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Multiple Frame Splicing and Degradation Learning
for Hyperspectral Imagery Super-Resolution

Chenwei Deng , Xingshi Luo, and Wenzheng Wang

Abstract—Hyperspectral imagery (HSI) is an emerging remote
sensing technology to discriminate different remote sensing objects.
However, the HSI spatial resolution is relatively low due to the
trade-off in restricted physical hardware and various imaging con-
ditions, restricting the subsequent object detection applications. At
present, the single hyperspectral super resolution (SHSR) strategy
has encountered the bottleneck on more precise details extraction,
and the fusion hyperspectral image super resolution (FHSR) strat-
egy must need extra RGB/multispectral information, which is not
suitable for general HSI usage. Also, both types of current strategies
focus less on the multiple degradation causes of low spatial resolu-
tion. In this article, a step forward in designing a novel framework
of multiple frame splicing strategy to greatly improve the SHSR
quality, and applying multiple HSI degradation models to better
fit the real degradation circumstance. Specifically, the framework
is an end-to-end super resolution (SR) network that supersedes a
single up-sampling module and removes complex attention residual
model due to the same size of multiple splicing low-resolution input
samples with high-resolution outputs. The effective framework will
alleviate the vague at higher multiples, and accelerate the training
convergence. Based on this framework, multiple degradation low-
resolution samples can be simultaneously combined to fit better for
the blind SR result. Concretely, the degradation focus on the blur,
noise, compression, and their combinations to simulate the real
degradation. Experimental results on three different hyperspectral
datasets demonstrate that the proposed multiple frame splicing and
degradation model (MFSDM) algorithm can significantly enhance
the details in the recovered high-resolution hyperspectral images,
and outperforms the state-of-the-art SHSR methods.

Index Terms—Hyperspectral remote sensing, hyperspectral
super resolution, image super resolution, multiple degradation
super resolution, multiple frame super resolution.

I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) is a challenging and
comprehensive interdisciplinary subject that arose in the

1980s [1]. Compared with the traditional panchromatic and
multispectral (MS) remote sensing, the most prominent ad-
vantage of hyperspectral imaging is the 3-D data cube can
record both 2-D spatial information and 1-D richer reflectance or
radiance information of a scene at nanometer spectral resolution
in the range of ultraviolet, visible, near-infrared to long-wave
infrared [2].
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Fig. 1. General idea of MFSDM, which contains multiple degradation (upper)
and multiple splicing network (lower).

Therefore, many problems that can not be solved in traditional
remote sensing imaging methods can be solved by hyperspectral
technology. Nowadays, the HSI technology has been widely ap-
plied in many remote sensing fields, such as object detection [3],
[4], [5], ground classification [6], [7], environmental monitoring
[8], anomaly detection [9], etc [10]. Recently, the multidimen-
sional and multimodal HSIs have expanded the possibility of
more applications, such as visual recognition and tracking [11],
[12], [13].

For these practical applications, the spatial resolution of
acquired HSIs limits the subsequent tasks. Under the influ-
ence of complex imaging conditions, hardware limitations, and
other blind degradation factors, the current HSIs fail to obtain
high-resolution spatial with comparably high-resolution spectral
information. The spatial features are hard to utilize and difficult
to identify ground objects with acceptable accuracy.

Therefore, reconstructing the HSIs into HR images with
economical super-resolution (SR) algorithms is a valuable and
challenging task. As illustrated in Fig. 1, the general idea and
structure of the multiframe slicing and degradation model are to
further improve the low spatial resolution of HSIs and increase
the practicality of current methods.

Hyperspectral image super-resolution (HSISR) technology is
a booming research topic that aims at improving the spatial res-
olution of the input HSIs through signal processing technologies
without further improving the hardware of the imaging system.
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It can solve the contradiction between the decrease of spectral
resolution, increase of hardware quantity and weight caused
by the improvement of spatial resolution, and provide a better
foundation for follow-up applications.

Although the HSISR is of important research and application
value, the reconstruction is a theoretically ill-posed inverse prob-
lem, which suffers from great accuracy loss due to the absence
of prior image degradation information and the limited blind
reconstruction model [14], [15].

To better solve the HSISR ill-posed inverse problem, there
are two main types of solution: Make the best use of the limited
available information, which is called the single hyperspectral
image super-resolution (SHSR) method

θ∗ = argminE (fθ(HSI0), xori) . (1)

The current SHSR algorithm is gradually replacing the tra-
ditional interpolation reconstruction methods, developed into
dictionary learning [16], sparse representation, and low-rank
approximation methods [17], and stepping forward on more
advanced deep neural network (DNN) learning methods. The
typical deep learning HSISR algorithms include 2-D/3-DCNN
SR learning algorithms [18], [19], [20], transfer natural image
SR learning algorithms [21], generative adversarial network SR
learning algorithms [22], spatial spectrum joint prior learning
algorithms [23], and other frontier algorithms [24], [25], [26].

