD.

Regularization by denoising (RED) [16] is another regu-
larization framework that has shown superior performance in
tasks such as image super-resolution and image deblurring [16].
As with PnP, RED leverages powerful denoising algorithms
for regularization. In contrast with PnP, RED can use several
optimization solvers, and, for some denoisers, it has an explicit
cost function with provable convergence results [17]. Also,
experimental evidence often points to more stable results when
using RED when compared to PnP, in the sense that they have
better convergence properties and are less sensitive to the choice
of parameters for a wide range of denoisers [16].

In this article, we propose a RED algorithm for anomaly
detection in hyperspectral images, as an alternative to the state-
of-the-art DeCNN-AD [12]. In Section II, we quickly review the
anomaly detection task, as well as some well-known detectors.
In Section III, we present the proposed detector. Simulation
results comparing our proposal to DeCNN in real hyperspectral
scenes are presented in Section IV, which show the improved
convergence and robustness of RED. Section V concludes this
article.

II. PREVIOUS WORK

AD for hyperspectral images attempt to differentiate back-
ground pixels from anomalous ones in a given hyperspectral
scene without any prior knowledge of targets or background
statistics [1].

Let P ∈ RNf×NxNy be a matrix representing the hyperspec-
tral data cube, where Nf is the number of bands, and Nx and Ny
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correspond to the size of the image in each band. These images
have been stacked into a vector to form each row of P . We are
interested in classifying each column of P , called a pixel, as
either a background pixel or an anomaly.

A large class of ADs [9], [10], [12], [18] follow a two-step
structure. The first step, decomposition, is usually designed to
separate the image into background and anomaly pixels

P = B +A (1)

where B ∈ RNf×NxNy is the background and A ∈ RNf×NxNy

is the anomaly. Robust principal components analysis
(RPCA) [19] is a classical example of such decomposition,
which imposes a low-rank constraint on the background matrix
B and a sparsity constraint on the anomaly A. In the second
step, a detection rule is applied to the anomaly matrix A =
(a1,a2, . . . ,aNxNy

). In most cases, the ith pixel is classified as
an anomaly if ‖ai‖ is larger than a predetermined threshold. In
other words, based on the anomaly component A, we generate
so-called detection map, which is a vector t ∈ RNxNy whose
ith element is given by

ti = ‖ai‖. (2)

If the decomposition step was successful, after normalizing t to
the interval [0,1], the value of ti can be interpreted as the prob-
ability that the pixel at index i is anomalous. A threshold value
for t can be found manually or heuristically [20]. Pixels with
values of ti larger than this threshold are declared anomalous.

More sophisticated detectors rely on a low-rank represen-
tation of the background under a given dictionary, B = DS,
where the dictionary D ∈ RNf×m should be able to generalize
background pixels [21]. Examples of such detectors include
the low rank and sparse representation (LRASR) [9], low-rank
and collaborative representation (LRCRD) [10], graph and total
variation regularized low rank representation (GTVLRR) [18],
spectral unmixing and low-rank decomposition (SULRD) [22],
[23]. Essentially, the decomposition steps in these detectors
seek to minimize different penalty functions in the background
representationS ∈ Rm×NxNy , while requiring that the anomaly
component be sparse. A detailed review of these detectors can
be found in [12].

More recently, Fu et al. [12] proposed the DeCNN-AD AD,
which substitutes the penalty functions of [9], [10], [11] with
a plug and play prior (PnP) [13]. More precisely, DeCNN-AD
aims to solve the following problem

min
S,A

1

2
‖P −DS −A‖2F + λ‖A‖2,1 + βφPnP(S) (3)

where β, λ > 0 are regularization parameters, the first term
ensures that P ≈DS +A, φPnP is the implicit PnP prior, and
the minimization of ‖A‖2,1 =

∑NxNy

i=1 ‖ai‖2 ensures that A
has few columns with nonnegligible norm. As is usual for PnP
algorithms, the cost function (3) is minimized with the alter-
nating direction method of multipliers (ADMM) [24], where
the minimization step with respect to the regularization penalty
φPnP is replaced by a denoising operation. Fu et al. [12], used
the convolutional network FFDNet image denoiser [15], which
is sequentially applied to each (normalized) hyperspectral band.

