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Dimensional Subfeatures in Deep Forest for
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Abstract—To overcome the high intramodel dimensionality and
low ensemble diversity issues, which limit the classification per-
formance of original deep forest (DF), a new version of DF, the
high-ordinary least square projection (HOLP) DF, was proposed
in this article by introducing model-based HOLP feature screening
(FS), random subspace propagation, and reduced error pruning
techniques. To evaluate the performance of the proposed HOLP-
DF, total eleven popular FS algorithms and total six advanced
deep learning methods are selected. Experimental results on three
widely acknowledged hyperspectral and PolSAR image classifica-
tion benchmarks showed that: 1) HOLP is an optimal choice for
FS in contrast with other screeners in terms of high classification
accuracy and execution efficiency; 2) HOLP-DF is capable of ob-
taining better results than the original DF, DF with confidence
screening and feature screening; 3) optimum sets of model depth,
propaganda ratio and screening ratio parameters are 30, 40%, and
40%, respectively; 4) performance of HOLP-DF can be further
boosted by extra usage of patch-based pooling and morphological
profiling techniques.

Index Terms—Deep forest (DF), feature screening, high-
ordinary least square projection (HOLP), hyperspectral, image
classification, PolSAR.

I. INTRODUCTION

LAND cover classification has always been a research
hotspot in the fields of remote sensing (RS) image pro-

cessing and applications, which has received general attentions
from many socio-economic and environmental application fields
[1], [2], [3]. Among the many methods, machine learning (ML)
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based RS image classification has always been an active topic in
the RS image processing and application communities, mainly
due to their superior robustness and efficiency compared to con-
ventional model-based approaches [4], [5], [6]. And in contrast
with the conventional shallow ML methods, neural networks
(NNs) based deep learning (DL) methods has gradually outper-
formed shallow ones and become the mainstream solution for
the most RS image classification problems owing to their strong
intramodel feature extraction ability, complex model structure,
and plentiful parameters [5], [7], [8], [9], [10].

Even though remarkable advances have been achieved, still
neither of those deep NNS (DNNs) based models can serve
as the one solution to solve all problems. Particularly when
considering the scenarios of learning from small-scale samples,
predetermination of network topology structure, and the well-
known difficulty of theoretical analysis of black-box features
[11]. After many attempts of theoretical analysis, the learning
mechanism of NNs based DL are not completely clear, but it has
also been preliminarily proved that layer-to-layer processing,
in-model feature representation and sufficient model complexity
are the three basic principles that may underpin the success of
DNNs [11], [12]. Based on this, a novel non-NN style DL model
named multigrained cascade forest (gcForest), which realized by
nondifferentiable modulus without backpropagation training for
constructing deep forest (DF) was proposed by Zhou and Feng
[12]. In contrast with NNs based DL models, gcForest comes
with the appealing properties of the following:

1) easy to deploy and train with much fewer parameters;
2) can achieve high predictive accuracy on datasets across

different domains by using almost the same setting of
hyperparameters;

3) capable of capturing contextual or structure features;
4) the model complexity can be determined automatically in

a data independent way which enabling gcForest (repre-
sented by DF thereafter) to perform well even on small-
scale datasets [11], [12].

Despite the remarkable advantages previously that have been
proven from wide range of applications, original DF is also
limited by the high time cost and memory requirement with
owes much to the aspect of: 1) cascade structure of DF leading
to a linear increase in price of time complexity as the num-
bers of level increases; and 2) multigrained scanning proce-
dure significantly increase the number of training instances not
only, also produces a high-dimensional input for the cascade
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procedure [11]. To address these issues, gcForest has been
improved by introducing techniques like confidence screening
(CS) [13], feature screening (FS) [14], feature pooling and error
screening [15], patch-based pooling, morphological profiling,
and pseudolabeling (PL) [16]. However, these solutions were
conducted on sufficient sample training sets, and may not hold
for small samples (n) with large numbers of features (p) training
set scenarios, the so-called large-p-small-n problem in statistics.
Because the classical ordinary least-squares (OLS) estimate used
for linear regression is no longer applicable due to insufficient
degrees of freedom. Additionally, the proven superior perfor-
mances of patch based pooling and morphological profiling tech-
niques could be further boosted and generalized by interacting
with state-of-the-art FS techniques those designed for high and
ultrahigh dimensional FS problems with sparsity.