In general, these deep learning methods show better perfor-
mance in contrast to the traditional methods. However, there are
limited remote sensing HSI samples that are better than 2.0 m
spatial-resolution, and even fewer samples focus on the same
area when photographed at a different time and even harder
photographed by more different HSI devices. Meanwhile, the
high-dimensional bands increase the difficulty in fully exploiting
the spatial domain features and emulating the relationship in the
spectral domain of the HSI data.

Make the most use of relevant and complementary infor-
mation, which is called the fusion hyperspectral image super
resolution (FHSR) method

θ∗ = argminE (fθ(HSI0,MSI0,RGB0, ...), xori) . (2)

As opposed to SHSR, the FHSR methods have developed
rapidly in recent years and has made substantial SR perfor-
mance improvements. Since the MS imaging systems (e.g., RGB
cameras, space-borne or air-borne MS sensors) can provide
supplementary information [27], the finer spatial details can be
preserved at the expense of reducing spectral resolution. These
fusion methods based on Bayesian inference [28], matrix de-
composition [29], sparse representation [30], manifold structure
[31], or the advanced deep learning fusion techniques [32], [33],
[34] have gained more attention and obtained extremely better
SR result than SHSR.

However, it is very hard or even impossible to simultaneously
obtain such a well-co-registered auxiliary image in practice.
Therefore, most of the research on those fusion methods can only
be tested on limited datasets, which cannot be widely applied in
actual airborne/spaceborne data.

In general natural image SR algorithms, the multiframe
super-resolution (MFSR) can reconstruct the original HR
image by using multiple LR images instead of a single image

Fig. 2. HSISR methods category and their main pros and cons, MFHSR
relationship with current methods.

super-resolution (SISR). Therefore, MFSR can learn more
image information or at least the same amount of image
information by learning multiple down-sampling LR images,
which leads to reconstruction quality improvement.

The multiframe learning central idea is helpful to improve the
HSISR. As illustrated in Fig. 2, multiframe learning for hyper-
spectral SR is a novel type of method besides the SHSR and the
FHSR. The advantage is obvious, since it can further improve the
performance of SHSR without obtaining additional RGB/MS
information, so it can be more practical in HSI applications.

However, the difficulty is also prominent. Most of the existing
MFSR methods require two stages to perform SR reconstruction:
1) Fusion or share multiple LR image information and 2) Depend
on single-step LR image upsampling module to perform end-to-
end learning.

The first stage will increase the computation parameters by
at least N (multiple sample number) times and make the HSISR
even harder to converge. The second stage often requires prior
degradation knowledge such as blur kernel, and noise level,
otherwise, this step will produce edge blur or edge jag caused
by a single-step up-sampling module.

In addition, the direct application of channel attention and
spatial attention, which proved to be useful in SISR and SHSR
cannot achieve excellent results in the MFSR task, thus limiting
the further improvement of the representational ability of the
MFSR network.

Moreover, despite the rapid development of deep learning SR
algorithms, there are still few methods that could realize joint
reconstructing of MFSR in a unified end-to-end network and
even fewer for MFHSR.

To complement the above limitations, a novel strategy and an
improved model, named multiple frame splicing and degradation
model (MFSDM), is proposed in this article. This is a MFHSR
model, which uses multiple splicing unions and multiple degra-
dation combinations as the training inputs to reconstruct high-
resolution outputs. The detail of MFSDM is illustrated in Fig. 3.

In summary, our main contributions are as follows:
1) We propose a novel strategy of utilizing multiple splicing

unions as same-size LR inputs with HR outputs. Based
on this strategy, multiframe HSIs information is naturally
shared in one input, simplifying the fusion process.
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Fig. 3. Overall architecture of MFSDM. The multi-LR splicing unions are learned by N overlapping branch frame with M spectral-spatial convolution block
(SSCB) and concatenate at trunk frame with global skip interpolation connection.

2) Based on the multiple splicing union, we propose multiple
degradation augmentation unions to better fit blind degra-
dation models. Based on this strategy, the degradation
situation is enriched and the particular degradation models
of HSIs are combined to better fit real applications.

3) Based on the multiple splicing and degradation strate-
gies, we proposed a more concise end-to-end framework
that eliminates the attention block, and improve the up-
sampling process, which proves good convergence per-
formance.

4) Compared with the latest SHSR and FHSR methods, the
proposed MFSDM method achieves better results than the
state-of-the-art SHSR method and achieves a similar result
to state-of-the-art FHSR with less amount of network
parameters.

II. RELATED WORK

The most relevant methods are further viewed in this section,
which include the most representative SHSR methods and some
preeminent FHSR methods. In addition, the typical framework
of the latest single/multiple general nature image SRs are re-
viewed to further explain the basis of the proposed approach
and the focused question to solve.

A. Single Hyperspectral Image Super-Resolution

With the development and superior performance of deep
learning technology, the SHSR algorithm is gradually develop-
ing from the traditional interpolation or representation method
to the deep learning based SR method.

Traditional SR methods include various basic interpolation,
such as nearest-neighbor interpolation, bilinear interpolation,
bicubic linear interpolation, and local adaptive nonlinear inter-
polation, etc. Those interpolation methods are simple in compu-
tation and still useful as SR baseline. Even though in the DNN
learning process, Most SHSR methods will down-sample the
HR hyperspectral images applying the bicubic interpolation to
obtain the corresponding LR hyperspectral images or use bicubic
up-scaled hyperspectral images for residual learning.

