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Abstract—Registration of remote sensing images has been ap-
proached using different strategies; one of the most popular is
based on similarity measures. There are different measures of
similarity in the literature: Normalized cross-correlation (NCC),
mutual information (MI), etc. Normalized mutual information
(NMI) has received the most attention in image processing; among
the most important limitations are its high computational cost and
lack of robustness to strong radiometric changes. For this reason,
in this work, we introduce a coregistration approach based on the
histogram kernel predictability (HKP). This formulation reduces
numerical errors and requires less computing time in comparison
to NMI. To the best of our knowledge, this is the first work for
registering any remote sensing images by using HKP. Additionally,
we propose to use an algorithm based on meta-heuristics called evo-
lutionary centers algorithm, which allows having fewer iterations
to solve the registration problem. In addition, we incorporate a
parallelization scheme that permits reducing processing times. The
results show that our proposal can solve coregistration problems
that the NMI cannot solve while obtaining competitive computa-
tional times and registration errors comparable with other existing
works in the literature. The HKP approach solves most of all the
transformations of a set of simulated registration problems, while
the NMI, in some cases, only solves half of the registration problems.
Moreover, we compare our approach with feature-based methods
in real datasets. This research presents an alternative to remote
sensing problems where MI has traditionally been used.

Index Terms—Image registration, kernel predictability (KP),
mutual information (MI), remote sensing, satellite images.

I. INTRODUCTION

THE coregister of images captured from different devices
has generated research interest in applications such as

building extraction [1], image classification [2], 3-D city mod-
eling [3], land cover change detection [4], image fusion [5], and
radiometric correction [6], [7], among others.
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In the coregistration problem, the idea is to find a geometric
transformation that maximizes the alignment between two or
more images. The most common options are to estimate the
parameters of a similarity, affine, or homography transformation
matrix [8]. Coregistration of remote sensing images is chal-
lenging because 1) the images have significant geometric and
radiometric differences, 2) the presence of noise, and 3) the large
size of the images. All these challenges have been addressed
using different strategies that include incorporating structural
information (e.g., edges) or the use of multiple descriptors
[9]. Other approaches make use of statistical measures such as
normalized cross-correlation (NCC), mutual information (MI),
or normalized mutual information (NMI) to compute the model
parameters [10], [11]. In this sense, approaches based on MI
have been employed for the coregistration process in the case
of multispectral, hyperspectral, and panchromatic images [12],
[13], [14]. Also, MI has been successfully applied to the seg-
mentation tasks [15], [16].

Another line of research that has aroused much interest is
the coregistration of multimodal images and light detection and
ranging (LiDAR) data. For example, Zhu et al. [17] proposed a
methodology for registering aerial images and LiDAR; in this
work, the authors make efficient use of the structural information
through Gabor filters; in the case of MI and NMI, a variety of
works address this problem [18], [19]. Even there exist algo-
rithms that use MI and deep learning to register point clouds [20],
or applications of MI for calibrating LiDAR and cameras [21].

Despite MI’s enormous success in solving different tasks, we
can find in the literature information that refers to its limitations.
Among the most important are its high computational cost and
lack of robustness to strong radiometric changes, its dependence
on the selection of parameters, and the optimization method
used [22], [23].

The main contribution of this work is to introduce the use of
a metric called kernel predictability (KP) for registering remote
sensing images. To the best of our knowledge, KP has not
been used to register any remote sensing images. The KP has
shown superior performance than MI in the image registration
process and is more robust regarding the parameters used in its
estimation [24]. In particular, we employed a formulation based
on histograms called histogram kernel predictability (HKP).
This formulation is more robust to numerical errors and requires
less computing time than MI [25]. Besides, to address the
optimization problem, we propose to use an algorithm based
on meta-heuristics called evolutionary centers algorithm (ECA).
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ECA allows having fewer iterations to solve the registration
problem efficiently. Also, we propose to use single-instruction
multiple data (SIMD) and parallel strategies on a multicore
architecture to guarantee competitive computational time to
incorporate all the available pixels information in the estimation.
To evaluate the performance of HKP in the coregistration of
remote sensing images, we created a set of synthetic experiments
that allows comparing the performance of our proposal in con-
trast with the NMI formulation. We also use a set of experiments
with real datasets, for which we compare our proposal against
feature descriptors algorithms encountered in state-of-the-art.

The outline of this article is as follows. Section II presents
the works related to the registration process. Section III presents
the mathematical background of the KP and its variant HKP.
Section IV describes the metaheuristic method used for opti-
mizing the HKP measure. The experimental results are shown in
Sections VI and VII for simulated and real datasets, respectively.
Finally, Section VIII concludes the article.

II. REVISITED LITERATURE

In general, remote sensing image registration methods can
be classified into two main groups: feature-based and intensity-
based methods [26]. For feature-based methods, the objective is
to find the correspondences for each descriptor generated in the
input images and use these correspondences to minimize an error
function. On the other hand, for the image registration process
performed by intensity-based methods, the idea is to optimize a
function based on the statistical information obtained from the
intensity values of the images.