Thanks to the rapid advances in earth observation technology,
now it has brought us an unprecedented array of large, enrich,
diverse and complex RS data. In the meantime, challenging
issues from dimensionality that exists in statistics, ML, RS data
processing, storage, and access arose more severely in this era
of big data. Although, an explosion of developing approaches
for handling large data sets with high dimensionality have been
witnessed in recent years, the common assumption underlying
these approaches, variables that affect the response is relatively
small, may not hold for large-p-small-n problem, and the compu-
tation cost for large-scale LASSO-based optimization becomes a
serious concern as well [17], [18]. Additionally, current common
feature selection and extraction methods may also not work
well due to the simultaneous challenges of computational ex-
pediency, statistical accuracy, and algorithmic stability, which
often requires sophisticated estimation techniques, strong model
assumptions, and advanced computing algorithms [19], [20].
For example, traditional variable selection methods like Akaike
information criterion, Bayesian information criterion (BIC), and
extended BIC always involve a combinatorial NP-hard optimiza-
tion problem with computational time increasing exponentially
with the data dimensionality. Hence, it is truly desirable if one
can rapidly reduce the ultrahigh dimensionality before conduct-
ing a refined analysis. And a practical approach is to use a
screening procedure to reduce the dimension of feature space
to a moderate scale, and then apply variable selection methods
in the second phase.

In contrast with the consistent variable selection, FS (also
known as variable screening) deals with a much less ambitious
goal of sure screening could be achieved by using some both
conceptually and computationally simple method [22]. Thereby,
marginal FS becomes indispensable for linear, generalized
linear, and robust linear models on ultrahigh dimensional data
and has received much attention, especially since the seminal
work of sure independent screening (SIS) method was proposed
by Fan and Lv for linear regression [22], [23], [24]. However, all
these approaches based on sure screening protocol require the
specification of a particular model structure, which is usually an
impossible task under the ultrahigh dimensional setting. Thus,
model-free FS methods are naturally more appealing. Toward
this direction, Ball correction SIS (BcorSIS) [25], distance
correlation SIS (DC-SIS) [26], sure independence ranking and

screening (SIRS) [27], mean-variance SIS (MVSIS) [28], mar-
tingale difference correlation SIS (MDCSIS) [29], and Henze–
Zirkler SIS [20] are the most undertaken ones in diverse studies.

Although the model-free FS methods are capable of avoiding
the impossible task of a particular model structure specification,
current methods are still based on some assumptions for the
predictor and response variables on the one hand. For example,
correlation metric-based SIRS and DCSIS are not robust to
the predictors whose distributions are heavy tail, and DC-SIS
requires both the predictors and response variables to satisfy
the subexponential tail probability uniformly. On the other
hand, model-free FS methods cannot simultaneously satisfy
the following two important demands in designing a screening
operator: 1) straightforward and efficient to compute; and 2)
the resulting estimator must possess the sure screening property
under reasonable assumption to assure that the most discriminate
subfeatures are remained. In this sense, model-based screeners
like high-ordinary least square projection (HOLP) [18] and
sparsity-restricted maximum likelihood estimator (SMLE) [30],
which possesses the sure screening property, gives consistent
variables selection without strong marginal correlation assump-
tion and computationally efficient, still will be practically ap-
pealing. And in contrast with the latter one which is in the context
of ultrahigh dimensional generalized linear models, HOLP is
more simple, easy to implement, and more flexible for both linear
and generalized linear models with Ridge-regression. Thus, it is
of great interest to adopt HOLP to solve the aforementioned issue
of dimensionality in DF via screening out the most irrelevant
features in the cascade structure construction phase.

Essentially being as novel decision trees based EL method,
multigrained cascade structure based in-model feature represen-
tation and layer-to-layer processing enable DF with high predic-
tive accuracy that competitive to diverse DNNs in wide range
of tasks [11], [12], [13], [14], [15], [16]. However, this property
not only limit the original DF by high time cost and memory
requirement, as discussed earlier, but also can limit the predictive
accuracy by using layer-to-layer processing with lower diversity
and average fusion strategy by underfitting and/or overfitting.
This is mainly due to the fact that original DF and its variants
simply passing the original input features for concatenate with
features from next layers [11], [13], [14], [15], [16]. In this
case, the variance of the input will typically get smaller as
learners get better and better at predicting the output and the
remaining errors become increasingly difficult to correct. As a
result, this multi-co-linearity can significantly limit the ability of
the ensemble to improve upon the best score of the subsequent
layer as there is too little variation in predictions for the ensemble
to learn useful combinations. And this is true in small ensemble
size with high classifier diversity and large ensemble size with
low classifier diversity scenarios that particularly use average
and majority voting fusion strategies [4], [31]. Noteworthy, there
are only four learners, two random forest and two ExtraTrees,
to enhance the diversities in the cascade layers of DF and have
equal contributions to produce the final prediction. This is why
there was no obvious improvement in accuracy and the increased
depth of DF being larger than ten layers [16]. Moreover, this
nondate-driven manual hard-definition of diversity from forests
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may raise the risk of overfitting and/or underfitting on small-
scale or class-imbalanced data [32].

