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Abstract—The availability of new Earth observation satellites
operating radar sensors at different frequencies enables the com-
bination of multiple dimensions of the data (time, frequency, po-
larimetry, and interferometry) in many applications. Image clas-
sification is expected to benefit from the diversity of observation.
This work illustrates classification experiments carried out with
series of images acquired by ALOS-2 PALSAR (L-band), Sentinel-1
(C-band), and TanDEM-X (X-band) in two application domains:
1) land cover classification and 2) crop-type mapping. Their us-
age, both separately and in combination, serves to identify the
complementarity of information. In this work, we propose a new
color representation of the pairwise class separability in the case
of using three frequency bands, which help identify which bands
(or combinations of them) provide the best performance. Results in
terms of accuracy scores (overall and class-specific) show that the
use of the three frequency bands always outperforms the individual
bands and their pairs. In addition, for both land classification and
crop-type mapping the accuracy of using coherence time series is
lower than the one obtained with the intensity time series, but there
is complementarity in terms of sensitivity when both coherence and
intensity time series are used together. The classes which are most
benefited at each particular case of study have been identified. Fi-
nally, a partial tradeoff has been found between the use of multiple
frequency bands and the length of the available time series.

Index Terms—Crop classification, interferometry, land cover
classification, synthetic aperture radar (SAR), time series.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) satellite sensors are
known to provide data with diverse dimensions which

can be exploited in many Earth observation applications. The
most obvious dimension is radiometry, i.e., the intensity of
the image, which depends obviously on the properties of the
elements present in the scene. This is usually complemented
by polarimetry, i.e., by taking into account the changes in the
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wave polarization produced by the scene [1], [2], which is very
useful for solving ambiguities present in the intensity images.
Polarimetric observables are sensitive to physical properties
of the observed targets (i.e., shape, orientation, and dielectric
characteristics) and to the scattering properties (e.g., whether
there are odd or even bounces, presence of volume scattering,
etc.). For this purpose, dual-, compact-, or quad-pol systems
are used [3]. An additional dimension with sensitivity to the
scene properties is interferometry. SAR interferometry [4], [5]
provides information about the vertical distribution of elements
in the scene and also serves as an effective change detection
technique. Finally, SAR satellites offer also consistent and re-
liable observation schedules thanks to their nearly all-weather
operation and sun-light independence. As a result, long time
series of images can be constructed, which contribute to refresh
information with short gaps (e.g., six days in case of Sentinel-1)
which is a key aspect in many operational applications, such as
crop monitoring [6].

Besides polarimetry, interferometry, and time series, there
exists an extra data dimension which can be exploited but has
received a limited attention in the past: multifrequency. L-,
C-, and X-band space-borne SAR systems, such as Sentinel-
1, Advanced Land Observing Satellite/Phased-Array L-Band
SAR (ALOS/PALSAR), ALOS-2/PALSAR-2, TerraSAR-X,
TanDEM-X (TerraSAR-X add-on for digital elevation mea-
surement), COSMO-SkyMed (COnstellation of small Satellites
for the Mediterranean basin Observation), SAOCOM (Satélite
Argentino de Observación Con Microondas), Radarsat-2, and
others are currently in operation, and new ones are planned in
the near future, e.g., ROSE-L (Radar Observation System for
Europe in L-band), PALSAR-3, NISAR (NASA-ISRO SAR),
BIOMASS, etc. This will allow to observe a scene at differ-
ent wavelengths, different acquisition geometries, and differ-
ent times. The microwave interaction with the observed scene
changes according to frequency mainly due to the fact that the
contribution to the radar signal comes from those vegetation
elements whose dimensions are of the same order of magnitude
of the wavelength. Furthermore, the penetration depth varies
as well. Therefore, the multifrequency dimension of radar data
shows a clear potential in many applications. In this context, this
work is aimed at analyzing the contribution of multifrequency
SAR data, including also time series and interferometry, to
classification. For this purpose, two application scenarios are
studied: 1) general land cover classification and 2) agricultural
crop classification.
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In the rest of this Introduction, the existing examples of combi-
nation of polarimetry, interferometry, multifrequency, and time
series for land cover classification and crop-type mapping are
reviewed. First, it is important to state that the joint exploitation
of the four axes of data diversity has not been addressed in the
literature. However, it is common to combine two of these axes,
and in some cases up to three of them, in classification studies.

In general land cover classification, although there are some
examples of comparison of the classification performance of
different polarimetric modes at different frequency bands [7],
there are only a few in which the different bands are effectively
combined to enhance the classification result. The combination
of L-, C-, and X-band was successfully tested in [8] for general
land cover classification using a single image at each band
acquired by ALOS-PALSAR, Radarsat-2, and TerraSAR-X. The
joint use of the images acquired at all three bands and exploiting
polarimetric observables demonstrated to achieve an overall
accuracy (OA) of 98% in an area with eight different land covers.
Using only L- and C-band the OA was 96%, whereas individual
bands provided OA values not higher than 90%. In that study, the
three images were not acquired simultaneously, but with gaps of
one and three years among them. Consequently, it was assumed
that the land covers were stable in time, which on many occasions
is not fulfilled. In any case, the complementary contribution
of different frequency bands to land cover classification was
already demonstrated in that experiment but deserves further
exploration. Multitemporal datasets of the same three bands
were evaluated for tropical land cover classification in [9],
concluding that multifrequency classification is preferred over
multitemporal composites obtained with a single frequency.