Feature-based methods depend totally on the quality of ex-
tracted features and the post-process performed over them (e.g.,
feature matching and outlier rejection). One of the most suc-
cessful strategies to address these problems is incorporating
edge information (i.e., structural information). For example, [27]
combines nonlinear diffusion and phase congruency structural
descriptor for the registration of synthetic aperture radar (SAR)
and optical images. Paul and Pati [28] propose a method based
on scale-invariant feature transform (SIFT) to extract features
from the SAR images by considering three important factors:
Stability, distinctiveness, and distribution. Xiang et al. [29]
propose using the improved phase congruency (PC) model to
identify the best features and automatically register optical and
SAR images. Zhou et al. [30] use deep learning, structural
information, and multiscale strategies to refine the structural
descriptors.

Another successful example of using structural information
for coregister images is the work presented in [31]. In this work,
the authors use the image’s structure information to construct
the descriptor that can eliminate modal differences and is more
suitable for multimode image registration. The idea is to com-
bine the PC describing structural features with the histogram of
gradient directions as a feature descriptor, called the histogram
of phase congruency (HOPC). Ye et al. [32] extend the idea of
HOPC to create a feature descriptor named local histogram of
orientated phase congruency (LHOPC). The idea of the LHOPC

method is to solve the radiation differences between multimodal
remote sensing (MMRS) images caused by spectral and time
changes.

The use of neural networks and deep learning to solve the
coregistration problem has attracted the attention of the remote
sensing community. For example, Zhang et al. [33] presented
a transfer learning approach and local features estimation to
register MMRS images. Liu et al. [34] presented a siamese
network to deal with the complexity registration of low-altitude
remote-sensing images. Although approaches based on deep
learning show improvements, the main disadvantage is the high
computational cost and the significant number of examples
required to train them.

As we mentioned before, in addition to constructing robust de-
scriptors, some works focus on creating computational strategies
that allow establishing correspondences (e.g., rejecting outliers).
For example, Du et al. [35] propose an approach based on the
block and octave constraint SIFT for high-resolution satellite
image matching. Lowe [36] proposes employing a database with
descriptors of different objects to create a robust correspondence
matching algorithm to identify objects in real-time.

Feature-based methods have demonstrated outstanding per-
formance in several cases and practical applications. However,
they fail when the noise, geometric deformations, or complex
intensity changes cause the descriptor’s quality to decrease.
Methods based on statistical measures of the image intensity
emerged as an alternative to solve these problems.

As we noted before, the formulations based on MI are the most
widespread methodologies to solve the coregistration problem.
For example, in [18], the registration of optical imagery with
LiDAR data is proposed by implementing an alternative ap-
proach using image patches and MI. Saidi et al. [37] propose
a method for registration of SAR, and the optical images, ex-
tracting, and matching features using the MI approach. In [38],
a cross-correlation method to obtain coherent points to register
interferometric synthetic aperture radar images is proposed;
Zhang et al. [39] propose an adapted weighted MI methodol-
ogy for MMRS image registration. Wu et al. [40] introduce a
multimodal continuous ant colony optimization algorithm for
remote sensing image registration. Liu et al. [41] present a
robust MI registration method for multispectral images with
low-resolution and panchromatic images with a high resolution.
In [19], a coarse-to-fine registration method is proposed, which
includes a super-resolution approach applied to LiDAR data
to generate images with the same resolution as the optical
image. Finally, Yan et al. [23] present a search algorithm named
transfer optimization to avoid getting trapped into local optima
by maximizing the MI similarity cost function.

One disadvantage of the intensity-based compared to the
feature-based methods is their computational cost. This class
of methodologies requires calculating statistics on all the image
pixels (or a significant number of samples) to compute the geo-
metric transformation. Besides, the efficiency of these methods
is strongly related to the optimization algorithms employed
because coregistering the images requires solving nonlinear
optimization problems [23], [26].
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Due to the above, we address the coregistration problem using
the HKP measure. This measure can be estimated efficiently us-
ing parallelization strategies, which reduces computation times.
Also, using the HKP, it is possible to construct a locally convex
similarity function; this property, together with meta-heuristics,
solves the problem efficiently [25].

III. REGISTRATION BASED ON KERNEL PREDICTABILITY

To understand the concept of KP [24], one could do the follow-
ing exercise: Given a probability distribution F , one generates
a sample x1 from F ; the idea is to “guess” the value of x1 from
a new sample x2. To evaluate our prediction, it is possible to
create a reward function K(x1, x2), which is maximal if the
distance between x1 and x2 is zero. Given K(x1, x2), it is
feasible to calculate the expected reward E[K(X1, X2)] for a
set of samples, where x1 ∈ X1 and x2 ∈ X2 are values obtained
from F . From these notions, the authors formulate the KP of a
distribution F as

KP(F ) = E[K(X1, X2)]

=

∫
Rd

∫
Rd

K(x1, x2)dF (x1)dF (x2) (1)

where K is a kernel function or decreasing function of the
distance between x1 and x2. This function measures the pre-
dictability of the random variables distributed according to F
and weighted by the kernel function K. The KP represents a
property of the underlying distribution F , such as its entropy
or its variance. Note that less uncertainty in F implies that the
expected reward E[K(X1, X2)] will be higher. Besides, KP is
a predictability measure, so it behaves inversely compared to
entropy, an uncertainty measure.