Diversity is the first key component of constructing an effec-
tive EL system, usually can be achieved by applying specific
techniques on sample, label, feature, and model parameters in
separate or hybrid ways [33], [34]. For the techniques from
feature space, the most popular approaches are random rotation
[35], regularized random rotation [36], random projection [37],
random partition [38], and random subspace [39]. Theoretically,
any of these approaches can be adopted to increase variations be-
tween propagated features from the original input and/or earlier
layers in DF. However, compared with the random subspace
approach, the most other existing works do not have strong
theories support [40]. Most importantly, the random subspace
method leverages the idea that neighborhoods of feature space
have a specific local structure via sticking to the original features,
and the minimal discriminative subsets could appear in some
of the subspaces. This property can be very powerful when
the local structure or the discriminative subset first needs to be
extracted, before an estimator learning to generalize for features
ranking, screening, and classification [39], [40]. In fact, most ML
algorithms with convex optimization objectives are ill-equipped
to solve the problem of multimodal probability distribution
estimation from all feature spaces. The random subspace method
can overcome this issue by allowing base estimators to fit one
mode of the distribution at a time. Thus, random subspace
based feature propagation technique is selected to increase the
variations from features before screening to the next layers of
our modified version of DF.

However, propagating and screening all generated random
subspaces may not be a wise idea in practice. Especially in the
sparse classification case as many random subspaces could con-
tain low discriminative and even corrupted signals, and adopting
an average voting-based fusion strategy in the original DF.
Furthermore, the unnecessarily large random subspaces-based
ensemble can lead to extra memory usage, computational costs,
and may occasionally degrade the generalized performance [41].
A straightforward way to alleviate these shortcomings is the
selection of a fraction of the base learners before combination,
which is commonly called as ensemble pruning, ensemble selec-
tion, ensemble thinning, and selective ensemble [42], [43]. Some
theoretical and empirical evidences have also shown that perfor-
mance of an ensemble consisting of small ensembles could better
than all [44], [45]. Motivated by these reasons, many ensemble
pruning algorithms have been proposed in the last decades.
However, while those algorithms report to greedy search not
have theoretical or empirical quality guarantee, those based
on swarm intelligence optimization algorithms are sensitive to
noise, and those stand on Bayesian probabilistic distribution
are usually require advanced computation techniques and may
not applicable for ensemble pruning [41], [43]. Hence, due to
the straightforward, effective, efficient, and easy to implement
reasons, we select the reduced error pruning (REP) [46] before
fusion in the proposed DF algorithm.

The main contributions of this article are summarized as
follows.

1) A new version of DF was proposed for pixelwise RS
image classification by adoption of HOLP based feature

screening, random subspace propagation, and reduced
error running techniques.

2) Total of twelve popular feature screening methods for high
and ultrahigh dimensional settings were studied to solve
the issues of memory requirement from the original DF.

3) Optimum choices for random subspace propagation and
screening ratios were recommended for the proposed
HOLP-DF algorithm.

II. RELATED WORK

In ultrahigh dimensional setting, SIS procedure was first
introduced to significantly reduce the dimensionally by strongly
rely on the assumption that the valuable features in the data
have large marginal correlations with the response. But this
assumption is often violated in reality, as predictors are often
correlated. In further, valuable features that are jointly correlated
to the response can be screened out simply because they are
marginally uncorrelated to the response [18]. Nevertheless, as a
seminal work for FS, SIS is still appealing in practice due to its
sure screening, straightforward, and computationally efficient
properties. And more appealing solutions might be reachable by
loosening the restrictive marginal correlation assumption based
on the OLS estimator and the Ridge regression, which are the
HOLP and Ridge-HOLP [18].

Consider the familiar linear regression model

Y = Xβ+ ε (1)

where X ∈ Rn×p is the design matrix composed of number
of n samples with p variables, Y ∈ Rn is the response vec-
tor, β = (β1, β2, . . . , βp)

T is a p-vector of parameters, and
ε ∈ Rnconsists of independently identical distribution errors
with εi follows a distribution with zero mean and variance σ2.
A general class of linear estimates of β can be formed as

β̃ = AY = A(Xβ+ ε)

= (AX)β+Aε (2)

where A ∈ Rn×p maps the response to an estimate and the SIS
set A = X⊥ [24], ⊥represents the matrix transpose, Aεconsist
of linear combinations of zero mean random noises, and (AX)β
is the signal. In order to preserve the signal part as much as
possible, an ideal choice of A is it should satisfy AX = I. And
if this choice is possible, the signal part would dominate the
noise part Aεunder suitable conditions, which leads naturally
to the OLS estimate where A = (X⊥X)

−1
X⊥ only if p < n.