However, only relying on the surrounding pixels and a single
interpolation core will cause the aliasing and edge blur. There-
fore, some frequency domain approximation methods are given,
such as convex set projection method [35] and Bayesian analysis
method [36], etc; other multiresolution analysis methods, such
as wavelet transform, pyramid algorithm [37], etc; and some
subpixel location methods, such as pixel replication method
[38], etc. However, those hand-crafted priors can only reflect
the portion spatial features and finite spectral characteristics of
the hyperspectral data, the complex details recovery is hard to
realize based on those methods.

Besides those interpolation and pixel combination methods,
the dictionary learning-based approaches are widely proposed
[39], [40], which also suffer several defects. First, complex
optimization in the testing phase is time-consuming or even
not soluble. Second, the image priors are always based on the
internal limited example, and then the external information from
external samples is invalid.

To combine the advantage of interpolation and representa-
tion methods, DNN, especially convolutional neural networks
(CNN) are widely used in SR problems and have been introduced
into the SHSR task. Recently, the graph convolutional networks
(GCN) show prior learning ability for hyperspectral data struc-
ture and is possible to further improve the interpretation and
learning ability [41].

According to the characteristics of hyperspectral data, the
framework should concern both the spatial and spectral infor-
mation. The current CNN SHSR methods focus on the balance
between 2-DCNN and 3-DCNN structures and explore more
reasonable spatial-spectrum joint network structures.

For example, Mei’s 3-D full convolution neural network (3-
D-FCNN) [8] improved the SR effect and preserved spectral
information. Compared with the 3-D convolution, 2-D convolu-
tion can not retain the spectral feature information well, which is
a serious shortage for the subsequent hyperspectral processing
task.

However, compared with the 2-D convolution, the param-
eters are increased by an order of magnitude, resulting in a
large amount of calculation and complex training. In addition,
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according to the DHPSR method designed by Oleksii [42],
[43], 3-D convolution is not always better than 2-D convolution,
which is because of insufficient hyperspectral dataset and high
spatial dimension.

Therefore, the spatial or spatial-spectral information extrac-
tion block will greatly influence the SR result since the single
LR information is limited. The 2-DCNN can extract the spatial
features with less computation and 3-DCNN is more suitable
for the joint acquisition of spatial-spectral features. Thus, Li
proposed a convolution method MCnet combining the 2-DCNN
and 3-DCNN [19], which can solve the problem of large param-
eters partially.

The above methods focus more on improving the spatial block
of hyperspectral data, but there is still a large space for develop-
ment in the retention of spectral correlation characteristics. Jiang
[23] introduced a spatial-spectral prior network (SSPSR) to fully
utilize the correlation relationship between spatial information
and spectral characteristic.

SSPSR proposed a group convolution strategy with shared
network parameters and a progressive up-sampling structure,
which can reduce the difficulty of high-dimensional feature
extraction of HSI data and better stabilize the training. Also,
the spatial-spectral block (SSB) is set to integrate spatial and
spectral information.

This work achieve state-of-the-art performance, which has
better model structure, superior SR quality indices, and vi-
sualization result. However, the improvement is still limited
compared with FHSR methods, and the module is more compu-
tationally intensive.

Above all, the SHSR have achieved much progress, but the
further improvement is limited. On the one hand, it is because
the single LR samples have limited information to learn, on the
other hand, the limited type of degradation is incapable to fully
explore more blind SR circumstance.

B. Fusion Hyperspectral Image Super-Resolution

FHSR is a challenging but effective SR strategy. To exploit the
redundancy in the spectral domain and correlation in the spatial
domain, some algorithms have been proposed by utilizing the
sparsity [30], self-similarity [44], low-rank prior [45], clustering
manifold structure [46], and tensor constraints [47].

Last, deep learning based methods become more prevalent
in FHSR, since they can achieve superior performance in SR
consequence and suppose fewer assumptions about the image
degradation and knowledge prior.

Since Xie et al. [32] proposed the MHFnet unfolding network,
first proved the feasibility of the fusion model, more approaches
start to focus on the deep learning-based FHSR. For example,
Wang [48] put forward a DBIN model and optimized the esti-
mation of the fusion problem. Recently, Dong [49] proposed an
MoG-DCN method based on the deep hyperspectral denoiser.
Basically, the above approaches focus on casting the fusion
optimization problem of MS/HSI into joint learning of a deep
denoiser prior and a particular observation model.

However, these learning-based fusion methods require either
large data for supervision training or the knowledge of degrada-
tion prior, which are both unrealistic in a real HSISR scenario.

Fig. 4. General process of downsampling and upsampling in SR of SISR and
MFSR.

Thus, some unsupervised blind FHSR methods were proposed.
For example, Zheng et al. [50] proposed a two-stage network
based on unsupervised adaption learning, while estimating the
unknown spatial degradation. And lately, Ma et al. [51] opti-
mized the HSISR model by applying the proximal gradient al-
gorithm and introduced a transformer prior to unfolding network
for iterative solution simulation.