Algorithm 1: DeCNN-AD Decomposition.
Input: P , D, β, λ, μ0, μmax, ρ, n
Output: S, A

1: for k = 0 to n do
2: Sk+1←(DTD+μkI)

−1(DT(P−Ak)+μkZk+V k)
3: Ak+1 ← proxλ‖·‖2,1(P −DSk+1)

4: Zk+1 ← fβ/μk
(Sk+1 − V k/μk)

5: V k+1 ← μk(Zk+1 − Sk+1)
6: μk+1 ← min{ρμk, μmax}
7: end for
8: return Sk, Ak

The complete ADMM solution of the DeCNN-AD decomposi-
tion (3) is given by Algorithm 1.

After the decomposition step, DeCNN-AD classifies each
pixel of the observed image as an anomalous pixel or a back-
ground pixel, based on the norm ti of the anomaly component
of the corresponding pixel, as discussed earlier. More details on
the implementation of DeCNN-AD were presented in [12].

III. REDAD

The proposed detector, called the Regularization by Denois-
ing Anomaly Detector (REDAD), replaces the implicit PnP prior
by the explicit RED prior of [16], leading to the following
optimization problem

min
S,A

1

2
‖P −DS −A‖2F + λ‖A‖2,1 + β

2
tr[ST (S − fσ(S))]

(4)

where β, λ > 0 are regularization parameters and fσ is a given
denoiser assuming noise level σ. The regularizer

φRED(S) =
1

2
tr[ST (S − fσ(S))] (5)

contrasts with the implicit one from DeCNN-AD. The main
hypothesis of the original RED framework can be rewritten for
a matrix denoiser f : RM×N → RM×N as follows:

C1) (Local Homogeneity) f(εS) = εf(S) for small ε ≥ 0
and for all S ∈ RM×N .

C2) (Strong Passivity) η[J(S)] ≤ 1 for all S ∈ RM×N ,
where η[·] is the spectral radius and J(S) is the jacobian
of the flattened denoiser f applied to the flattened version
of S.

C3) (Row stochasticity) J(S) is entry-wise non-negative and
the vector (1, . . . , 1)T ∈ RMN is an eigenvector ofJ(S)
for any S ∈ RM×N .

As shown in [16], under the assumptions (C1)–(C3), the
explicit regularizer φRED(S) is differentiable, convex, and its
gradient is given by the denoising residual S − fσ(S). There
is an ongoing discussion on the exact conditions that should be
assumed for these results to be valid [17], [25]. Despite that, in
real applications, RED algorithms converge and achieve excel-
lent performance in different inverse problems even when those
conditions are partially satisfied [16]. For this reason, hence-
forth, we will use the approximation∇φRED(S) = S − fσ(S).
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Algorithm 2: REDAD Decomposition.
Input:P , D, β, λ, μ, σ, n
Output: S, A
1: for k = 0 to n do
2: Sk+1←(DTD+μI)−1(DT(P−Ak)+μZk+V k)
3: Ak+1 ← proxλ‖·‖2,1(P −DSk+1)

4: Zk+1 ← 1
β+μ [βfσ(Zk) + μ(Sk+1 − V k

μ )]

5: V k+1 ← μ(Zk+1 − Sk+1)
6: end for
7: return Sk, Ak

This simple gradient expression allows us to write first-order
optimization methods such as steepest descent (SD), fixed point
(FP) schemes, ADMM and block coordinate descent (BCD) in
order to minimize the cost function in (4) [17]. For the sake
of comparison with the DeCNN-AD in Algorithm 1, we shall
describe the ADMM solution of the REDAD decomposition in
the remainder of this section. A usual when deriving the ADMM
algorithm, we first write the augmented lagrangian

1

2
‖P −DS −A‖2F + βφ(Z) + λ‖A‖2,1

+
μ

2

∥∥∥∥Z − S +
V

μ

∥∥∥∥
2

F

(6)

where Z is a dummy variable such that Z = S, and V is the
dual variable. Note that (6) is defined for a generic prior φ.
By setting φ = φPnP we have the lagrangian for the original
DeCNN-AD, and by setting φ = φRED we have the lagrangian
for the REDAD. Therefore, the only difference between the two
ADMM solutions is the updating of Z, which is given by

Z+ ∈ argmin
Z

βφ(Z) +
μ

2

∥∥∥∥Z − S +
V

μ

∥∥∥∥
2

F

. (7)

DeCNN-AD replaces this step with a direct application of the
denoiser fσ . In contrast, for the REDAD prior, (7) can be solved
explicitly using the gradient approximation. For instance, one
iteration of the fixed point method to solve (7) is given by

Z+ =
1

β + μ

[
βfσ(Z) + μ

(
S − V

μ

)]
(8)

where fσ(Z) is a denoised estimate of Z. Using a single step
of this fixed point strategy per outer ADMM iteration, the
number of denoiser activations per iteration of both REDAD
and DeCNN-AD are the same, and the computational cost of
both decompositions are roughly the same.