However, when p is larger than n, X⊥X is degenerate and
AX cannot be an identity matrix I . Fortunately, (X⊥X)

−1
X⊥

and X⊥(XX⊥)−1
can be seen as the Moore–Penrose inverse

of X for p < n and p > n, respectively [18]. In p > n case,
nevertheless the AX = X⊥(XX⊥)−1

X is no longer an identity
matrix, β̃i(i /∈ S) can take advantage of the large diagonal terms
of AX to dominate β̃i(i /∈ S) that is just a linear combination
of OFF-diagonal terms, as long as AX is diagonally dominant.
Where S = {j : βj �= 0, j = 1, 2, . . . , p} is the index set of the
nonzeroβj’s with cardinality s = |S| from the true modelMS ∈
M = {x1, x2, . . . , xp}. By rewriting X via singular value de-
composition as X = VDU⊥, where V is an n× n orthogonal
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Fig. 1. Architecture of the HOLP-DF.

matrix, D is an n× n diagonal matrix, andU is an p× nmatrix
that belongs to the Stiefel manifold Vn,p [47]. Then by

X⊥(XX⊥)
−1
X = UU⊥

X⊥X = UD2U⊥. (3)

It can be proven that AX = XT (XXT )
−1
X can reduces

the impact from the high correlation of X by removing the
random diagonal matrix D, will be diagonal dominating with
overwhelming probability as well. In this regard, a very simple
variable screening method can be obtained by rewriting the

Mγ = {xj : |β̃j | ≥ γ}
β̃ = X⊥(XX⊥)

−1
Xβ+X⊥(XX⊥)

−1
ε (4)

where Mγ is a submodel of full model M, γ is a user specified
threshold. This estimator also named as the HOLP, where the
first term indicates that it can be seen as a projection β. And
from the standpoint of matrix XX⊥ is of full rank whenever
p > n, HOLP is unique to high and ultrahigh dimensional data
analysis. Furthermore, HOLP is easy to implement and can be
efficiently computed with the complexity of O(n2p), and it is
scale invariance in the signal part X⊥(XX⊥)−1

Xβ [18].

III. PROPOSED METHOD

As a novel non-NNs based DL model, original DF has gained
increasing attentions in recent years. Although its remarkable
performances have been proven from wide range of studies and
applications, also many modified versions have been proposed
to overcome the high time cost and memory requirement lim-
itations, which owes much to the aspect of cascade structure
and multigrained scanning procedure, limited classification per-
formance caused by high intramodel dimensionality and low
ensemble diversity is still remains open. To solve this issue
and also enlightened by the earlier works of [13], [14], and
[15], an improved version of DF, the HOLP-DF, was proposed
by adoption of HOLP based FS algorithm to solve the issue
of high intramodel dimensionality on the one hand, adopting
random subspace propagation, and REP techniques to increase
the ensemble diversity on the other hand.

The architecture of the proposed HOLP-DF for RS image
classification method is shown in Fig. 1, which consist of

three major steps of: 1) contextual features extraction with
multigrained scanning (overlapped image patching); 2) HOPL
based screening the propagated random subfeatures of flattened
features from step 1; and 3) layer-by-layer training DFs with
screened features by following the basic structure, as shown in
Fig. 1, but using a different features concatenation strategy and
using REP ensemble selection strategy before fusion.

For a given RS image
↔
I�×N×d′ , where �, N , and d′

represents the numbers of rows, columns, and channels, re-
spectively, we first obtain the overlapped neighboring image
patchesP = {Pw×w×d′

r=1 ,Pw×w×d′
r=2 , . . . ,Pw×w×d′

r=�∗N }�×Nr=1 with the
specified patch size of w. Then flattening procedure will be

executed on image patches P to obtain vectorized image
↔
I∗ =

{P1×w×w×d′
i }�×N

i=1 for random subspace propagation to the next
level for screening by using HOLP according to (4). Let δ is
the random subspace propagation ratio, ϕ is the screening ratio
using HOLP, K is the number of total random subspaces, K
independent random subspaces after screening are generated as

{
↔
I∗rs1}d�×N

, {
↔
I∗rs2}d�×N

, . . . , {
↔
I∗rsK}d�×N

, where the dimen-
sionality determined by d = 
Kδϕ�, and for any subspace we

have ∀
↔
I∗rs ⊆

↔
I∗. Subsequently, number of K general gcForest

classifiers are obtained, and normally we can aggregate the
outputs of classifiers to form the decision function by taking
a simple average via

G(x) =
1

K + 1

K+1∑
k=1

g(xkrs)

=
1

K + 1

K+1∑
k=1

argmax
c∈{1,...,C}

[
fT (x

k
rs)

]
c

(5)

where g(xkrs) is the prediction function of original gcForest
model using data xkrs, x

k
rs is the training set from the kth ran-

dom subspace after HOLP based screening of original training
set x, C is the number of class labels, [fT (xkrs)]c is the cth
element of the label vector fT (x

k
rs). At level t ∈ {1, . . . , T},

ft is the cascade of elements of forests f = {fi, . . . , fT } up
to level t. Notably, when stacking several layers of forests in
original gcForest, the variance of input [x, ft−1(x)] will typ-
ically get smaller as the next layers of forests get better and
better at predicting the output and the remaining errors become
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increasingly difficult to correct for. In result, ability of the
ensemble to improve upon the best score of the subsequent layers
can be significantly limited because there is too little variation in
predictions for the ensemble to learn useful combinations. One
way to increase this variation is to propagate features from the
subset of original input and/or earlier layers. In this sense, the
cascade of elements of forests f = {fi, . . . , fT } up to level t
that defined in [14] will be rewritten as