Regarding crop-type mapping, also L-, C-, and X-band were
used in [10], whereas P-, L-, and C-band were combined in [11]
and [12], and L- and C-band were combined in [13] and [14]. In
all cases, the classification performance improved when multiple
bands were employed with respect to single bands, thanks to
the commented complementarity of sensitivity as a function of
the wavelength. The sensitivity of the frequency bands to the
specific properties of different crops and their evolution along
the growing season has been studied by means of airborne SAR
campaigns. In [15], the scattering mechanisms present at L-, C-,
and X-band in the polarimetric response of corn and barley at
different phenological stages were identified, and their change as
a function of crop development was assessed. For instance, some
changes like the fruit maturation in barley are almost invisible
at L-band, while they are observed as strong changes in C- and
X-band. These changes are produced mainly in elements of small
size (development of spikes) and hence do not really affect L-
band waves with a wavelength of 23 cm. On the other hand,
changes due to harvest appear as a decrease in backscattering at
L- and C-band (due to the reduced volume scattering), whereas
they produce an increased echo at X-band caused by an increase
in surface scattering.

The exploitation of time series of radar data for crop clas-
sification is also well documented in the literature [13], [14],
[16], [17], [18], [19]. Notably, the combination of time series
of polarimetric observables acquired at L- and C-band was
evaluated for crop-type mapping in [13], [14], [16], while C-

and X-band data were combined in [18] and [19]. The main
conclusion of these studies was that the most relevant axis for
this specific application is time, since crops exhibit specific
cultivation calendars and, therefore, their radar responses change
with time and differently for each crop species. Therefore, there
are sets of dates which serve to separate sets of crops, and this
situation changes along time and among crops. In fact, when the
observation period covered by the time series includes images
acquired before sowing and after harvest, results are usually
better than when they are all comprised within the growth season.
In addition, the inclusion of the two frequency bands was also
beneficial for the classification performance.

SAR interferometric products derived from ERS-1 and ERS-2
data were first employed for land cover classification in [20]
and [21]. These pioneering works showed clearly that there was
more information content in the time series of interferometric
coherence than in the backscatter intensity. Much more recently,
thanks to the availability of long time series of Sentinel-1 images,
more complete results have been obtained in [22] and [23],
which demonstrate the contribution of repeat-pass interferomet-
ric coherence for land cover mapping, its complementarity with
respect to backscatter intensity, and, moreover, the independence
of this contribution with respect to the classifier. In addition,
the two available polarimetric channels (VV and VH) provide
different information, also complementing the potential of this
information source for classification. In the same vein, the use-
fulness of the time series of six-day Sentinel-1 interferometric
coherence for crop-type mapping has been demonstrated in [24].

From this review, one concludes that there are some options
which have not been tested yet, mainly those comprising the use
of multiple frequency bands, since they have not been combined
with interferometry for any classification application, and only
in a limited way with time series. In addition, time series of
backscatter (intensity) data acquired at several frequency bands
have been evaluated for general land cover classification only in
a few works, despite the excellent performance found for crop-
type mapping. This work is aimed to investigate and assess the
complementarity and synergy of multispectral SAR data, from
L-, C-, and X-band, including time series and interferometry, for
both land cover and crop classification. In summary, the main
motivation of this work is the exploration of the added value of
multifrequency radar data for classification, which is a subject
that has attracted little attention in the past but shows a huge
potential in the next future thanks to the increasing number of
SAR missions. The study carried out in this work comprises two
test sites dedicated to general land cover classification (8 classes)
and crop mapping (16 crop types and fallow), respectively. All
available images of a single year (2017) from three different
satellites are considered.

It must be pointed out that the exploitation of polarimetry, i.e.,
using diverse polarimetric features as inputs for the classifier, has
not been considered in this study because, as it will be shown
in Section II, the radar data available at the three frequency
bands correspond to three different combinations of dual-pol
channels: HH-HV at L-band, VV-VH at C-band, and HH-VV
at X-band. As a result, the lack of coincidence in the channels
prevents a fair comparison of the contribution of polarimetry at
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Fig. 1. Land cover map with all polygons selected in the reference data.

TABLE I
NUMBER OF POLYGONS AND TOTAL AREA PER LAND COVER TYPE IN THE

TEST SITE

the three bands. Therefore, since the focus of this study is on
the multifrequency aspect, the analysis is limited to time series
of backscattering coefficient and repeat-pass interferometric
coherence at individual channels.

II. MATERIALS AND METHODS

A. Test Sites

Two different geographical locations have been used as test
sites for classification purposes. The first test site includes land
cover classes, such as urban, forest, water streams, etc. so it is
well suited for general classification, whereas the second test
site is only devoted to agricultural crops.

1) Land Cover: The land cover test site is an area of 15 ×
15 km in the Seville province (SE Spain), centred at coordinates
37.25 N, 6.1 W. The layout of all classes present in this site is
shown in Fig. 1. The reference data are taken from the official
cadastral database. The dataset available for 2017 comprises
a total of eight classes which include urban and residential
areas, forest, olive groves, fruit tree plantations, arable land,
rice fields, and water bodies. The water class refers mainly to
the Guadalquivir river, and associated channels, which cross the
region from North to South. The class labels are assumed to be
valid for the whole observation period, i.e., the entire 2017. All
the land cover classes are stable, and they may change only in a
small portion along the year (e.g., by a new building in the urban
area).

Fig. 2. Coverage of the images provided by the three sensors (ALOS-2,
Sentinel-1, and TanDEM-X) on the land cover test site.

Fig. 3. Crop-type map with all fields selected in the reference data.

Table I presents the number of polygons and total surface
corresponding to each class. In this region the data are not
balanced, since one class (rice) covers almost half the extension
of the zone. This is in contrast to other classes, such as water and
fruit trees which only feature 24 and 97 polygons, respectively,
and hence a much smaller associated area.

This test site was selected by taking into account the
overlapped coverage of the three available sensors (ALOS-2,
Sentinel-1, and TanDEM-X). Their coverage and the reference
data are shown in Fig. 2. The coverage of Sentinel-1 and ALOS-2
is very wide, but the available TanDEM-X products limit the
selected common area.