Following the steps of the DeCNN-AD for updating the other
variables S, A, and V , the complete ADMM solution of the
REDAD decomposition (4) is summarized in Algorithm 2.

Comparing Algorithms 1 and 2, we see that unlike the
DeCNN-AD, the penalty parameter μ and the noise level σ are
kept constant during all iterations of the REDAD decomposition.
For PnP algorithms, using a fixed penalty μ does not seize its
full potential [16]. In order to get around this, DeCNN-AD starts
with a relatively small μ0, and updates it at each iteration with

the rule

μk+1 = min{ρμk, μmax} (9)

where ρ = 1 + ε is a constant parameter close to but greater
than 1, and μmax establishes a maximum amount of penalization.
Since the noise level assumed in DeCNN-AD depends on the
penalty parameter μk, this updating provides a large amount of
denoising in the beginning iterations, followed by a decreasing
amount in the remaining ones. This manually crafted constants
express an attempt to induce a convergent behavior in PnP
algorithms, and they are left out of Algorithm 2, simplifying
parameter selection.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results for the pro-
posed detector applied to different hyperspectral scenes. A false
color representation of each scene we used is shown in the first
row of Fig. 1. The data was extracted from the Airport-Beach-
Urban (ABU) dataset, available at [26], which was manually
labeled from cropped images of the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) and the Reflective Optical Sys-
tem Imaging Spectrometer (ROSIS-03). The ground-truth maps
are shown in the second row of Fig. 1. Some of these scenes
were also used by Fu et al. [12] in the original DeCNN-AD
paper, with slightly different names.

In all experiments, REDAD and DeCNN-AD used the same
dictionary construction heuristic proposed by Fu et al. [12]
with parameters T = 3, M = 0.3 and P = 20. The number of
clusters K was set differently for each scene. In all cases, f was
chosen to be the FFDNet denoiser [15].

A. Detection Performance

In this first experiment, we evaluated both REDAD and
DeCNN-AD in all the four scenes shown in Fig. 1. For com-
parison, we also evaluated seven different state-of-the-art ADs,
namely Global Reed-Xiaoli (GRX) [2], Kernel Reed-Xiaoli
(KRX) [3], [4], [5], Robust Principal Component Analysis
(RPCA) [19], LRASR [9], [11], joint LRASR with poten-
tial anomaly dictionaries (LRSR) [27], Low-Rank Embedded
Network (LREN) [28] and the spectral-spatial anomaly tar-
get detector based on fractional Fourier transform, context-
aware Saliency, and Collaborative Representation theory (SS-
FSCRD) [6], [29].

Since the ground-truth maps are available, performance was
measured in terms of the Area Under the Receiver Operating
Characteristic (ROC) Curve (AUC) for each of the scenes. The
ROC curves are shown in Fig. 3, and the final AUC of all
methods are presented in Table I. For each scene, we also plotted
the anomaly maps of the four methods with higher AUC. The
anomaly maps are shown in Fig. 2, with detected anomalies
highlighted in red.

For the KRX, we used the Gaussian radial basis function
kernel

k(x,y) = exp

(−‖x− y‖22
c

)
(10)
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Fig. 1. Datasets used in the experiments. The first row shows false color representations of each hyperspectral scene. The second row shows ground-truth label
maps. (a), (e) Pavia Beach. (b), (f) Los Angeles Urban. (c), (g) Gulfport Airport. (d), (h) Texas Coast Urban.