ft(x
k
rs) =

{
h1(x

k
rs) t = 1

ht([x
k
rs, ∀x �=k

rs , ft−1(x
k
rs)]) t > 1

(6)

where [xkrs, ∀x �=k
rs , ft−1(x

k
rs)] is the input of the ensemble of

forest ht at level t.
Propagating portions of features at random could enhance the

ability of ensemble by increasing diversities from the variations
on feature space. Meanwhile, it could also limit and even degrade
the generalized ability of ensemble in sparse classification and
small ensemble cases, could also limited the performances on
memory usage, computational cost, and occasionally degrade
the generalized ability in unnecessarily large random subspaces
scenarios. To solve aforementioned issues, we can use the REP
technique, which was inspired by the decision tree pruning algo-
rithm with the goal of choosing the set of Ψ∗ classifiers that give
the best voted performance on the pruning set [54]. In general,
REP use a sophisticated search method called back-fitting as
follows:

1) initialize the set of classifiersΨ to contain the one classifier
h1
t that has the lowest error on the pruning set;

2) add the classifier h2
t such that the voted combination h1

t

and h2
t has the lowest pruning set error;

3) adds the classifier hk⊆K,k �=1,2
t such that the voted com-

bination of all classifiers in Ψ has the lowest pruning set
error;

4) revisit earlier decisions and deleting previously chosen
classifiers and replacing them with best classifier contin-
ues until none of the classifiers changes or reaches the
number of iterations.

Then, the objective function presented in (5) can be rewritten
as

G(x)∗ =
1

Ψ∗

Ψ∗∑
Ψ=1

g(xΨ
rs)

=
1

Ψ

Ψ∗∑
ψ=1

argmax
c∈{1,...,C}

[
fT (x

Ψ
rs)

]
c

(7)

where Ψ∗ ⊆ {fT (xkrs)}K+1
k=1 and number of classifiers in Ψ∗ is

much smaller than K.

IV. DATASETS AND SETUP

A. Datasets

1) Pavia University: This data was captured over the Engi-
neering School, University of Pavia, Pavia, Italy, by the reflec-
tive optics spectrographic image system (ROSIS) sensor, which
provides 103 spectral channels with a spectral coverage ranging
from 0.43–0.86 μm and with the spatial resolution of 1.3 m.

TABLE I
CLASS NAME, COLOR, AND SAMPLES’ DETAILS FOR CONSIDERED DATASETS

Fig. 2. Test images (a), (c), (e) with ground truth maps (b), (d), (f), (g).

Color images shown in Fig. 3(a) has 610 × 340 pixels size and
the validation data refer to 9 land cover classes are shown in
Table I with details about the number of samples and the legends.

2) AirSAR Flevoland: This data was obtained by the Air-
borne Synthetic Aperture Radar (AirSAR) over the Flevoland
region (The Netherlands) in 1989. As part of National Aeronau-
tics and Space Administration Earth Science Enterprise project,
AirSAR was designed and built by the Jet Propulsion Laboratory
and operating in full polarimetric mode L-band. The scene
shown in Fig. 2(c) was extracted from the SIR-C education
program, it has spatial resolution of 6.60 m in the slant range
direction and 12.10 m in the azimuth direction with the size
of 705 rows×1024 columns size, and covers a large agricultural
area of flat topography and homogeneous soils. The ground truth
map shown in Fig. 2(d) refer to 11 land cover classes are shown
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Fig. 3. OA values versus screening ratio from DF with various screeners for ROSIS Pavia (a), (d), DFC2013 Houston (b), (e) and AirSAR Flevoland (c), (f)
datasets with 10 samples per class (row 1) and all in Table I (row 2).

also shown in Table I with details about the number of samples
and the legends.

3) DFC2013 Houston: This data were acquired by the NSF-
funded Center for Airborne Laser Mapping over the University
of Houston campus and the neighboring urban area, on June 23,
2012. The hyperspectral consists of 144 spectral bands in the
0.380 μm to 1.05 μm region and has been calibrated to at-sensor
spectral radiance units. The RGB image shown in Fig. 2(e) has
340 × 1900 pixels size with the spatial resolution of 2.5 m.
Total 15 classes of interest are presented in ground truth maps
[see Fig. 2(f) and (g)] whereas Table I reports the corresponding
number of samples for both the training and validation sets.

B. Experimental Setup

To comparatively investigate the performance of HOLP
screener on handling high and ultrahigh dimensionality issue
of original DF in RS image classification, popular screeners
including fusion clustering (FC) [48], SIS [24], conditional
SIS (CSIS) [49], MDCSIS [29], SMLE [30], BcorSIS [33],
Kolmogorov filter (Kfilter) [50], SIRS [27], robust rank correla-
tion screening (RRCS) [23], MVSIS [28], and feature selection
method parallelized minimum redundancy maximum relevance
ensemble (PmRMR) [51] were considered.