2) Crop-Type Mapping: For crop-type mapping, the test site
is part of an agricultural area located also in Seville, Spain, which
is labeled as BXII sector by the regional administration. This site
is south of the land-cover one, and the reference data are also
from 2017. All the crops available in the reference data and their
distribution over the region are shown in Fig. 3. The reference
dataset is extracted from the official land parcel identification
system (SIGPAC in Spanish). The area features a very wide
range of crop categories, from the total of which 17 classes (16
crop types and fallow) are selected. The crop calendar is shown
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Fig. 4. Crop calendar for the 16 crop types studied in 2017.

TABLE II
NUMBER OF FIELDS AND TOTAL AREA PER CROP TYPE IN THE TEST SITE

in Fig. 4. There are winter crops, such as sugar beet, wheat,
and quinoa, and spring crops like corn, rice and tomato. Except
for alfalfa, which is characterized as a multiannual crop, the
remaining ones are cultivated only once a year. As a result, and
attending to their crop calendar, the labels of the crop classes
assigned to every field are assumed to be valid over the whole
observation period.

The number of fields and total area of each crop type are
shown in Table II. Reference data for 2017 is very heterogeneous
regarding the number of fields per crop. The major classes are
cotton, tomato, and sugar beet. This unbalance, which is present

Fig. 5. Coverage of the images provided by the three sensors (ALOS-2,
Sentinel-1, and TanDEM-X) on the crop test site.

also in the land cover case, is relevant and will be taken into
account in the classification process.

Fig. 5 shows the coverages of the three sensors over the
region of interest. While ALOS-2 and Sentinel-1 cover com-
pletely the BXII sector and have a very wide coverage, the
TanDEM-X images limit the study site because they do not
cover the whole BXII sector. Consequently, the area over-
lapped by the three sensors does not cover the whole crop
region, and the reference data were cut to fit the imaged
scene.
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Fig. 6. Calendar of acquisitions for the three bands during 2017.

B. Radar Datasets and Preprocessing

As it has been advanced in the previous subsection, all radar
images were acquired in 2017. The exact dates of acquisition of
all available images from the three sensors are shown in Fig. 6.
The properties of the images of each sensor and the processing
carried out are detailed in the rest of this section.

1) ALOS-2 Data: L-band data are provided by ALOS-2. As
shown in Fig. 6, the acquisition schedule of this satellite provides
seven images available over the study region for the whole of
2017. They are mainly concentrated in spring and summer (May
to September), with only one extra image in February.

ALOS-2 is a Japanese satellite which features an L-band SAR
system (PALSAR-2) operating at a centre frequency of 1.2 GHz.
It has full-pol capabilities, implying that it is possible to image
the Earth with all linear polarization channels (HH, HV, VV,
and VH). In our dataset, all products are dual-pol (HH + HV)
with the exception of the one full-pol image acquired on May 3,
2017. The dual-pol images were acquired by using the fine beam
double polarization (FBD) mode, characterized for featuring a
pixel size of 3.4 × 4.3 m (azimuth × slant-range). The spatial
resolution is about 5.3×9.1 m (azimuth× slant-range). The only
full-pol image was acquired in the high-sensitive beam quadra-
ture polarimetry (HBQ) mode whose pixel size is 2.8 × 2.9 m
(azimuth × slant-range). The corresponding spatial resolution
is about 4.3 × 5.1 m (azimuth × slant-range). In order to create
a consistent and common dataset, all images were constrained
to the HH and HV channels during the preprocessing.

The preprocessing of the L-band dataset was carried out using
the SNAP software provided by the European Space Agency
(ESA) and consists of the following steps: 1) calibration, 2)
subset of the region of interest, 3) speckle filtering using a
9 × 5 boxcar filter (azimuth × slant-range), 4) linear-to-dB
transformation, and 5) geocoding by using a UTM grid with
5-m pixel spacing. The selection of the window size for the
boxcar filter is based on providing enough speckle filtering and
not compromising the resulting spatial resolution. The resulting
equivalent number of looks is around 14 for the FBD images and
16 for the HBQ image. The number of pixels employed by the
filter is similar for all sensors (from 45 to 49). The shape in each
case, e.g., 9 × 5 for ALOS-2, is decided according to the pixel
size of each sensor and with the objective of producing pixels
of approximately square shape at the output, since they are used
later for geocoding on a regular grid.

As the polarimetric channels available in the three frequency
bands are different, as detailed later for C- and X-band, the po-
larimetric information was restricted to the intensity (backscat-
tering coefficient, σ0) of the two available channels, i.e., HH and
HV in the L-band case, which will be later used as input features
for classification.

It should be clarified that a coregistration step was not nec-
essary in the preprocessing of ALOS-2 data to combine differ-
ent acquisitions from dates, relying on the geocoding for that
purpose. Geocoding was carried out with data resulting from
the boxcar speckle filter, i.e., with an effective pixel size (pixel
spacing × kernel size) of around 30 m in both dimensions.
The precision provided by geocoding is about 10 m, which is
less than the effective pixel size of the speckle-filtered data.
Consequently, the geocoding inaccuracy does not affect the
performance of the classification undertaken in this study. In
addition, for the Sentinel-1 and TanDEM-X datasets the results
with and without coregistration were compared, and there was
no noticeable difference.

2) Sentinel-1 Data: Sentinel-1 is a constellation of two satel-
lites, 1 A and 1B, which are part of the Copernicus program of the
European Commission. Thanks to their orbit configuration, this
system provides images acquired every six days over Europe. As
a result, we have at our disposal a consistent time series formed
by 61 images in 2017.