The above methods partly solve the fusion problem be-
tween MS and hyperspectral. Also, providing some unsuper-
vised strategies to solve the blind HSISR problems. However,
the fusion-based method relies on supplementary information,
which is not fully accessible in most cases. This shortcoming
limits further practical applications.

C. Multiframe Image Super-Resolution

The general process of the single/multiple deep learning
image SR is shown in Fig. 4.

First, a HR image is down-sampled, and then the noise is
added to the simulated real degraded image. Next, the end-to-end
mapping relationship between the single LR image or multiple
LR images and the HR is trained to obtain the SR reconstruction
model [52].

Especially, multiframe image super-resolution (MFSR) aims
at restoring the original HR image fH by extracting and merging
the information from multiple LR images fn.

Mathematically, the original HR image fH can be recon-
structed by minimizing the error between fn and estimated
f̂n = H(Sn(f̂H)) with a regularization. The general estimate
f̂H can be obtained as following:

f̂H = argmin
fH

1

2σ2N

N∑
f=1

||fn −H(Sn(fH))||22 + λR(fH)

(3)
where R(fH) represents the regularization term related to the
original HR image fH and λ is the penalty parameter.

Although there are more methods proposed for MFSR in
nature image processing [53], as of now, there is barely no
network focus on multiple LR samples learning for HSIs, and
the reconstruction is concentrated upon a limited degradation
model only.

III. PROPOSED MFSDM FRAMEWORK

A. Problem Formulation

In the MFSDM, we regard the inverse task of single HSI
restoration, such as inpainting, noise removal, and SR, can be
formulated as an energy minimization problem as follows, which
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Fig. 5. General process of splicing strategy of scaling parameter x2,x4,x8.
The spliced unions are in the same size of the HR image.

concerns more down-sampling models:

p∗ = minE(x(Multi-Degrade(N,R,B,C,...)), x0) + R(x). (4)

In the reality, the multiple degradation model can be very
complex, such as multinoise, multireshape, multiblur kernel, and
multicompression loss. We use multiple combinations of image
and HSI particular degradation in our method.

Based on the single HSI restoration, the multiple-frame slic-
ing can be formulated as an energy minimization problem as
follows, which concerns combination of multi-LR samples

p∗ = minE(x(Multi-Splice(S1
d1
, ..., Sn

dm
)), x0) + R(x). (5)

In the reality, multiframe HSI image is hard to acquire, since
the available HSI video and same location dataset photoed at a
different time is scarce. The satellite-borne HSI can provide such
information, however, the original spatial resolution is limited,
usually lower than 15 m. Airborne or UAV-borne HSI continuous
data can be more helpful in the research of HSISR. However,
the available open dataset can not fully meet the multiframe data
source requirement.

Since the multiframe SR is useful to improve SR quality, we
get multiframe HSI images using the same image copies with
the same or different degradation model to simulate multiframe
HSI data.

The details of the multiple slicing strategy and multiple degra-
dation strategy are elaborated as follows.

B. Multiple Slicing

The slicing strategy is a simple way to combine the multiframe
information and eliminate the influence of using single step up-
sampling module. The multiframe slicing strategy is illustrated
as Fig. 5, and the x4, x8 scaling results are compared in the later
experiments.

1) Multiple Slicing Motivation: The process of up-sampling
and the up-sampling module design is very critical in defining
the performance of the SR method, since it is an ill-posed
problem. Based on the upsampling methods, there are four
primary frameworks for SR with different learning strategies,
and various network types: preupsampling, postupsampling,

Fig. 6. General process of multiple degradation strategy of scaling parameter
x2,x4,x8.

iterative up-and-down sampling, and progressive upsampling
[52].

All the implementation of the main SR process in the network
framework is based on the single or progressive up-sampling
step, which makes the LR image size reach the original HR
image size. However, the current up-sampling step is only based
on the results of the previous layer, which causes the loss of the
learning features, and the up-sampling step is generally single-
step interpolation, which also limits the performance of existing
SR algorithms. The up-sampling module is improved in recent
works but still can not eliminate all of the ill effects brought by
the up-sampling module.

2) Multiple Slicing Strategy: In our method, the slicing strat-
egy is to first down-sampling the HR hyperspectral by bicubic
interpolation or later multiple degradation method, then combin-
ing the d2 low-resolution samples together as a splicing training
union.

The advantages of multiple slicing are it combines the up-
sampling module for each LR sample, and increase the infor-
mation richness of training samples, which is more useful when
the scaling factor is larger. In the latter experiment, we compare
the bicubic slicing union SR result with the SHSR result, the
converge rate and SR result are improved significantly.

C. Multiple Degradation

The multiple degradation consider different types of degra-
dation effects including down-sampling, blur, noise, and com-
pression [15]. Except for the typical blur types (generalized
Gaussian blur), down-sampling types (bilinear, and bicubic),
random noises types (Poisson noise and camera sensor noise),
the particular degradation types of HSI are also concerned. In
our method, we consider the band noise and PCA compression
degradation, which heavily influence the spatial information and
spectral information.