As for the features, while six upper OFF-diagonal features of
coherence matrix T3 stacked with Span feature from AirSAR
Flevoland data was used, the first 10 principal component,
which contain the most information at much lower volume size,
were selected for Pavia University and DFC2013 Houston high
dimensional hyperspectral datasets for all considered methods
to avoid the out of memory issues in the running of experiment

from high intermodel feature dimensional. Because even for
10 principal components, dimensionality of the original input
features will be at 10 × (1 + 3 × 3 + 5 × 5 + 7 × 7 + 9 × 9
+ 11 × 11) = 2860 at the first round of flattening procedure.

In all experiments, the overall accuracy (OA), average accu-
racy (AA), kappa coefficient (Ka), algorithm running time in
seconds are used to evaluate the classification performances of
the adopted classifiers. All the experiments are conducted by
using Python 3.9.7 and PyTorch 1.9.0 installed on a machine
with 64-bit Windows 10 system use an Intel (R) Core (TM) i7-
7820X 3.60-GHz CPU and 128 GB RAM, and with an NVIDIA
Quadro RTX8000 GPU card equipped with 4608 CUDA parallel
processing cores and 48 GB of RAM memory.

V. RESULTS AND ANALYSIS

A. Results of DF With Various Screeners

In this section, we first investigate the performance of
the adopted feature screeners to handling high and ultrahigh
dimensionality issue of original DF in RS image classification.
To make a comparison among the different sample size and
multiscreening ratios, we report the OA and the time costs in
seconds from model training by using different sample sets
presented in Figs. 3 and 4, respectively.

From the graphs in Fig. 3, various OA values can be ob-
served for considered feature screeners with different sample
size, screening ratios, and datasets setting. In small sample (10
samples per class) setting scenario that shown by the graphs in
the first row of Fig. 3, HOLP and SIS are better than others on
the Pavia University data, BcorSIS, Kfilter, MVSIS, and HOLP
are better than others on the DFC2013 data, and SMLE is better
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Fig. 4. Model training time in seconds versus screening ratio from DF with various screeners ROSIS Pavia (a), DFC2013 Houston (b), and AirSAR Flevoland
(c) datasets using all training samples.

than others on the AirSAR Flevoland test data, but the SMLE
screener almost shows the worst results on DFC2013 data, as
shown in Fig. 3(b). Moreover, rapid decreasing trend of OA
values from the most screeners are obtained as the screening ratio
is smaller than 40% for all three datasets. In using all sample
training scenarios that shown by the graphs in the second row
of Fig. 3, OA values of SMLE, MVSIS, HOLP, and Kfilter are
always higher than OA values from FC, SIS, RRCS, BcorSIS,
CSIS, MDCSIS, and SRIS screeners on all considered datasets.
Additionally, the rapid decreasing trend of OA values from
SMLE, MVSIS, HOLP, and Kfilter screener are obtained as
the screening ratio is smaller than 30% for all three datasets.
And in the most cases, decreasing ratios of MDCSIS, CSIS,
SIRS are much faster than others along with increasing values
of screening ratios, see the learning curves in cyan lines with
left triangles, green lines with upper triangles, and black lines
with cross, respectively.

According to the bar charts shown in Fig. 4, we can easily
see that first the lowest computational efficiency is shown by
FC and MVSIS screeners on Pavia University data, by MVSIS
screener on DFC2013 Houston data, and by BcorSIS and MVSIS
screeners on AirSAR Flevoland data. While the secondary low
computational efficiencies are shown by MDCSIS, RRCS, and
SMLE screeners and PmRMRE feature selector, the highest
computational efficiencies are shown by screeners including
SIS, Kfilter, HOLP, CSIS, and SIRS in the most cases. Moreover,
screening ratio set does not have obvious influences on the
computational efficiency of the considered feature screeners.
Summing-up with the findings from the Fig. 3 in previous para-
graph, it can be concluded that HOLP screener is the optimum
one to handling the high and ultrahigh dimensionality issue of
original DF in RS image classification task, from both high OA
values and highly efficient point of view in contrast with the
other considered the screeners.

B. Parameters Analysis for HOLP-DF

According to the methodology details presented in previous
Section III, and the working mechanism of conventional DF, sub-
space feature propagation ratio, feature screening ratio, sample
size, and model depth are the critical parameters could influence
the performance of the proposed HOLP-DF. Hence, we show
the OA and model training time values versus the propagation
ratio and screening ratio of HOLP-DF using all samples from
considered datasets in Fig. 5 with the depth of 50 layers.