A. Estimation of the Kernel Predictability

Equation (1) is a regular statistical functional of degree two
(the number of arguments of K), and its computation has dif-
ferent estimators. The estimators are based on a sampling set
composed of n independent and identically distributed random
variables, X = {X1, X2, . . . , Xn} with Xi ∼ F . The one sug-
gested in [24] is

̂KP =
4

n2

n/2∑
i=1

n∑
j=n/2+1

K(Xi, Xj). (2)

The selection of this estimator is because the estimator is unbi-
ased, has the lowest computational cost, and presents variance.
This last property is helpful in the optimization process used
in [24] because it helps to escape from local minima. A natural
choice for K is the Gaussian kernel, which is defined as

K(x1, x2) =
1

(2πσ2)d/2
exp

(
−‖x1 − x2‖2

2σ2

)
(3)

with d the dimension of the distribution and σ a free parameter
which determines the width of the distribution.

B. Image Registration With Kernel Predictability

In the registration problem, the KP can be applied using the
joint distribution of the intensities of a reference image IR and
a transformed image IT with the following similarity measure:

SKP(IT , IR) =
KP[p(IR, IT )]

KP[p(IT )] + KP[p(IR)]
(4)

wherep(IR, IT ) is the joint distribution, andp(IR) andp(IT ) are
the marginal distributions for the images IR and IT , respectively.
The denominator restricts the solution space to avoid anomalous
solutions (e.g., all the pixels assigned to a single point). Note that
the normalization is similar to the one proposed for NMI [42].

The image registration by KP is done by searching the trans-
formation T (a), with a ∈ RD which maximizes the SKP value.
One approximation to (4) can be written as

̂SKP(T (a)) =
K̂PJ [T (a)]

K̂PT [T (a)] + K̂PR

(5)

with

K̂PJ [T (a)] =

n/2∑
i=1

n∑
j=n/2+1

KσJ
(IiJ , I

j
J )

K̂PT [T (a)] =

n/2∑
i=1

n∑
j=n/2+1

KσM
(IiT , I

j
T )

K̂PR =

n/2∑
i=1

n∑
j=n/2+1

KσM
(IiR, I

j
R) (6)

KσJ
is the kernel to measure the predictability of the joint

distribution, and KσM
for the marginal distributions. Note that

the constant coefficient in the estimators can be ignored due to
normalization. Thus, if Gaussian kernels are used, then

KσJ
(IiJ , I

j
J ) = exp

(
−‖I

i
J − IjJ‖2
2σ2

J

)

KσM
(Ii, Ij) = exp

(
− (Ii − Ij)2

2σ2
M

)
. (7)

C. Histogram Kernel Predictability

A new similarity measure based on a discrete version of
KP was introduced in [25]. The authors call the novel form of
approximating the KP as HKP. The main idea is to approximate
the KP by counting bins of histogram frequencies. For instance,
given a histogram of n bins, the authors defined the HKP as

HKP(X) =

n∑
i=1

BX(i)

(
BX(i)− 1

N2

)
(8)

where N =
∑n

i=1 BX(i) is the normalization constant. For two
random variables, given the joint histogramBX,Y (., .), the HKP
is given by

HKP(X,Y ) =

n∑
i=1

n∑
j=1

BX,Y (i, j)

(
BX,Y (i, j)− 1

N2

)
(9)
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using this approximation to KP, one can define the similarity
measure as

SHKP(IT , IR) =
HKP(IT , IR)

HKP(IT ) + HKP(IR)
. (10)

Among its main advantages are its numerical stability and ease
of computation. For example, if the images have the same size,
it is possible to calculate the histograms using parallelization
strategies based on graphics processing units (GPUs), SIMD, or
multicore [43], [44].

For all the KP estimators presented in this section, the estima-
tion quality enhances as the number of samples increases [see
(2) and (9)]. To take advantage of this fact, we used different
parallelization schemes to use all the pixels in the overlapping
regions of the images; this is important because the optimiza-
tion algorithms that we employ use function evaluations exclu-
sively, then reducing the computation time becomes crucial. In
particular, parallelizing the histogram estimation can be done
efficiently. Therefore, in this work, we prefer to use the HKP
estimator.

D. Parametric Registration Using SKP-SHKP

The optimization methods for image registration can be classi-
fied into two schemes: Convex and meta-heuristic optimization
algorithms. In MI, the stochastic gradient descent (SGD) and
Powell’s method are some of the most popular choices for
convex optimization algorithms. In particular, Gómez-García
et al. [24] suggest using the following SGD algorithm for the case
parametric image coregistration. For a parametric geometric
transform T (a) with parameters vector a ∈ RD, the authors use
the next update rule

at+1 = at + α∇âSKP[T (at)]. (11)

The main drawback of this proposal is that it is necessary to
estimate the gradient ∇âSKP[T (at)] using finite differences
because there is no explicit dependency on T (a) in the ̂SKP
estimation (only uses the intensities of the IR image). Then, the
computation of the gradient is done using centered differences

∂̂SKP
∂ai

[T (at)] =
̂SKP[T (at + εiei)]−̂SKP[T (at − εiei)]

2εi

where εi is a small real value and ei is a vector with a one
in the ith component and zeros in the rest. Of course, there
are problems with the numerical approximation of the gradient.
The main one is that the similarity must be evaluated twice for
each parameter in the transformation. Because every evaluation
determines a different overlapping region between the images,
to calculate the gradient accurately, the samples used for esti-
mation must lie in the intersection of all overlapping regions.
Second, selecting values of εi can be complicated because the
transformation parameters are on different scales. Furthermore,
using small values of εi can lead to numerical errors during
the estimation. Lastly, using numerical methods to estimate the
gradient makes escaping from local minima more complicated.
To attenuate the latter, Gómez-García et al. [24] suggest using

a pyramidal registration scheme and taking advantage of the
estimator’s variance (see Section III-A).