1) Multiple Degradation Strategy: Specifically, in the slicing
of d2 patches, each 2*2 splicing union uses a different type of
degradation strategy. As illustrated in Fig. 6, the upper left uses
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the multiple blur model, the upper right uses the multiple noise
model, the bottom left uses the multiple blur and noise model,
and the bottom right uses multiple combinations of the blur,
noise, and compression model.

2) Multiple Degradation Parameters: In our method, the
different parameters are randomly chosen in the following range
with each union and different samples. The degradation blur
model includes isotropic Gaussian blur [0.1, 1.0], anisotropic
Gaussian blur [0.1, 1.0], and 3-D Gaussian blur [0.1, 1.0]. The
parameters are randomly chosen in that parameter range, and
other degradations are similar.

The degradation noise model includes Gaussian additive noise
[0.01%, 0.1%], Gaussian multiplicative noise [0.01%, 0.1%],
and striping noise [1%, 10%]. The striping noise here is added by
row following the energy proportion of each row in the Gaussian
distribution. The band or striping noise is a normal type of
spatial noise in HSI, since the imaging process of a large area
will leave threadiness and bad pixel noise in the final imaging
result. Therefore, this degradation should also be concerned in
the HSISR.

The degradation blur and noise model includes a random com-
bination of the above blur and noise type. The other parameters
are the same with striping noise decrease in the range of [1%,
5%]. Since the higher noise level will make spatial information
unavailable.

The degradation mixing model includes a random combi-
nation of the above blur, noise, and compression types. Be-
sides the spatial degradation, the compression of HSI influence
both the spatial and spectral information. The normal type of
compression is using principal component analysis (PCA) to
select the main spectral band information. The reconstruction
result by the principal part of the original hyperspectral will
reduce the data amount and simulate the real spectral shifting in
our degradation model. For example, although the variance of
the top 15 principal bands of the Chikusei dataset is usually
larger than 99%, the reconstructed HSI spectral information
is often shifted or inaccurate. The spatial information is also
influenced by wrong color space mapping and high-frequency
details loss. In the mixing model, the other parameter is the
same as the principal number in the range of [15, 30]. The less
principal selection will harm the effectiveness of reconstruction.
For different datasets, the principal number selection varies and
the variability comparison is shown in the experiment part.

D. MFSDM Learning Model

1) MFSDM Network Architecture: Fig. 3 shows the frame-
work of the proposed MFSDM, which is improved from the
SSPSR idea [23]. The method mainly includes three parts: shal-
low feature extraction combined with upscale, spatial-spectral
deep feature extraction branch, and reconstruction trunk. The
structure mainly omitting the single upscale module and con-
densing the SSB, which reduces the spectral attention module
but uses a 3-D convolution block as a spectral feature module.

The input low-resolution HSI image is the splicing union
IL R union ∈ RH×W×C , which is d2 union of degradation IL R ∈
Rh×w×C . The h size of the degradation sample is H size divided

by 2n scaling factor. And the corresponding high-resolution out-
put HSI image is ISR ∈ RH×W×C . The original high-resolution
HSI image IH R ∈ RH×W×C is the ground truth of the input
low-resolution union.

The framework of MFSDM is to better utilize the information
from the multiple sample unions of IL R and better minimize the
error between ISR and IH R.

ISR = HMFSDM (IL R union) . (6)

Similar to SSPSR, we keep the branch networks and the global
trunk network, since the coarse-to-fine manner is useful and the
branch networks share the parameters in the learning process,
which reduce the learning parameters greatly.

2) The Branch and Trunk Network: We first divide the IL R into
N groups to better exploit the correlations among neighboring
spectral bands, also reduce the feature dimensions of of each
group. IL R = {I(1)L R , I

(1)
L R , · · · , I(N)

L R }. For each group I
(N)
L R , one

convolutional layer was directly applied to obtain its shallow
features and upscale each samples

F
(N)
0 = HF Econv−up

(
I
(N)
L R

)
. (7)

I
(N)
L R then used for extracting the deep features with the

improved spectral-spatial convolution block (SSCB).

F
(N)
SSCB = HSSCB

(
F

(N)
0 )

)
. (8)

The SSCB contains 3-D-spectral block and 2-D-spatial block.
After the M series of SSCB, one convolutional layer is added
after each branch. The purpose is to concatenate feature channels
and reconstruct them to the same band channels of the input
group HSI

F (N)
r e c = Hr e c

(
F

(N)
SSCB

)
. (9)

The branch and trunk frame are almost the same, the features
from all branches are concatenated together, and the average
feature values with overlapped bands are computed according
to their original spectral band positions. After the trunk frame,
the SR HSI is obtained by feeding the up-scaled random low-
resolution samples as input HSIs with the learned concatenate
features

IS R = HGlobalREC (FTrunk +HGlobalFE (IL R ↑)) . (10)

3) The Spatial-Spectral Conv Block: Similar to SSPSR, the
SSCB exploits the spatial-spectral information from the hy-
perspectral data. Each SSCB contains two modules, a spectral
3-DCNN module, and a spatial 2-DCNN module. The archi-
tecture of SSCB is given in Fig. 7. For the spectral module, we
leverage the 3-D convolutions block with 3× 3× 3 convolutions
to extract the joint features, and for the spatial module, the
3 × 3 2-D convolutions to extract the spatial features instead
of 1 × 1 convolutions. The channel attention mechanism used
in the SSPSR is also reduced since the channel-wise feature
calculation is complex and time-consuming. The corresponding
SSCB parameters comparison test is elaborate in the experiment
part.
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Fig. 7. General spectral spatial convolution block which using 2-D/3-DCNN
and skip connection.