From the results shown in Fig. 5, it can be clearly seen
that both propagation ratio and screening ratio values have
considerable influences on both classification accuracy and
model training efficiency. In further, influence from the prop-
agation ratio on OA values is more critical than influence
from the screening ratio. For example, there not exits obvious
changes in OA values by increasing screening ratio values after
the propagation ratio is higher than 40%, especially on the
Pavia University and AirSAR Flevoland datasets, as shown in
Fig. 5(a) and (c). On the contrary, influence from the propagation
ratio and screening ratio is almost the same on computational
complexity, and an optimum choice of screening ratio is less than
50% for efficiently model training. Summing-up with the previ-
ous findings, combination of 40% of propagation ratio with 40%
of screening ratio is recommended for the proposed HOLP-DF
from high classification accuracy, high model training efficiency,
and small size of subspace data volume (only occupy 40% ×
40% = 16% of original data volume) points of view.

In the Fig. 6, we present the OA values versus the number
of samples for each class and number of layers (depth) of the
considered DFs with 40% of propagation ratio with 40% of
screening ratio set as recommended earlier. To comprehensively
evaluate the performance of the proposed HOLP-DF, the original
DF and DF with patch-based pooling [DF(PP)], morphological
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Fig. 5. OA (row 1) and CPU-Time (row 2) values versus screening and propagation ratios from HOLP-DF on ROSIS Pavia (a), (d), DFC2013 Houston (b), (e),
and AirSAR Flevoland (c), (f) datasets.

Fig. 6. OA curves versus no. of samples for per class (row 1) and layers (row 2) from considered methods on ROSIS Pavia (a), (d), DFC2013 Houston (b), (e),
and AirSAR Flevoland (c), (f) datasets.

profiling [DF(MP)], and HOLP based screening with random
subspace propagation (DF-HOLP) techniques are considered.
To further investigate the performance of HOLP-DF using
PP and MP technologies, experiments of HOLP-DF with PP
[HOLP-DF(PP)] and MP [HOLP-DF(MP)] are also considered.

Based on the results shown in the first row of Fig. 6, it can be
clearly seen that as follows.

1) OA curves from the proposed HOLP-DF is always stays
upper place than OA curves from original DF.

2) OA curves from HOLP-DF with PP [HOLP-DF(PP)] and
MP [HOLP-DF(MP)] are always stay at the highest place
using fewer samples, see the green lines marked with left
triangle and red lines marked with star.

3) OA curves from DFs with subspace propagation are al-
ways stay higher place than their counterparts of without
using subspace propagation, see light blue lines marked
with down triangle (DF(MP)-HOLP) versus green lines
marked with left triangle [HOLP-DF(MP)], light green
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Fig. 7. Classification maps with OA values corresponding to the underlined numbers from Table II (a)–(i) and ground-truth map (j) for Pavia University data.
(a) 98.40%. (b) 96.03%. (c) 97.77%. (d) 99.13%. (e) 99.78%. (f) 99.83%. (g) 98.01%. (h) 99.40%. (i) 99.23%.

TABLE II
OA, AA, AND KAPPA VALUES FOR THE ADOPTEE CLASSIFIERS ON ALL CONSIDERED DATASETS

lines marked with up triangle (DF(PP)-HOLP) versus red
lines marked with star [HOLP-DF(PP)], and magenta lines
marked with diamond (DF-HOLP) versus maroon lines
marked with right triangle (HOLP-DF).

4) Only using HOLP based screening could limit and even
degrade the classification accuracy of original DF by
overfitting from the low ensemble diversity, see the ma-
genta lines marked with diamond in Fig. 7(a), and also in
Fig. 6(d) and (f).

In contrast with influence on OA values from the number of
samples for training, influence from the depth of considered DFs
is much smaller. Particularly see the maroon lines marked with
right triangle, green lines marked with left triangle and red lines
marked with star as almost horizontally presented in Fig. 6(d),
(e) and (f) for HOLP-DF, HOLP-DF(MP), and HOLP-DF(PP),
respectively. Moreover, OA curves from HOLP-DF(MP) and
HOLP-DF(PP) are always stay at the highest place compared
with the OA curves from on other considered DFs on all three
datasets, and there are not obvious changes OA curves after the
number of layers is larger than 30 in the experiments from Pavia
University and AirSAR Flevoland datasets, as shown in Fig. 6(d)
and (f).

And similarly, OA curves with the lowest values are always
shown either by the original DF or by the DF-HOLP without
using random subspace propagation strategy, as shown by sky
blue line marked with asterisk and magenta lines marked with
diamond. This proofs again that random subspace propagation
can benefits the classification accuracy of HOLP-DF by increas-
ing the diversity of ensemble.

C. Classification Results Comparison

To show the performance of the proposed HOLP-DF, we show
OA, AA, and Ka values from the original gcForest (represented
as DF for short), gcForest with confidence screening (DF-CS),
and feature screening (DF-FS), and the proposed versions of
DF with patch-based pooling [DF(PP)], morphological profiling

(MP), and PL, which were proposed in our previous work
[8] in Table II. Also results from the DL classifiers including
double-branch, multiattention mechanism network (DBMA),
double-branch dual attention mechanism network (DBDA),
contextual deeper convolutional neural network (CDCNN),
fast dense spectral-spatial convolutional network (FDSSCN),
spectral-spatial residual network (SSRN), and random patches
network (RPNet) are considered. Classification maps with OA
values corresponding to the underlined numbers in Table II
are presented in Figs. 7, 8, and 9 for the considered datasets.
Notably, critical parameters including the number of layers,
propagation ratio and screening ratio are set by 30, 40%, and
40%, respectively, as recommended by the previous results,
whereas the parameters for other considered classifiers are set
by default values as recommended in previous work [16].