Regarding the sensor, it is an SAR operating at a centre fre-
quency of 5.405 GHz and capable of acquiring dual polarization
products (nominally VV and VH over land). Interferometric
wide swath (IW) products have been employed. They are ac-
quired in TOPSAR mode (terrain observation with progressive
scans SAR), which provides a pixel size of 13.9×2.3 m (azimuth
x slant-range). The corresponding spatial resolution is about 22
× 3 m (azimuth × slant-range).

As for the preprocessing, all the images were processed using
the SNAP software with the following steps: 1) apply orbit
file, 2) calibration, 3) coregistration with respect to a master
image (back-geocoding), 4) subset of the region of interest,
5) speckle filtering using a 3 × 15 boxcar filter (azimuth ×
slant-range), 6) linear-to-dB transformation, and 7) geocoding
by using a UTM grid with 5-m pixel spacing. The equivalent
number of looks obtained is around 22. The resulting products
from this preprocessing are the σ0 images for each polarimetric
channel (VV and VH) which will be later used as input features
in the classification algorithm. In this case we carried out the
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coregistration of the images because they were also used for
computing interferometric coherence, so in this way the first
steps of the processing were common for backscatter and for
coherence.

In addition, besides intensity, repeat-pass interferometric co-
herence will be used later in some experiments. For this purpose,
they were also computed, for each polarization channel, by
combining images acquired in consecutive passes, i.e., with a
six-day temporal baseline. From the set of 61 images, 60 co-
herences are calculated. The preprocessing steps are as follows:
1) apply orbit file, 2) calibration, 3) coregistration with respect
to a master image (back-geocoding), 4) subset of the region
of interest, 6) computation of the coherence using a 3 × 15
boxcar filter (azimuth × slant-range) with topographic phase
removal, and 7) geocoding by using a UTM grid with 5-m
pixel spacing. In summary, the C-band dataset comprises 61
intensities and 60 coherences for each channel (VV and VH).
It should be noticed that the height of ambiguity provided by
the six-day interferograms ranges from 65 to 1130 m. With such
large values, the dominating decorrelation source is temporal
decorrelation, not volume decorrelation, as will be discussed in
Section III.

3) TanDEM-X Data: TanDEM-X is the name of TerraSAR-
X’s twin satellite and also the mission which consists in flying
both satellites in a close formation, which makes it possible to
image the Earth at the same time with two different incidence
angles. The main purpose of this German mission was the
generation of a high-precision global digital elevation model
(DEM). Typically separated by a baseline from 100 to 300 m,
this constellation forms a single-pass SAR interferometer. Work-
ing at X-band, the instruments operate at a central frequency
of 9.6 GHz, and can image the Earth in both single- and
dual-polarization modes. In the standard acquisition mode, one
satellite acts as a transmitter and both as a receivers, what allows
to obtain both a monostatic and a bistatic image. The revisit time
of the system is 11 days, but the acquisitions are commanded
on demand and not on a regular monitoring basis (in contrast to
Sentinel-1).

From the available dataset in 2017, only the monostatic im-
ages were employed, which were acquired in stripmap mode
by one of the two satellites, depending on the date. The images
were gathered at the two copolar channels, HH and VV. The
pixel size is 2.4 × 0.9 m (azimuth × slant-range), whereas the
spatial resolution is 6.6 × 1.1 m (azimuth × slant-range). As
for the number of acquisitions, it can be seen in Fig. 6 that this
dataset is made up of 20 images taken without any predefined
temporal pattern. As in the case of ALOS-2 data, there are
several months without imagery, which in this case correspond
to January, November, and December.

Although TanDEM-X provides also single-pass interferomet-
ric information, with the aim of comparing and combining the
same types of data in C- and X-band, we retrieved only the
same information as for C-band in the preprocessing: intensity
and repeat-pass interferometric coherence. The processing of
the X-band images was also carried out with SNAP.

The steps for obtaining the co-polar backscattering coeffi-
cients are the following: 1) subset of the region of interest,

2) calibration, 3) coregistration with respect to a master image,
4) speckle filtering using a 7 × 7 boxcar filter, 5) linear-to-dB
transformation, and 6) geocoding by using a UTM grid with
5-m pixel spacing. The resulting equivalent number of looks is
15 approximately. As for Sentinel-1, we carried out the coregis-
tration of the images because they were also used for computing
interferometric coherence, so in this way the first steps of the
processing were common for backscatter and for coherence.

As the temporal sampling of the X-band is not completely
regular, we computed the repeat-pass coherence only for those
date pairs separated 11 days, i.e., with the minimum available
temporal baseline. The coherence preprocessing steps are as
follows: 1) subset of the region of interest, 2) calibration, 3)
coregistration with respect to a master image, 4) computation
of the coherence using a 7 × 7 boxcar filter with topographic
phase removal, and 5) geocoding by using a UTM grid with 5-m
pixel spacing. From a total of 20 images, only 16 repeat-pass
coherence products were obtained. The height of ambiguity
provided by the 11-day interferograms ranges from 30 to 310 m.
Therefore, as in the Sentinel-1 case, the dominating decorrela-
tion source is temporal decorrelation, not volume decorrelation.

C. Separability Analysis

The uncertainty associated with all image classification prob-
lems comes from the ability of the classification approach to
separate or distinguish among the classes under study by ex-
ploiting the available set of input data [25]. Before carrying out
classification tests, it is convenient to study the class separa-
bility by using the available input features. This is especially
useful in our study, since we aim at combining features coming
from different data sources (radar sensors operating at different
frequency bands).

The metric used to conduct this separability analysis is the
Jeffries–Matusita (JM) distance [26]. It consists of an estima-
tor, computed for each pair of classes, which indicates their
separability given the input data. In the literature, it has been
identified as a good indicator of crop separability [27] and used
with time series of SAR images [28]. The pairwise JM distance
is calculated in the following way:

JMp,q =

√
2

(
1−

∑N

i=1

√
pi · qi

)
(1)

where p and q are the probability density functions (PDFs) of
the data (input features) for two different classes. These PDFs
can be computed as the normalized histograms of the radar data
for each class, where N is the number of bins of each histogram.
The JM distance obtained using (1) ranges from 0 to

√
2. The

higher the JM value, the better the separability between a pair
of classes.