4) Loss Function: The loss function selected in MFSDM also
adapts theL1 loss and the spatial-spectral total variation (SSTV)
loss weighted sum as the final reconstruction loss.

The L1 loss is as follows:

L1(Θ) =
1

N

N∑
n=1

‖InH R −HMFSDM (InL R)‖1 . (11)

The LSSTV loss is as follows:

LSSTV(Θ) =
1

N

N∑
n=1

(‖∇hI
n
S R‖1 + ‖∇wI

n
S R‖1 + ‖∇cI

n
S R‖1)

(12)
where ∇h, ∇w, ∇c are functions to measure the gradient of
horizontal, vertical, and spectral, respectively.

The final reconstruction loss is as follows:

Ltotal (Θ) = L1 + αLS S T V. (13)

In summary, the MFSDM is a more simplified model than the
state-of-the-art SHSR model and preserves the most advantages.
The structure is fit for dealing with multiple HSI SR tasks.

IV. EXPERIMENTS

The MFSDM network is compared with the latest SHSR
methods on two remote sensing datasets: Chikusei [54] and
Pavia Center [55]. Based on the Chikusei dataset, the ablation
studies are performed to test each component’s effectiveness and
explore the proper parameter settings. It confirms the superiority
of the MFS and MFSD strategy with different scales and further
validated it through comparison with the FHSR method on the
CAVE [56] dataset.

The proposed method is compared with the most represen-
tative SHSR methods on Chikusei and Pavia Center dataset,
including three state-of-the-art deep single gray/RGB image SR
methods, EDSR [57], RCAN [58], and SAN [59], and five most
relevant and representative deep SHSR methods, TLCNN [21],
3DCNN [18], GDRRN [60], DeepPrior [43], and SSPSR [23].
The Bicubic interpolation is undertaken as a baseline method.

The proposed method also compared with most representative
FHSR methods, LTTR [61], uSDN [62], MHFnet [32], CU-
CaNet [33], MoG-DCN [49], 3DT-Net [51] on CAVE dataset.
The SR results and the PQIs are shown as follows.

A. Datasets and Training Details

1) Chikusei Dataset: An urban area in Chikusei, Ibaraki,
Japan, taken on July 29, 2014 from 363 nm to 1018 nm by
Headwall imaging sensor. It contains 128 spectral bands

in the spectral domain and 2517 × 2335 pixels in spatial
domain. The ground sampling distance was 2.5 m.

2) Pavia Center dataset: A central area of Pavia, north-
ern Italy, taken in a flight campaign in 2001 by ROSIS
sensor. It contains 102 available spectral bands leaving
1096 × 715 pixels meaningful region in the spatial do-
main.

3) CAVE dataset: Widely used in many MS and HSI fusion-
based restoration tasks. This dataset covers 32 scenes of
real and fake daily objects with 512 × 512 spatial pixels,
including 31 spectral bands from 400 nm to 700 nm with
the RGB images in corresponding scenes.

Training Details. For different dataset, the HSI preprocess-
ing and learning processes are similar. Take the procedure of
the Chikusei dataset as an example, the image center is first
cropped into a subimage with 2048× 2048×128 pixels, the up-
per left 25% region is further divided into four none overlapping
512 × 512 pixels to form the testing data.

Then extracted 1875 overlapping patches from the remaining
75% region to form HR HSI training reference, and each training
sample is 128 × 128 pixels. Random 10% of the training data
are excluded forming the validation set. The LR HSI are down-
sampled by bicubic with scaling factor 4 and 8. Further, both
bicubic and multiple down-sampling samples are generated to
evaluate the splicing validation and the effectiveness of blind
recovery of the MFSDM model.

Evaluation Measures. The following typical quantitative PQIs
are calculated for MFSDM performance evaluation. Except
for the most used peak signal-to-noise ratio (PSNR) [63], and
structure similarity (SSIM) [44] index, the spectral angle mapper
(SAM) [64], cross correlation (CC) [65] show the spectral re-
covery quality, and the root mean squared error (RMSE), erreur
relative globale adimensionnelle de synthese (ERGAS) [44]
evaluate the global reconstruction quality. The following tables
show comparison results of those indicators between different
methods.

Implementation Details. We use MATLAB to generate train-
ing and testing samples and rely on Pytorch libraries to im-
plement the proposed network. We train the corresponding
MFSDM multislicing (MFSDM_MS) and MFSDM multidegra-
dation (MFSDM_MD) model for scaling factors 4 and 8 with
random initialization and test each strategy on different dataset.
In the training process, we adopt the ADAM optimizer [66] with
1e-4 initial learning rate. The learning rate decays by a factor
of 10 after each 10 epochs and the batch size is 32. The model
takes about 40 epochs to achieve stable performance. We use
four parallel Nvidia GA100 GPU to train the model and the
average training time is 280 min for 40 epochs to achieve the
best SR results.