TABLE I
FINAL AUC SCORES OF DIFFERENT ADS IN FOUR HYPERSPECTRAL SCENES

TABLE II
REDAD AND DECNN-AD PARAMETERS IN THE FIRST EXPERIMENT

and a dictionary of background pixels clustered with the same
heuristic as REDAD and DeCNN-AD with parameters K =
3, 1, 9, and 2 and c = 10, 15, 12, and 15 for the scenes Pavia
Beach, Los Angeles Urban, Gulfport Airport and Texas Coast
Urban, respectively. The GRX assumes all pixels in each scene
are background, which is a reasonable assumption if anomalies

are rare. LRASR also used the same dictionary as DeCNN-AD
and REDAD, with the same construction parameters. LRSR and
LREN used their own background and anomaly dictionaries as
proposed in the original papers. The RPCA parameters were
those of the original Candès algorithms [19]. The parameters of
DeCNN-AD and REDAD are shown in Table II. The parameters
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Fig. 2. Anomaly maps with highlighted detections of the three methods with highest AUCs in each scene. The first row shows ground-truth labels. Each column
shows the results for different datasets: (a), (e), (i), (m) Pavia Beach; (b), (f), (j), (n) Los Angeles Urban; (c), (g), (k), (o) Gulfport Airport; (d), (h), (l), (p) Texas
Coast Urban. (e) REDAD. (f) REDAD. (g) REDAD. (h) REDAD. (i) DeCNN-AD. (j) DeCNN-AD. (k) DeCNN-AD. (l) DeCNN-AD. (m) KRX. (n) LRASR. (o)
SSFSCRD. (p) LRASR.

of all methods were set to their default values whenever they
were available for the scenes in question. Otherwise, a grid
search was performed to find reasonable ones. Whenever
applicable, we adopted μmax = 108 and ρ = 1.1 unless
explicitly stated otherwise. Also, the AUC was measured
at iteration 200 for all iterative methods.

As shown in Table I, the REDAD detector produced similar,
or even better AUC scores than DeCNN-AD and several other
state-of-the-art detectors. REDAD produced an AUC close to
1 in all of the hyperspectral scenes tested. More importantly, the

final AUCs presented in Table I corroborate the results provided
by [12], which shows that a highly specialized denoiser, such
as FFDnet, can be used as a regularizer with outstanding results
in the original DeCNN-AD formulation as well as in the RED
alternative we are proposing.

In summary, in this section, we compared REDAD with
several different state-of-the-art AD methods with different
dictionary construction heuristics, regularization engines, and
clustering strategies. We observed that REDAD provided similar
and possibly better results than the other methods in terms of
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Fig. 3. ROC curves obtained with DeCNN-AD, REDAD, GRX, and KRX in scenes (a) Pavia Center, (b) Texas Coast Urban, and (c) Gulfport. False positive
rates are log10 scaled.

AUC of the ROC curve. Next, we discuss practical aspects of
REDAD and DeCNN-AD regarding convergence and the tuning
of its parameters.

B. Robustness to Parameters and Convergence Stability

This second experiment consisted in evaluating REDAD and
DeCNN-AD for a wide range of parameters in the Texas Coast
Urban scene. This was done in two stages: First, we considered
a large set of penalty parameters for both detectors while main-
taining regularization parameters β = 0.1 and λ = 0.5 fixed.
Then, we evaluated the detectors for a range of regularization
parameters fixing the penalty parameters μ0 = 100 and ρ = 1.1
for the DeCNN-AD, andμ = 1000 andσ = 0.1 for the REDAD.
The AUC for both detectors, as a function of the iteration, are
depicted in Figs. 4 and 5, respectively.

The results for DeCNN-AD, depicted in Figs. 4(a) and 5(a),
show that the performance of the detector varies significantly
for slight changes in the parameters. The results also indicate
that the algorithm frequently diverges after some iterations. On

the other hand, the REDAD curves, depicted in Figs. 4(b) and
5(b), show a more stable behavior with respect to changes in
the parameters, and better convergence behavior. Similar curves
were obtained for all other scenes, but were omitted here for
brevity.

In the previous experiment, we observed a glimpse of one of
the main features of RED algorithms: a more stable convergence
when compared to PnP. To further clarify, we re-evaluated both
detectors in all four hyperspectral scenes. Instead of the AUC,
the norm differences

‖Ak −Ak−1‖F (11)

were computed at each iteration. The results are shown in
Fig. 6(a) and (b). The parameter choices used here are shown
in Table II, except that the number of iterations was set to 1000
instead of 200.

As in the first experiment, both DeCNN-AD and REDAD
performed equally well in the first 200 iterations after which,
in all the scenes, the detectors reached a norm difference of
approximately 10−1. However, after a couple hundred iterations,
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Fig. 4. AUC at each iteration in Texas Coast Urban scene for (a) DeCNN-AD, and (b) REDAD. The curves were obtained with varying penalty parameters, and
fixed regularization parameters.