D. Classification Strategy

The main goal of our classification experiments is to study the
performance and the differences between cases when classifying
by using different combinations of features and bands. In that
regard, the three frequency bands (L, C, and X) can be used
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Fig. 7. Algorithm flowchart for the classification with individual frequency bands.

alone, combined in pairs, and all three together. Similarly, when
both intensity and coherence are available, they can be used
separately or in common.

Most of the examples found in literature, in which multiple
SAR data sources are combined, are based on the stacked-vector
method [25], i.e., all features coming from the different sources
(polarimetric channels, coherences, dates, frequencies, etc.) are
used to form the input feature set. This methodology is straight-
forward and easy to use. However, combining a posteriori, i.e.,
using fusion at decision level, the results of multiple classifiers
(one for each independent data source) is also possible (e.g.
using Bayesian theory or evidential reasoning [25]) and can
produce enhanced results, as recently demonstrated with the
fusion of Sentinel-1 and Sentinel-2 data for crop-type map-
ping [29]. In this work, we have used this approach, so the
next two subsections are devoted to describe the classification
methodology for individual bands and for the fusion of them,
respectively.

1) Methodology for Individual Frequency Bands: The
flowchart of the classification method used for one band only
is depicted in Fig. 7. The classification process is carried out
by the random forest (RF) algorithm [30]. It is a state-of-
the art supervised classifier, well known for its good perfor-
mance. At the same time, it is very widespread in the remote
sensing bibliography as it is available on most open-source
platforms (e.g. Python and R). Moreover, thanks to the ex-
plicit outputs it provides (likelihood vectors), it enables the
later use of the product of experts for the fusion of frequency
bands (see Section II-D2). Other more advanced algorithms
may have advantages in terms of classification and computa-
tion time, like the light gradient boosting machine (LGBM).
However, for all the mentioned reasons, and since the objec-
tive of this work is the evaluation of the input features for
classification, and not the classification method itself, RF was
selected.

The implementation employed in this work is provided by
the scikit-learn package in Python [31] and was run mainly with
default parameters. The number of trees was set to 1000 in order
to ensure a good performance, but it could have been set to
400–600 to reduce the computation time without modifying the
final results [32], [33]. The number of features considered when
looking for the best split was left to the default value. The specific
strategy for addressing the training data, the prediction, and the
evaluation of the accuracy results is explained in the following
paragraphs.

In the preprocessing of the radar data there are steps, like
speckle filtering and coherence estimation, which entail a degra-
dation of the spatial resolution with respect to the original
images. Consequently, the final value at each pixel corresponds
to the spatial averaging computed from it and its surrounding
neighbors, so pixels which are close together in the same ge-
ographical location will be correlated (and will tend to exhibit
very similar values). In order to prevent the classifier from having
correlated pixels in both training and evaluation sets, we perform
an initial split at polygon or field level: 50% of the polygons for
each class inside the reference data compose the training dataset
and the remaining ones the testing dataset.

After doing the field level splitting there is still a strong
imbalance in the number of pixels selected for each class inside
the training dataset. As we showed in Section II-A, in both land
cover and crop sites, there are classes which have much more
fields and surface, hence samples, than others. To balance the
training data, we carry out an extra step, called equitable random
sampling in Fig. 7. It consists in choosing for every class the same
number of pixels as the smallest class has. By doing so, all pixels
of the smallest class are selected in the training dataset, whereas
the pixels of the other classes are selected in the same amount but
in a random way. If this were not done, the larger classes would
be dramatically benefited in the training phase at the expense of
the smaller ones as a result of their overrepresentation inside the
training data. In the end, it would lead to unreliable accuracies
for each class because of their strong imbalance in terms of
number of pixels at the input of the classifier.

Once the training pixels are selected, they are introduced at
the input of the classifier starting the training phase in which the
decision trees and their logical structure is built. Next up, the
trained classifier is applied on the testing data, i.e, the 50% of
the polygons for each class resulting from the initial field level
splitting. As displayed in Fig. 7, the output of the algorithm is
the prediction for every pixel of the testing dataset. Specifically,
and thanks to the use of the RF algorithm, the output consists in a
probability vector, for each testing pixel, indicating its likelihood
to pertain to any possible class. Obviously, for the classification
with an individual frequency band, the highest probability found
in each vector defines the final predicted class chosen for each
pixel.

This algorithm is run 10 times, in which a different random
field splitting is performed each time. The main purpose is to
prevent the final accuracy metrics to be biased, as the accuracies
obtained at the end of a single iteration could be the result of a
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Fig. 8. Algorithm flowchart for the fused classification.

specifically favorable/unfavorable training/test splitting at field
level. By running the algorithm ten times, different training and
testing datasets are employed, so the final averaged accuracy
metrics are reliable.

2) Fusion Methodology: The fusion methodology, summa-
rized in Fig. 8, is applied when using two or more frequency
bands in the classification. Basically, it consists in a postpro-
cessing step performed after having obtained all the probability
vectors, for each pixel, from two or more classifiers applied to
individual bands.

To begin with, the classifications for the selected bands are
performed separately. For this purpose, we first perform the field
level splitting in the reference data for creating the training and
testing datasets. It is important to point out that this splitting is
the same for all the classifiers used, as we have to work with the
same pixels in all frequency bands.