B. Ablation Studies and Quantitative Evaluation

In order to better explain the role of each structural module,
and the computational complexity, convergence, and reasoning
time between the comparison methods, we conducted quanti-
tative comparative analysis of representative algorithms, and
finally selected the compromise optimal module design scheme.
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TABLE I
TYPICAL GROUPING PARAMETERS AND SHARING STRATEGY PARAMETERS

COMPARISON OF THE PROPOSED MFSDM METHOD

TABLE II
TYPICAL SPECTRAL SPATIAL CONVOLUTION BLOCK PARAMETERS AND

STRUCTURE COMPARISON OF THE PROPOSED MFSDM METHOD

Grouping Parameters and Sharing Strategy. The grouping
parameters include spectral band number (p) and the overlap
band number (o) between the neighboring groups, based on
which the groups are determined

Groups = ceil

(
Bands − o

p− o

)
. (14)

The parameter sharing strategy refers to sharing the training
parameters of each branch network, which can greatly reduce
the training parameters and complexity, accelerating the conver-
gence of the model.

In the SSPSR, these two strategies proved to be useful. Here,
we also compare the bands and overlaps with corresponding
parameters and flops. We compare the PQIs on chikusei test
images of scaling factor 4, the result is shown in Table I. The
results show that the group sharing strategy is useful especially
when there are more overlap bands and more bands in a single
group, however, the computation flops also increases a lot.
For better performance and less computation complexity, eight
bands for each group and four overlaps between each group for
the chikusei dataset are selected as the appropriate parameter
selection. For Pavia Center dataset, 16 bands for each group and
4 overlaps are choose. For CAVE dataset, 10 bands for each
group and 3 overlaps are choose.

SSCB Parameters and Structure Comparison. Further, the pa-
rameter M blocks of SSCB and the validity of choosing 3-DCNN
in each block have been experimented. Here, we compare the
usage of 2-DCNN and 3-DCNN as the conv-block in SSCB and
the number of SSCB blocks. The result is shown in the Table II
with corresponding computation complexity. The results show
that the 3-DCNN achieves better reconstruction results although
the 2-DCNN achieves equivalent effect by increasing the number
of blocks. Here, we choose the relatively better structure of
3-DCNN as spectral-spatial extraction blocks with the number
of blocks as three. It seems that more number of blocks setting
may achieve better results but the computation complexity will
also increase at exponential growth. This parameter setting is

TABLE III
TYPICAL COMPUTATION COMPLEXITY AND CONVERGE PARAMETERS

COMPARISON

Fig. 8. FLOPs versus Converge time on Chikusei dataset in ×4 scale factor.

adopted on the other two datasets to achieve a balance between
the complexity and the effect.

Computation Complexity and Converge Comparison. In order
to better evaluate the performance of the algorithm, we record
the number of parameters, the FLOPs, the converge training
time, and the running time among representative SHSR meth-
ods to further compare the computation complexity with other
methods. The result is showed in Table III and the corresponding
visualization Fig. 8 can show the compare results more intuitive.
Compared with the current optimal method, it has advantages
in parameter quantity and SR effect. Through comparison, it is
proved that the MFSDM method is easy to converge when the
parameters at moderate level, and the quality of SR is improved
at the same time. The inference running time of the algorithm is
also within a reasonable range.

Spectral and Various Variability Comparison. Considering
the spectral variability, the remote sensing data usually tend
to suffer from various degradation, noise effects, or variability
in the process of imaging [67]. The MFSDM mainly consider
this problem as the PCA selection and reconstruction process.
It is a general process of HSI compression and the principle
component choose can cause various variability in the spectral
domain. Since the blind SR can not fully acquire the spectral
degradation reasons, we compare the variance caused by princi-
pal component selection. The result is shown in the Table IX and
the spectral various after the reconstruction is shown in Fig. 13.
The experiments show that the spectral changes caused by the
principal component compression are one of the factors that have
a great impact on the hyperspectral degradation and reconstruc-
tion, and further analysis is required for the characteristics of
compressed information loss.
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Fig. 9. Reconstructed images (d = 4) of one test Chikusei HSI with spectral bands [70-100-36]. The images from left to right, top to down, show the ground
truth, results of MFSDM, EDSR [57], RCAN [58], SAN [59], TLCNN [21], 3DCNN [18], GDRRN [60], DeepPrior [43], SSPSR [23] method, respectively.

Fig. 10. Reconstructed images (d = 8) of one test Chikusei HSI with spectral bands [70-100-36]. The images from left to right, top to down, show the ground
truth, results of MFSDM, EDSR [57], RCAN [58], SAN [59], TLCNN [21], 3DCNN [18], GDRRN [60], DeepPrior [43], SSPSR [23] method, respectively.