IV. USE OF METAHEURISTICS FOR MULTIMODAL IMAGE

REGISTRATION

As discussed in the previous section, various numerical issues
are associated with estimating and using numerical derivatives
in SKP and SHKP. A possible solution is using algorithms
that find the optima using only function evaluations. Different
proposals in the literature work only with evaluations of the
objective function; among its advantages are not only avoiding
the problems associated with the numerical estimations of the
derivatives; besides, these algorithms are designed to escape
from local minima. In the group of these proposals, perhaps
the most popular is the so-called meta-heuristics [45].

For the coregister of multimodal images, we can find articles
that use meta-heuristics to unravel the problem. For example,
using meta-heuristics for the registration of magnetic resonance
(MR) and computed tomography (CT) images, maximizing the
MI has proven to be an efficient tool [46]. Dida et al. [46]
presented a comparison between the particle swarm optimization
(PSO) and the grey wolf optimizer (GWO) for registration of MR
and CT images, maximizing the value of the MI. Their results
demonstrate that GWO has a better accuracy and processing
time than PSO. In [47], a comparison between the differen-
tial evolution (DE), PSO, and evolutionary algorithms (EAs)
is performed using several benchmark optimization problems.
That work found that generally, the DE method has the best
performance.

The Bayesian optimization methods are another class of op-
timization algorithms that use only function evaluations and
have had an enormous boom in recent years [48]. Like the
meta-heuristics, this class of algorithms does not assume any
functional form and can be used as global optimization algo-
rithms. In the case of SKP and SHKP, these algorithms were
used successfully in [25].

One of the contributions of this work is the use of meta-
heuristics to optimize SHKP. To our knowledge, it is the first
time that meta-heuristics has been used to optimize SHKP. Using
this type of algorithm avoids the problems associated with the
numerical estimation of the gradient and permits escape from
local minima. The idea is to use a meta-heuristic that requires
fewer function evaluations to converge, with fewer hyperpa-
rameters and straightforward implementation. The Evolutionary
Optimization Method Based on Center of Mass (ECA) algorithm
fits the requirements. The following section describes the ECA
algorithm, although a complete explanation could be found
in [49].

A. Evolutionary Centers Algorithm (ECA)

ECA belongs to the set of algorithms called evolutionary type.
The EAs have successfully solved complex bound-constrained
optimization problems [50]. However, the most popular EAs are
usually those whose design keeps simple, and their number of
parameters is low. Motivated by the above, the authors propose a
physics-inspired algorithm based on the center of mass concept
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Fig. 1. Surface and contours plots for SHKP function with parameters [θ, δx]. The plots show the existence of numerous local minima around the optimal value.

on a RD space for real-parameter single-objective function
optimization. The general idea is to promote the creation of an
irregular body using M mass points in the current population
and then calculate the center of mass to get a new direction for
the next population.

Recalling that the idea of ECA is to optimize a function
f : RD → R; to do this, ECA has two fundamental steps: 1)
estimating the center of mass and 2) the updating rule for the
new solutions. Below we describe the fundamental concepts of
each step and give hints about their behavior.

1) Estimation of the Center of Mass: According to [49], to
estimate the center of mass the procedure is the following: Given
a set of N solutions P = {x1, x2, . . . , xN}, a subset U ⊂ P
of M solutions is selected. Then, from U , the center of mass is
estimated as

c =
1

W

∑
u∈U

f(u) � u, W =
∑
u∈U

f(u). (12)

According to the authors, the motivation for using the center
of a mass concept consists of translating the population to
places where the mass of the entire population is maximum.
Theoretically, the set of best solutions should be concentrated
near the optimum of the objective function.

2) Updating Rule for the New Solutions: To estimate the set
of new solutions, the authors proposed the following strategy:
First, a random solution ur ∈ U is selected. Then, the update
rule for the new solution hi is given by

hi = xi + η(c− ur). (13)

The intuitive idea behind this update rule is the following.
Suppose the solutions in the set P are concentrated around
an optimum. In that case, the term (c− ur) will be small,
which will generate slight perturbations to the current solutions.
Eventually, the term will vanish because the set of solutions will
be concentrated around the optimum. On the other hand, if the
difference (c− ur) is significant, the update rule will allow the
exploration of new regions of the objective function, which could

Algorithm 1: Function ECA.
Require: M , ηmax.
N ← 2K ∗D.
Generate and evaluate start population P with N
elements.

while the stop criterion is not achieved do
A = ∅
for xi ∈ P do

Generate U ⊂ P such that |U | = M .
Estimate c using (12).
η ← rand(0, ηmax).
Select a random solution u ∈ U .
h← x+ η(c− u).
if f(x) > f(h) then �h is the best solution
A ∪ h.

end if
end for
P ← best elements in P ∪A.

end while
return best solution in P .

eventually improve the set of current solutions. The η factor
ponderates the contribution of (c− ur). The random selection
ofη adds an aleatory component to explore the objective function
more efficiently.