The equitable random sampling step is then performed follow-
ing this approach. Again, although pixels are randomly selected
on the training data, the random selection applied is the same
in all classifiers. As a result, the same pixels are selected in all
classifiers. In this way, we work with pixels pointing to the same
geographical position in the training and test dataset, but keeping
their specific values coming from each band. In addition, with
this approach the size of all sets (training and testing) is the
same in the fusion methodology and in the classification with
individual bands.

Once the classification is finished in the classifier of each
individual band, we can compute the fused results by means of
the product of experts [29]

P Sens1,Sens2,...SensN
ci

(x)

=
P Sens1
ci

(x)P Sens2
ci

(x) · · · P SensN
ci

(x)∑N
i=1 P

Sens1
ci (x)P Sens2

ci (x) · · · P SensN
ci (x)

(2)

where P y
ci
(x) stands for the likelihood of pixel x to belong to

class ci in classifier y, being y each one of the sensors or available
bands (i.e., L-, C-, or X-band). This expression makes use of all
the likelihood vectors available for each pixel and let us obtain

a fused vector which will define the final class of each pixel.
In this way, we can have three different results with individual
bands (L, C, and X), and four possible combinations of bands:
1) L and C, 2) L and X, 3) C and X, and 4) L, C, and X.

3) Evaluation: From the prediction results, the evaluation
of all combinations of bands and experiments undertaken are
based on the confusion matrices computed with all pixels in the
testing set. From the confusion matrix, both the overall accuracy
(OA) and the F1-score are obtained. OA is the proportion of
correctly classified pixels out of the total. The standard deviation
of the OA, denoted as σ, has been also computed from the set
of ten realizations of the classification and will be shown in the
Results section. The F1-score is calculated as the harmonic mean
between the producer’s accuracy (PA) and the user’s accuracy
(UA), whose definitions can be found in [34]. Consequently, the
F1-score offers information on the accuracy specifically for each
class and, therefore, is useful to evaluate how each input dataset
contributes to each class in particular.

III. RESULTS

Before presenting the results obtained, it must be reminded
that the usage of data from different SAR sensors in any applica-
tion of Earth observation is influenced not only by the frequency
bands of the sensors, but by other technical aspects which affect
the data gathered. Among the other aspects to be considered,
it has been already mentioned that the dual-pol combinations
available in this study at the three bands do not coincide. This
means that when we compare, for instance, L- and C-band,
we are using different polarimetric channels (HH versus VV)
and they, by definition, already provide different sensitivity.
Similarly, the signal-to-noise ratio (SNR), as a measure of the
quality of the measured data is very different among sensors. For
instance, the noise level of ALOS-2/PALSAR-2 is much lower
(i.e., better) than the one of Sentinel-1 and TanDEM-X, so we can
expect a better SNR in our L-band data. Using different sensors
also entails a varying observation geometry. Consequently, the
incidence angle employed in the datasets of the three bands is
not the same, and the radar response of any scene is known to
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Fig. 9. Separability matrix for land cover at L-band.

be affected by the observation geometry. In summary, despite
the results of this section are presented as dependent only on
the frequency band for the sake of simplicity, other technical
aspects of the sensors and the imaging configuration affect the
classification performances obtained and, therefore, should be
considered if a more detailed analysis is needed. In this vein, this
study really constitutes a multiplatform combination instead of a
multifrequency one, since frequency band is not the only sensor
parameter that changes among the three datasets.

A. Land Cover

1) Separability Analysis: As a preliminary study, we eval-
uate here the pairwise separability of each frequency band
separately. To do so, the JM distances are computed for each
possible pair of classes by taking as inputs the intensity time
series from each frequency band: HH + HV at L-band, VV +
VH at C-band, and HH + VV at X-band. In order to avoid biasing
this study by the different lengths of the intensity time series of
each frequency band, C- and X-band were decimated to match
the time series of L-band. As a result, only seven acquisition
dates per band are used. For C- and X-band they correspond to
the closest, temporarily speaking, to the ones of L-band.

The pairwise separability values for L-band are shown in
Fig. 9. All values range from 0.5 to 1.3. The two classes with
best separability with respect to the rest are urban and residential
zones, with most JM values above 1. However, the own JM
distance between urban and residential is around 0.5, which is a
rather low value, but expected at the same time considering that
both classes are associated with built-up areas. Rice and water
are also well separable from the rest of the classes, whereas the
worst separability is found for the rest of vegetation classes:
forest, fruit trees, olive grove, and arable land.

The JM values obtained at C-band are shown in Fig. 10,
which in general are slightly lower than at L-band. As in the
case of L-band, urban zone constitutes the most separable class,
followed by residential zones. And, in addition, they show a
low separability between them as at L-band. In contrast, water
exhibits higher values than at L-band for all classes, and rice
shows lower values than at L-band except with respect to water.
Regarding the vegetation classes, their relative separability is
similar to L-band, but with lower values at C-band.

Fig. 10. Separability matrix for land cover at C-band.

Fig. 11. Separability matrix for land cover at X-band.

Finally, the pairwise separability measured at X-band is de-
picted in Fig. 11. All values are lower at this band compared
to L- and C-band. JM distances for urban and water are the
highest ones, followed by residential zones and rice, but they
are significantly smaller in this frequency band. The smallest
JM value is obtained at X-band for the pair olive grove versus
forest in which the separability only reaches 0.234.

As a final analysis the three matrices have been merged into
a single figure so as to illustrate jointly their performance and
to identify the potential prevalence of some frequency band for
distinguishing between classes. This type of representation is an
original contribution of this work. The joint figure is an RGB
composite of the three separability matrices obtained at L-, C-,
and X-band. The JM values of each band are scaled to a grey
level (0–255) and then associated with a primary color (red
with L-band, green with C-band, and blue with X-band). The
resulting color image is the joint representation of the resulting
separability matrices, which is shown in Fig. 12. Following this
approach, the shade of the resulting color indicates the frequency
band or bands that are contributing most to the separability.
Primary colors are associated with single bands, secondary
colors with combinations of two bands, and grey levels with
the three bands.