TABLE IV
SIX PQIS COMPARISONS OF NINE APPROACHES OVER TESTING IMAGES FROM CHIKUSEI DATASET (SCALING 4)

C. Results on Chikusei Dataset

Figs. 9 and 10 display the reconstructed images of MFSDM
in Chikusei dataset and the comparing visual result with
other methods. It can be observed that the proposed MFSDM
method shows better performance compared with other SHSR
algorithms, better recovery of both fine grain textures and coarse
grain structures in visualization. At Tables IV and V, we report
the metrics of the MFSDM reconstructed images with other

methods. On most PQIs, our method has considerable advan-
tages. The average PSNR value is 0.6 dB higher than the second
best SSPSR method.

The MFSDM of multiple splicing is the single bicubic down-
sampling union, which achieves the best SR result. Obviously,
when the degradation is simple, the recovery will have a better
result. The MFSDM of multiple degradations is the combination
of degrade union and achieving the second best SR result. Taking
the scaling d = 8 MFSDM average as an example, the CC index
increased 0.16 db, the SAM index decreased 0.68 db, the RMSE
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TABLE V
SIX PQIS COMPARISONS OF NINE APPROACHES OVER TESTING IMAGES FROM CHIKUSEI DATASET (SCALING 8)

TABLE VI
SIX PQIS COMPARISONS OF NINE APPROACHES OVER TESTING IMAGES FROM PAVIA CENTER DATASET (SCALING 4)

TABLE VII
SIX PQIS COMPARISONS OF NINE APPROACHES OVER TESTING IMAGES FROM PAVIA CENTER DATASET (SCALING 8)

TABLE VIII
FOUR PQIS COMPARISONS OF SIX APPROACHES OVER TESTING IMAGES FROM CAVE DATASET (SCALING 8)

Fig. 11. Reconstructed images (d = 8) of one test Pavia Center HSI with spectral bands [32-21-11]. The images from left to right show the ground truth, results
of MFSDM, RCAN [58], SAN [59], 3DCNN [18], GDRRN [60], SSPSR [23] method, respectively.

index decreased 1.41 db, the ERGAS index decreased 1.22 db,
the PSNR index increased by 0.45 db, the SSIM index increased
by 0.25 db. The average index improvement is 0.695 db, which
is 1.173 times.

D. Results on Pavia Center Dataset

As the visualization result shown in Fig. 11 and the super-
resolution result in Tables VI and VII, the average performance
of MFSDM outperforms on six PQIs of testing images between
nine competing approaches. The average index improvement is
0.765 db, which is 1.192 times better. Especially, the MFSDM
performance is better compared to the existing methods on the
higher scaling d = 8, since the sampling union has more slicing
union patch together as training samples, the details recover

much better and the objective, which is a blur in the other method
can be more clear in MFSDM method. To a certain extent, it also
proves that multiframe SR is a more effective strategy when the
lack of training data.

E. Results on CAVE Dataset

In addition, the HSIs of natural scenes are compared on the
CAVE dataset. The average values of SAM, ERGAS, PSNR,
and SSIM of most competing methods are shown in Table VIII.
Generally, the PSNR and SSIM values of the proposed MFSDM
method at d = 8 are slightly lower but also very close to other
methods. As shown in the visualize reconstruction Fig. 12,
even compared with the state-of-the-art FHSR method, by only
using the HSI information and using the multiframe slicing and
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Fig. 12. Reconstructed images and error maps (d = 8) of real and fake apples test CAVE HSI (spectral bands 31). From left to right shows the ground truth and
real RGB images, results of Hysure [35], MHF-net [32], MoG-DCN [49], 3DT-Net [51], and MFSDM methods.

Fig. 13. Comparison of degradation spectra before and after reconstruction.
Within the allowable range of variance error, the reconstructed spectral charac-
teristics remained stable.

TABLE IX
INFLUENCE OF SPECTRAL CHANGES CAUSED BY SPECTRAL PRINCIPAL

COMPONENTS ON MFSDM

multidegradation strategy, the single HSI SR MFSDM can also
have a competitive or even local part better SR result.

V. CONCLUSION

In this article, a novel multi-frame slicing and multidegra-
dation model (MFSDM) is proposed to address the HSI SR
problem. In particular, in order to further improve the SHSR
performance and solve the problem of multiframe fusion tasks,
we designed a multiple-slicing strategy to overcome the short-
age of a single-step up-sampling module. It can better exploit
the low-resolution union information and correlation between
the union features. In addition, to deal with the problem that the
single degradation is unpractical and the HSI real degradation
is more intricate, a multiple-degradation union strategy and a
corresponding simplified framework is proposed. In this way,

we can balance the parameters of the model and fit hostile
degradation conditions under limited hyperspectral data. Most
evaluations on three public hyperspectral datasets demonstrate
that our model not only gains a higher SHSR evaluation index,
but also generates more clear visualization SR output. The SR
performance is almost the same as the FHSR, which proves that
the multislicing and multidegradation strategy is effective. In the
future, we will consider making improvements on higher spatial-
resolution datasets, further explore better network structure on
the basis of multislicing, and further analyze the generalization
of its method to other types of 3-D data structures, such as MRI
and video structure. Further, maintaining the stability of spectral
information in SR reconstruction needs detailed consideration,
and subsequent research need to improve the model for this
challenging problem.
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