Algorithm 1 summarizes the essential steps for the implemen-
tation of ECAs. Note that a crucial point of the algorithm is the
set of initial solutions P. This set is generated over a bounded
domain, which limits the search space for solutions. Only local
optima will probably be found if the bounden space is small. On
the other hand, if the search space is vast, the number of iterations
required to find the optimum will be considerable. Regarding
the stopping criterion, metaheuristics usually stop after a given
number of function evaluations or upon achieving the maximum
number of iterations due to the computational cost generated
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when evaluating the function. However, it is difficult to estimate
a priori the number of iterations needed to converge. In general,
these parameters are usually adjusted to achieve a delimited
calculation time depending on the nature of the problem.

In Fig. 1(a), we can see the surface of the objective function for
SHKP for a pair of hyperspectral images used in our experiments
(see Section VI). The surface of the optimization function is
convex around the optimum. However, far from the optimum,
the function has many local minima, making it challenging to
optimize using derivative-based methods. On the other side,
meta-heuristics are an excellent choice for their optimization.
See the example shown in Fig. 1(b), the simple updating rules
proposed in ECA permit escaping from the existing local optima
in zone A to the global minima present in B.

V. COREGISTRATION OF REMOTE SENSING IMAGES

USING SHKP

Different geometric transformations have been used for the
coregistration of remote sensing images. Although the general
formulation of SKP and SHKP allows the use of any para-
metric geometric transformation, we consider that affine trans-
formations are well suited to coregister problems commonly
encountered in remote sensing areas. Thus, let T (a) be an affine
transformation with parameters a = [θ, λx, λy, sx, sy, δx, δy].
Then, for a given pixel p = [x, y], we define the new pixel value
pnew from T (a) as

pnew = (RSH)p+ t (14)

where

R =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]

S =

[
λx 0

0 λy

]

H =

[
1 sx

0 1

][
1 0

sy 1

]

t =

[
δx

δy

]

where R corresponds to the rotation matrix; S is known as the
scaling matrix, H is the shearing matrix, and t corresponds to
the translation vector.

In practice, interpolation algorithms are used when apply-
ing geometric transformations to images. Even some works in
the literature compare the quality of coregistration based on
the interpolation algorithm used [51]. Our experimental phase
showed no significant differences between the different interpo-
lation algorithms in the case of SHKP. In this work, a bilinear
interpolation was used for all the experiments carried out.

Fig. 2. Flowchart of the proposed image registration methodology.

A. Proposed Methodology

In Sections III-IV, we present the main concepts of the SHKP
and the optimization algorithms that we used in the coregistra-
tion processes. This section aims to describe the computational
aspects of each of the stages and the details of their implemen-
tation. Fig. 2 shows the flowchart of the proposed methodology.
Additionally, the source code with all the process can be found
here.1 Below we describe each one of the proposed stages.

1) Preprocessing: First, the images are converted to gray-
scale and scaled to [0, 1]. Then, we use Gaussian filters for noise
removal [52]. Although our methodology shows to be robust to
the existence of noise, we consider that the use of filters can
improve the result.

2) Set of Initial Solutions: The ECA algorithm takes as its
starting point a set P that contains the initial solutions of the
problem (see Algorithm 1). These solutions are usually chosen
randomly (over a bounded domain) to explore the cost function
adequately. However, for the coregistration problem, several
alternatives can be used. For example, for small transformations,
it is convenient to create a set of initial solutions close to the
identity transformation to reduce the computational cost of the
entire optimization process. On the contrary, if they are complex
transformations and there is no a priori information about the
magnitude of the parameters, the solutions can be generated in
a broad search space (e.g., δx can be initialized to values within
[−width

2 , width
2 ]). We use this strategy in the registration problems

with synthetic data presented in Section VI.
3) Using ECA to Optimize SHKP: In Section IV, we describe

the theoretical concepts of the ECA algorithm for function opti-
mization. Once the initial search space is defined, the algorithm
has two hyperparameters: The number of solutions M used to

1[Online]. Available: https://github.com/hucarlos08/Co-Register-HKP-RS

https://github.com/hucarlos08/Co-Register-HKP-RS
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estimate the center of mass and ηmax which serves as an upper
bound for η. In the experiments carried out in this work, we set
the values of M = 7 and ηmax = 2 since they are the values
suggested by the authors. However, if the initial search space is
wide, increasing the number of samples M used to estimate the
center of mass is convenient.