One can easily appreciate in Fig. 12 that there is a variety
of colors, which means that for each class pair the separability
provided by the three bands shows a different behavior. Water
presents greyish colors with respect to all classes, which means
that it is similarly separable at all three bands. Regarding urban
and residential areas, the corresponding color with respect to
the rest of classes (rightmost two columns) is mostly yellowish,
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Fig. 12. Joint RGB representation of the three separability matrices obtained
for land cover at L-band (red), C-band (green), and X-band (blue).

TABLE III
OVERALL ACCURACY OBTAINED FOR LAND COVER WITH SEVEN IMAGES PER

FREQUENCY BAND

i.e., L- and C-band (red and green) provide better separability
than X-band. As for the vegetation classes (i.e., rice, arable land,
forest, fruit trees, and olive grove) their pairwise separability is in
all cases represented by a brown color, which means that L-band
(red) offers the best separability, followed closely by C-band
(green) and distantly by X-band (blue). It can be noticed that
C-band is stronger in greenish cells, such as the forest-residential
pair. In these examples the green color is not very strong due to
the fact that L- and X-band are also contributing, but C-band is
prevalent enough to show these cells in a greenish hue.

2) Land Cover Classification With Intensity Images:
a) Land cover classification with seven images per band:

The first classification experiments correspond to the same
datasets employed in the separability analysis, i.e., using seven
dates at each frequency band, and using the intensity of the two
available polarimetric channels at each date. With this decima-
tion of the C- and X-band datasets we consider an equitable
scenario for assessing the contribution of the three frequency
bands, as each frequency band is providing the same amount of
images as input features for the classifier.

The overall accuracy is shown in Table III for combinations
of all frequency bands. When only one frequency band is em-
ployed, the best OA is for L-band with 81%, closely followed
by C-band, whereas X-band reaches only 70%. Regarding the
pairs of frequency bands, the two cases with L-band offer very
similar OA (around 85%), which manifests the complementarity
of L-band with respect to the other two bands. Combining C-
and X-band the OA is below 82%, but it improves with respect

TABLE IV
F1-SCORE OBTAINED FOR LAND COVER WITH SEVEN

IMAGES PER FREQUENCY BAND

TABLE V
OVERALL ACCURACY OBTAINED FOR LAND COVER WITH

20 IMAGES AT C- AND X-BAND

to any of the two bands alone. Finally, the joint usage of the three
bands provides the best result, with an OA above 86%.

For the same combinations, the F1-score is also evaluated. It
is shown in Table IV, where the particular accuracy for each
class is displayed. For most classes, the highest F1-score is
found at L-band. In this frequency, arable land (77.16%), olive
grove (74.30%), and fruit tree (69.03%) obtain higher accuracies
than their counterparts at C-band. On the contrary, C-band
provides greater F1-score than L-band for classes, such as water
(87.83%) and urban (81.89%). As far as X-band is concerned,
this frequency obtains the lowest accuracies when used alone.
Only in classes, such as rice (90.33%) and water (83.46%), the
accuracy is similar to the other individual bands.

With dual-band frequency combinations, we obtain mixed
results. L- and C-band provide the best F1-score in 5 out of
8 classes. The three classes with different behavior correspond
to water, forest, and olive grove. Water stands out above all
combinations in the C- and X-band case (93.44%), whilst forest
and olive grove obtain the best scores among dual-band cases
in the combination of L- and X-band, with F1-scores of 82.33%
and 79.09%, respectively.

When the three bands are combined in the same classification
process, the accuracy for each class is maximized to its highest
value among the whole set of combinations. The most noticeable
case is residential zone, the class with lowest F1-score, for which
the combination of the three bands achieves 64%, i.e., a 9–12%
improvement with respect to the combinations of two bands.
There is also an improvement of 3% with the use of the three
bands for fruit tree and forest classes over the best of the other
cases (individual bands and pairs of bands).

b) Land cover classification with 20 intensity images at
C- and X-band: In this case an equitable analysis using only
C- and X-band is intended. As the X-band dataset is made up
of 20 images, a decimation process is applied over the C-band
dataset so as to match the time sampling of the X-band dataset.
Therefore, in this case a set of 20 dual-pol images for each
frequency band is employed at the input of the classifier. The
classification scores are shown in Tables V and VI.

The increase in the number of images with respect to the previ-
ous experiment entails an improvement in the overall accuracy
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TABLE VI
F1-SCORE OBTAINED FOR LAND COVER WITH 20 IMAGES AT C- AND X-BAND

TABLE VII
OVERALL ACCURACY OBTAINED FOR LAND COVER WITH

ALL AVAILABLE IMAGES AT ALL BANDS

produced by the individual bands of about 6–7%. Moreover,
the merge of C- and X-band provides an OA almost equal to
the maximum value obtained with the combination of the three
bands (using seven images per band), i.e., above 86%.

Regarding the F1-scores, C-band always gets better accura-
cies than X-band for all the land cover classes assessed, with
differences ranging from 1% for rice to 29% for residential
zones. Then, when both bands are combined all classes but rice
obtain F1-scores higher than with C-band alone. Residential
zones and olive grove display a remarkable improvement in
the combined experiment when compared to the same results
achieved at C-band. Their C-band F1-score is 50.15 and 72.45%,
respectively, whereas the joint use of C- and X-band provides
an accuracy of 61.49% and 77.62%, respectively.

c) Land cover classification with all intensity images at
all bands: The last experiment carried out by considering only
backscatter data consists of using all the available images, i.e., 7
at L-band, 61 at C-band, and 20 at X-band. Since the number of
images is different for each band, this test is not about comparing
the results of the three frequency bands, but about maximizing
the accuracy by using all available intensity images.