Based on the results from Table II, again it is clear that
compatible and even better classification results can be obtained
by the proposed HOLP-DF by only using 16% of features from
considered datasets compared with original DF. For example,
while the original DF reached an OA value of 86.57% on
DFC2013 Houston data, an OA value of 89.14% is reached
by HOLP-DF. And in contrast with the classification results
from DF-CS and DF-FS, AA, OA, and KAPPA values from
the HOLP-DF are universally higher on Pavia University and
DFC2013 Houston hyperspectral datasets. Take the DFC2013
Houston data as an example, the area at the lower part, which is
covered by dense cloud shadows is more precisely classified
by HOLP-DF [see Fig. 9(g)] compared with the maps from
DF-CS and DF-FS, as shown in Fig. 9(b) and (c). Furthermore,
classification performance of the proposed HOLP-DF can be
further improved by extra utilizing of PP and MP features over
original patch-based features. For instance, see that the area in
the bottom right part of Pavia University and the area in the lower
part of DFC2013 Houston data, are more correctly classified by
HOLP-DF(PP) and HOLP-DF(MP), as shown in Figs. 7(h), (i),
and 8(h), (i). By looking at the AA, OA, and KAPPA values
from more sophisticated DL methods shown in Table II, the
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Fig. 8. Classification maps with OA values corresponding to the numbers from Table II (a)–(i) and ground-truth map (j) for DFC2013 Houston data. (a) 86.57%.
(b) 85.80%. (c) 86.10%. (d) 89.33%. (e) 89.66%. (f) 90.58%. (g) 89.14%. (h) 90.44%. (i) 89.03%.

Fig. 9. Classification maps with OA values corresponding to the underlined numbers from Table II (a)–(i) and ground-truth map (j) AirSAR Flevoland data. (a)
98.78% (b) 97.18%. (c) 97.56%. (d) 99.87%. (e) 99.94%. (f) 99.88%. (g) 96.75%. (h) 98.84%. (i) 98.77%.

proposed HOLP-DF, HOLP-DF(PP), and HOLP-DF(MP)
reached higher values than CDCNN (OA = 96.49%) and RP-
Net (OA = 96.30%) on Pavia University data, reached higher
values than CDCNN (OA = 90.26%), DBDA(OA = 88.01%),
DBMA(OA= 90.24%), SSRN (OA= 88.06%), and RPNet (OA
= 81.63%) on DFC2013 Houston data, and reached only higher
values than CDCNN (OA= 98.33%) on AirSAR Flevoland data.

VI. CONCLUSION

In this article, model-based HOLP feature screening method is
introduced to overcome the intramodel high data dimensionality

drawback of the conventional DF model (the gcForest) in hy-
perspectral and PolSAR image classification, where the random
subspace propagation and REP techniques are also adopted
to further boost the classification performance by increasing
the ensemble diversity and decreasing the forests ensemble
redundancy. To comparatively evaluate the performance of the
proposed method, popular feature screeners, and state-of-the-art
DL methods are selected in the experiments. According to the
results from three widely used hyperspectral and PolSAR image
classification benchmarks, the following results are concluded.

1) HOLP is an optimum solution to reduce the high and
ultrahigh dimensionality in contrast with feature screening
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algorithms like FC, SIS, RRCS, SMLE, BcorSIS, CSIS,
Kfilter, MDCSIS, MVSIS, and SIRS, from both highly
accurate and efficient execution points of view.

2) HOLP-DF capable of obtaining better classification re-
sults than original DF and its modified versions of DF-CS
and DF-FS, and the optimum sets of model depth, prop-
agation ratio and screening ratio parameters are 30, 40%,
and 40, respectively.

3) Classification performance of HOLP-DF can be further
boosted by extra using PP and MP techniques.

Although the proposed HOLP-DF algorithm show advanced
performance in terms of classification accuracy, computational
efficiency, and intramodel feature reduction effectiveness, the
classification accuracy of HOLP-DF is still limited in some
scenarios in contrast with the DF, which fused usage of PP and
MP with PL techniques and in contrast with the state-of-the-art
DL algorithms. Additionally, the HOLP feature screening al-
gorithm may not be the best choice for those originally lower
dimensional data such as PolSAR and even multispectral im-
ageries. Therefore, we will focus on the study of other advanced
feature screening algorithms for originally low dimensional but
highly redundant intramodel dimensional RS image classifica-
tion cases.
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