4) Solution Refinement: Although the ECA algorithm was
designed to find the optimum of the function over a bounded
domain, given its stochastic nature, it is still likely to get trapped
into a local minimum. To mitigate this effect is possible to
attempt to refine the initial solution using the following method-
ology. Given the initial solution a, found by ECA for a fixed
number of iterations, we can initialize a new instance of the
algorithm that uniformly samples points around a. If there are
better solutions in a’s neighborhood, it may be possible to
explore them. Of course, the number of maximum iterations
is adjusted to a number much lower than the initial instance so
that the added computational cost is not excessive. In this work,
we use this strategy to improve the solutions to the problems
presented in Section VII.

B. Histogram Estimation

As we describe in Section III-C, the estimation of SHKP
requires the calculation of the histogram. For example, in the
proposal presented in [25], the histogram was estimated from a
small set of samples. One of this work’s contributions consists
in estimating the SHKP with all the available pixels without
yielding excessive computational time. In this logic, we consider
that the information included in a pixel is valid if it is in the image
domain after applying an affine transformation.

In computational terms, selecting which pixels are in the over-
lap area of images IR and IT adds computational cost (and makes
it challenging to use SIMD strategies). To avoid these problems,
the approach used in this work consists in assigning the pixels
outside the image domain to a histogram bin that should not
be included in the estimation of SHKP. In our implementation,
we generate a histogram of n+ 1 bins, where the last bin of the
histogram corresponds to those pixels outside the image domain.
Then, we use the first n bins to estimate SHKP. Although
this strategy is straightforward, it permits simultaneous use of
multiprocessing and SIMD strategies. Of course, the solution
has, as a consequence, an increase in the memory cost, but since
the size of the histogram is usually small, this cost is negligible.

VI. EXPERIMENTAL RESULTS ON SIMULATED DATASETS

To evaluate the performance of our proposal, we present
the results for a set of synthetic coregistration problems for
hyper and multispectral satellite images. For this purpose,
we generated a set of 50 random affine transformations S =
{T (a1), T (a2), . . . , T (a50)}. The parameters for each affine
transformation were uniformly sampled according to the next in-
tervals: θ ∈ [−100, 100]; λx, λy ∈ [0.5, 1.5], sx, sy ∈ [0.7, 1.3],
and δx, δy ∈ [−200, 200].

The HKP has one hyperparameter: The number of bins n.
However, as mentioned in [25], the HKP works better with
reduced bins like the NMI. For all sets of experiments, we used

n = 16 because it was the configuration that generally presented
the best results, either HKP or NMI. We analyze the quality of
the coregistration in terms of root mean-square-error (RMSE)
and mean absolute error (MAE) of successful registrations. In
this work, we consider a successful registration if the RMSE
between the applied and recovery transformations is lower than
one-pixel [24]. Additionally, to assess the performance of the
optimization algorithm, we analyze the number of iterations
to converge and computational time. The experiments were
executed on a computer with Intel(R) i7 CPU 2.6 GHz, Ubuntu
18.04 (64-bits), six hyperthreading cores, and 16 GB RAM. All
modules were programmed in Julia 1.6 using its capabilities to
generate SIMD instructions and multicore parallel schemes [53].

A. Synthetic Dataset From Hyperspectral Satellite Images

The first set of experiments simulates the coregistration prob-
lem of hyperspectral satellite images. The images have a size
of 512× 512 pixels and correspond to Iowa, Lake, Santa Cruz,
and Vegas.2 The methodology to create the synthetic dataset was
as follows: We obtained the images corresponding to bands one
and five for each hyperspectral image. Then, we use the image
corresponding to band one as the source image. We apply an
affine transformation of the generated set S to this image, and
we use the transformed image as the target image. We use the
image of band five as the reference image. Fig. 3 illustrates the
images generated to simulate the coregistration problem. This
set of experiments aims to compare HKP against NMI by using
ECA and DE optimizers.

B. Synthetic Dataset From Multispectral Satellite Images

For the synthetic dataset created from the multispectral im-
ages, we used as source images a set of five images of the city
of Toulouse, France.3 The description of the images is shown in
Table I. The images were converted to gray scale and scaled to
a quarter of their original size and used as the source image.

We construct the target and reference images, using a method-
ology similar to the one presented in [31]. First, we constructed
the reference image by applying the next nonlinear tone transfer
function to the source image.

I(p) = exp (1− I(p))γ (15)

where I(p) corresponds to the intensity image in the scale [0,1]
and γ is the scaling factor. In this work, we set γ = 1.35.

The target image was created by applying an affine trans-
formation and a spatially -varying intensity warped model to
the source image [see (16)]. The main idea in (16) is a locally
varying intensity field with a mixture of G randomly centered
Gaussians to generate the synthetic image. Given a pixel p, the
new intensity is calculated as

I(p) = I(p)

(
α+

1

G

G∑
i=1

exp(−λ||p− µg)||2
)

(16)

2[Online]. Available: https://serc.carleton.edu/eyesinthesky2/week11/get_
to_know_multispectral_imaging.html.

3[Online]. Available: https://www.intelligence-airbusds.com/imagery/
sample-imagery/.

https://serc.carleton.edu/eyesinthesky2/week11/get_to_know_multispectral_imaging.html
https://serc.carleton.edu/eyesinthesky2/week11/get_to_know_multispectral_imaging.html
https://www.intelligence-airbusds.com/imagery/sample-imagery/
https://www.intelligence-airbusds.com/imagery/sample-imagery/
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Fig. 3. Each column represents the images used to generate the synthetic dataset. From left to right: Iowa, Lake, Santa Cruz, and Vegas. From top to bottom:
source image, reference image, and an example of the target image.