Fig. 5. AUC at each iteration in Texas Coast Urban scene for (a) DeCNN-AD, and (b) REDAD. The curves were obtained with varying regularization parameters,
and fixed penalty parameters.

Fig. 6. Norm difference of the anomaly component at each iteration in all hyperspectral scenes for (a) DeCNN-AD, and (b) REDAD.
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Fig. 7. Pavia Beach scene corrupted by noise. First row shows a false color representation of each scenario. The second row shows the detection maps provided
by REDAD in each case, where we highlighted the detected anomalies. (a,f) σ = 0.01. (b,g) σ = 0.05. (c,h) σ = 0.1. (d,i) σ = 0.2. (e,j) σ = 0.5.

the DeCNN-AD diverges, while with REDAD the norm dif-
ference seems to get smaller and smaller, further highlighting
its superior convergence properties presented by [16]. In fact,
the divergence of DeCNN-AD is similar to the convergence
behavior reported for other PnP algorithms in [16], which was
one of the motivations for their proposal of RED.

C. Anomaly Detection of Corrupted Data

An important question regarding the use of PnP and RED in
anomaly detection is whether those methods perform well in
the presence of noise. In this section, we address this topic by
repeating the first experiment, but introducing different levels of
noise corruption.

For this purpose, the Pavia Beach scene was corrupted with
independent additive Gaussian noise, with standard deviation σ
ranging from 0.01 to 0.1, resulting in five test scenes. A false
color representation of each corrupted test scene is shown in
Fig. 7. When the variance increases, it becomes harder to visually
distinguish between anomalous pixels and background ones,
until a point, as depicted in Fig. 7(d), where the distinction cannot
be performed by looking only at the false color representation.

For each noise level, we reran the ADs discussed in the first
experiment, using the same set of parameters as before. The
detection maps obtained by REDAD are shown in the second
row of Fig. 7, where we highlighted the detected anomalies.

The whole experiment was repeated 10 times for each noise
level, with new noise samples at each trial. The mean AUCs
obtained in these runs are shown in Table III. In the original
noiseless Pavia Beach scene, both REDAD and DeCNN-AD had
very similar performance, producing an AUC close to 0.999.
When noise is added, detection becomes more difficult, and
AUC values decrease. From Table III, we see that the REDAD
detector was the most robust, and its mean AUC never fell below
0.9691, even in the noisiest case. The mean AUC obtained by
DeCNN-AD and LRASR were 0.4870 and 0.7567 at iteration
200. Considering that these two detectors were tied with REDAD
in the first experiment, this performance penalty further high-
lights the stability and robustness of the proposed REDAD.

TABLE III
MEAN AUC SCORES OF EACH DETECTOR EVALUATED IN THE PAVIA BEACH

SCENE UNDER DIFFERENT NOISE LEVELS

We emphasize that the results in Table III were obtained at
iteration 200 of all iterative methods, and that the parameters
were the same as in the first experiment. While there may be a
set of parameters for which DeCNN-AD achieves similar per-
formance to REDAD, these parameters could be very different
from those used previously, and we did not try to fine-tune them.
The main point here is that REDAD achieves good performance
with no need for returning its parameters, whereas DeCNN-AD
suffers a large performance penalty when it is not returned. The
performance penalty of DeCNN-AD may be due to the fact
that the noise seems to exacerbate the convergence problems
of the method. In fact, in the σ = 0.5 case, the mean AUC for
DeCNN-AD reaches 0.9621 at iteration 100, but degrades to
0.4870 at iteration 200.

The results obtained here reinforce what has already been
discussed in the last sections, indicating that REDAD is less
sensitive to small perturbations the DeCNN-AD. This analysis
extends the comparisons made by Romano et al. [16], pointing
to the fact that RED may be a more robust choice than PnP in
the problem of hyperspectral anomaly detection.

V. CONCLUSION

In this article, we presented a novel algorithm for anomaly
detection in hyperspectral images. The proposed algorithm
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imporves on the recently proposed, state-of-the-art DeCNN-AD,
by replacing the implicit PnP prior by the explicit RED prior.

The proposed detector was experimentally compared to
the DeCNN-AD, leading to similar AUC scores in the ABU
dataset. However, the AUC of REDAD was less sensitive to
the choice of parameters, and presented a more stable con-
vergence behavior, both desirable features in real applications.
These improved properties have also been reported for RED
algorithms in other applications like deblurring and super-
resolution.
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