TABLE I
CHARACTERISTICS OF AIRBUS DATASETS FROM TOULOUSE, FRANCE
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Fig. 4. Each column represents the images used to generate the synthetic dataset. From left to right: Pléiades Neo 1, Pléiades Neo 2, Pléiades Satellite Image,
SPOT 5, and SPOT 6. From top to bottom: original image, source image, reference image, and an example of the target image.

TABLE II
PROCESSING TIME (MS) AND SPEEDUP FOR HISTOGRAM ESTIMATIONS USING DIFFERENT STRATEGIES AND DIFFERENT NUMBERS OF BINS

where α controls the intensity changes and, G, λ controls the
intensity spatially varying changes. In this work, we set G = 3,
α = 0.3 and λ = 1

702 . In Fig. 4, it is possible to observe the
source and reference images, and examples of the target image
obtained after applying an affine transformation.

C. Results

This section presents the results of the simulated data. Here,
we show the advantages of using parallel strategies in histogram
computation and the statistical differences between using HKP
and NMI.

1) Computational Times: One of the main bottlenecks in
evaluating the HKP and NMI is estimating the histogram. To

compare the advantages of using the parallelization scheme, we
present the processing time of three different strategies. The
first corresponds to an efficient implementation of the histogram
calculation without considering any additional parallelization
scheme. The second corresponds to an efficient implementa-
tion incorporating SIMD instructions. Finally, we present the
processing time using the parallelization scheme with multiple
cores and SIMD.

Table II presents the processing time average for 1000 runs of
the histogram estimation and the speedup, considering different
image sizes and number of bins. The speedup is computed by
dividing the sequential or serial processing time by the parallel
processing time. The results show the advantage of employing
parallelization strategies as the image size increases. Our parallel
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TABLE III
COMPARISON BETWEEN HKP AND NMI USING DE AND ECA OPTIMIZERS ON

HYPERSPECTRAL IMAGE DATASETS

implementation reaches a speedup up to 4.5× using a multicore
CPU and SIMD scheme, launching four threads for an image
size of 1024× 1024 pixels and a histogram of 64 bins. Although
nowadays, parallel strategies can be implemented quickly, ap-
proaches that use multicore strategies require more effort to take
care of some details that can generate additional bottlenecks.
The advantage of using SIMD algorithms is that they can be
easily implemented in many of today’s programming languages
through macros.

2) Hyperspectral Datasets: Table III shows the statistical
results for the synthetic datasets created from the hyperspectral
images. For these datasets, we not only compared the perfor-
mance of NMI vs. SHKP but also analyzed the performance of
ECA vs. DE.

Table III shows that the combination of NMI and ECA obtains
the lowest median for RMSE and MAE. On the other hand,
the highest number of successful registrations is obtained by
SHKP using either DE or ECA. Furthermore, the optimization
algorithm that obtains the shortest computational time is ECA
for both SHKP and NMI.

Specifically, Table III shows that NMI solves less than half of
the registration problems for the Iowa and Santa Cruz images.
For the Vegas dataset, SHKP is superior at around 36% in the
successful registration score. For the Lake image, there is no
practical difference between NMI and SHKP. In combination
with SHKP, DE has a slightly higher number of successful regis-
trations than that obtained by ECA with SHKP. The disadvantage
is that it is computationally expensive, with a computation time
4× greater than ECA with SHKP.

3) Multispectral Datasets: Table IV shows the results for the
datasets created from the Toulouse images. For this set of exper-
iments, we only evaluated the behavior of SHKP and NMI using
ECA as an optimization method; this is because previous exper-
iments showed the additional computational cost of using DE.

In the case of Pleiades Neo 1 images, there is a slight superior-
ity in the number of successful registrations obtained by SHKP
and maintaining a lower computation time. However, the RMSE
and MAE metrics are lower in the case of NMI. For the Pléiades
Neo 2 image, both SHKP and NMI obtained some successful

registrations slightly above 50%, this dataset being the one with
the worst results.

NMI gets insufficient successful registrations for Pléiades
Satellite Image, SPOT 5, y SPOT 6 (close to 10%). The images
are highly textured, and NMI has problems coregistering images
with these characteristics. Furthermore, the computational time
obtained by NMI is almost double that obtained by SHKP.
That is because the number of iterations and evaluations of the
function is lower in the case of SHKP. The number of successful
registrations obtained by SHKP is close to 90%, which shows
its superiority in this class of coregistration problems.

It is important to note that the number of successful registra-
tions obtained is higher than those reported in [24], which shows
the advantages of using SHKP with ECA for the coregistration
problem. The average time to complete the registration is around
20 s. The computational time is significantly less than that
reported in [25]; this improvement is due to the use SIMD and
multicore CPU parallel scheme to calculate the histograms. The
obtained number of successful registrations, the RMSE, and
MAE show that our proposal has a competitive performance
compared to NMI, and other existing works in the literature
[54], [55].

VII. RESULTS AND DISCUSSION ON REAL DATASET

We evaluate our proposal using different kinds of MMRS
images. These datasets correspond to common problems
found in coregistration problems. A complete description
of the employed images is presented in Table V. We
compare our proposal with the algorithms: HOPC (https:
//github.com/yeyuanxin110/HOPCHOPC), Channel Features
of Orientated Gradients (https://github.com/yeyuanxin110/
CFOGCFOG) [56], and Co-occurrence Filter Space Match-
ing (https://skyearth.org/publication/project/CoFSM/CoFSM)
[57]. All implementations used in this comparison are public
and can be found at the links provided by the authors.

The procedure to find the optimal transformation for
descriptor-based methodologies (CFOG, CoFSM, and HOPC)
was the following. First, we use the Harris corner detector to
determine an initial set of control points (CP). Subsequently,
we used different methodologies to generate the descriptors and
found the correspondences. We use a double-checking strategy
to determine the correspondences: We found the descriptors
(i, j) such that ith descriptor in image IT has jth descriptor in
image IR as the best match and vice versa. Finally, we compute
an optimal affine transformation between two 2-D point sets
using an algorithm based on the random samples consensus and
using a nonlinear optimizer [58].

Table VI shows the quantitative results for each methodology.
The results show that our proposal has a performance com-
parable to other state-of-the-art algorithms. For example, we
are obtaining the best results for Lidar-Optical images. In the
rest of the images, our proposal has competitive performance.
Our worst result corresponds to the Optical-SAR images, where
our methodology cannot solve the problem satisfactorily due
to the existence of local textures. Our proposal does not use
local information; on the contrary, we use the total pixels of the
image to solve the registration problem; this is a disadvantage

https://github.com/yeyuanxin110/HOPC
https://github.com/yeyuanxin110/HOPC
https://github.com/yeyuanxin110/CFOG
https://github.com/yeyuanxin110/CFOG
https://skyearth.org/publication/project/CoFSM/
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TABLE IV
COMPARISON BETWEEN HKP AND NMI USING ECA OPTIMIZER ON MULTISPECTRAL IMAGE DATASETS

TABLE V
DESCRIPTIONS OF DATASETS USED IN THE MATCHING EXPERIMENTS

TABLE VI
RESULTS FOR REAL DATASETS PRESENTED IN FIG. 5

in images with “local” textures because local information is not
used efficiently. For this class of images, robust methodologies
based on descriptors are a better alternative, as shown by the
results obtained by CoFSM. Finally, for visible–infrared images,

the result of our methodology can be considered adequate (less
than 1.0 pixel). However, the HOPC and CFOG methodologies
are the ones that have the best performance. The difference in the
error obtained when coregistering the images can be explained
if we consider that our registration method does not incorporate
edge (or structural) information in contrast with the descriptors
employed in this comparison. Finally, it is essential to point
out that our methodology is aimed at solving the coregistration
problem using affine transformations. Although extending our
formulation to other types of geometric transformations is pos-
sible, it may be necessary to readjust the optimization method or
the hyperparameters used. The above is an advantage of feature
description-based methods; finding the appropriate geometric
transformation is independent of constructing and matching
descriptors.

Fig. 5 shows the images with the qualitative results of the
coregister obtained by SHKP. In this figure, we can see in
each column: 1) the target and reference image with the CP
employed; 2) the intensity difference images before and after
coregistration; and 3) the chess-board images before and after
the coregistration. In general, the intensity difference images
show a significant improvement in the details of the coregistered
images. In particular, for the images that use LiDAR data and
visible images, an improvement in the details of the coregistered
images is noted. In the case of the visible–SAR image pair, there
is a significant improvement in the alignment of the structures,
and the details in the highly textured areas are clearly defined.
Finally, in the pair of visible–infrared images, one can see the
improved alignment of the edges that define the buildings.
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Fig. 5. Real dataset results. Each column represents a coregistration problem. From left to right: LiDAR-Optical, Optical-LiDAR, Optical-SAR, and visible–
infrared. From top to bottom: target image with HOPC CPs, reference image with HOPC CPs, difference image before coregistration, difference image after
coregistration, the chess-board image before coregister, and the chess-board image after coregister.
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VIII. CONCLUSION

The present work shows the successful use of SHKP for re-
mote sensing image coregistration. The results illustrate SHKP’s
ability to solve registry problems that MI cannot solve. As in
other investigations, it is possible to observe that the optimiza-
tion method strongly impacts the quality of the register. The
results show that NMI has a lower RMSE than HKP; however,
the number of successful registrations is significantly lower. This
effect is seen quite clearly in multispectral image experiments.
The suggested optimization algorithm, ECA, benefits both NMI
and HKP, having shorter computation times than DE without
compromising the RMSE. These results show that HKP could
become an alternative in remote sensing problems where MI has
traditionally been used.

Additionally, our experiments show that parallelization strate-
gies reduce computation time significantly, allowing processing
of all the pixel information available; for example, images with
size 512× 512 obtain an average time of around 3 s.

As feature work, it is convenient to consider a fully imple-
mented pipeline in GPUs to reduce computational time and allow
the coregister of larger images. It is also essential to incorporate
structural information from the images through edges or other
features to address the registration problem when the texture in
both images is homogeneous.
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