The overall accuracies are shown in Table VII. The overall
conclusion is that, thanks to the much larger number of images
(one acquired every six days during the whole year), the C-
band dataset achieves an accuracy (86.71%) better than L-band
(81.41%) and X-band (77.61%).

When merging frequency bands, the improvement with re-
spect to C-band alone is small (1–2%). In fact, the combination
of the L- and X-band datasets produces the same score as C-band
alone (with a negligible 0.1% difference). In any case, the fusion
of the three datasets bands improves the final OA over all the
previous cases, reaching 89%.

The behavior is also similar, with a few exceptions, for the
F1-scores, which are shown in Table VIII. First, the accuracy
for each class, when using only the C-band, is the highest
obtained out of the three individual bands. Then, L-band gets
better F1-scores than X-band in six out of eight classes. This is
noteworthy, as in these tests the L-band dataset is composed of
only seven images, whilst the X-band dataset is composed of 20
images. Therefore, with this dataset L-band performs better than

TABLE VIII
F1-SCORE OBTAINED FOR LAND COVER WITH ALL AVAILABLE

IMAGES AT ALL BANDS

TABLE IX
OVERALL ACCURACY OBTAINED FOR LAND COVER WITH

16 COHERENCES AT C- AND X-BAND

TABLE X
F1-SCORE OBTAINED FOR LAND COVER WITH 16 COHERENCES

AT C- AND X-BAND

X-band to separate general land cover classes. As for the dual
frequency cases, L- and X-band results are the worst compared
with those obtained in the L- and C-band and C- and X-band
cases. Nevertheless, the highest F1-scores are obtained by the
fusion of L-, C-, and X-band data for six out of eight classes,
i.e., all but rice and water.

3) Land Cover Classification With Repeat-Pass Coherence:
The performance of repeat-pass coherence for land cover clas-
sification is studied in this section. L-band data are not used
because the available temporal baselines are very long and
irregular. Therefore, the analysis is focused on C- and X-band.

a) Land cover classification with 16 coherences at C- and
X-band: As in the case of the intensity images, in order to study
the contribution of the frequency band by avoiding the influence
of the amount of acquisitions, we limit in a first experiment the
available C-band coherence images (60 in total) to match the
number and dates of the X-band dataset (16 coherence images).
For this purpose, the C-band six-day coherences which are
inside the time interval of the 11-day X-band coherences are
selected, leaving only one in case two of them are present. The
classification scores obtained with the two sets of 16 coherence
images are shown in Tables IX and X.

The time series of coherence perform worse than the intensity
images (see Section III-A2b), but the relative behavior of the
independent band is the same: the OA provided by C-band
is 10% better than that of X-band. Moreover, there is some
complementarity between the bands, since the fusion of both
bands provides a 2% improvement in OA with respect to C-band
alone.

The overall prevalence of C-band over X-band is more pro-
nounced for individual classes. For seven classes out of eight
(all but rice), the F1-score obtained at C-band is 10% or more
greater than at X-band. The most extreme examples are wa-
ter and residential zones, with differences greater than 20%.
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TABLE XI
OVERALL ACCURACY OBTAINED FOR LAND COVER WITH

ALL COHERENCES AT C- AND X-BAND

TABLE XII
F1-SCORE OBTAINED FOR LAND COVER WITH

ALL COHERENCES AT C- AND X-BAND

TABLE XIII
OVERALL ACCURACY OBTAINED FOR LAND COVER WITH 16 INTENSITY

IMAGES AND 16 COHERENCE IMAGES

AT C- AND X-BAND

TABLE XIV
F1-SCORE OBTAINED FOR LAND COVER WITH 16 IMAGES AND 16

COHERENCES AT C- AND X-BAND

On the other hand, in the C- and X-band case all classes but water
and arable land get better F1-scores than their counterparts in
the C-band only. This predominance of C-band over X-band in
all the accuracy metrics obtained in this experiment is expected
for two reasons. First, the temporal baseline employed in the
computation of the coherence is longer at X-band than at C-band
(11 days versus 6 days). Second, radar images acquired at short
wavelengths (X-band) are known to decorrelate faster than at
longer ones (C-band) over natural areas and vegetation [35].
Therefore, the time series of X-band coherence are noisier and
present a lower dynamic range than at C-band. In addition, the
coarser temporal resolution of the X-band data does not allow
separating changes produced within a 11-day interval, whereas
at C-band the six-day sampling enables locating them better in
the time coordinate, hence favoring the classification if these
changes are characteristic of the classes.

b) Land cover classification with all C- and X-band co-
herences: In this section, all the repeat-pass interferometric
coherences are considered as input data for the classifier. There-
fore, the C-band dataset is made up of 60 coherence images
per polarimetric channel, computed every 6 days, whereas the
X-band dataset is composed of 16 interferometric coherence
images per polarimetric channel and computed every 11 days.
Classification results in terms of OA an F1-score are shown in
Tables XI and XII.

In this case, the C-band coherence dataset alone produces an
OA close to 85%, which is almost the one obtained by the set of
all C-band intensity images (86.71% in Table VII). Notably, the

TABLE XV
OVERALL ACCURACY OBTAINED FOR LAND COVER WITH ALL IMAGES AND

ALL COHERENCES AT C- AND X-BAND

TABLE XVI
F1-SCORE OBTAINED FOR LAND COVER WITH ALL IMAGES AND ALL

COHERENCES AT C- AND X-BAND

TABLE XVII
OVERALL ACCURACY OBTAINED FOR CROP TYPE WITH SEVEN

IMAGES PER FREQUENCY BAND

fusion with the X-band coherence dataset does not improve the
OA, but degrades it by more than 1%. It must be noted that the
repeat-pass coherence at X-band is generally much lower than at
C-band because of two factors: 1) wavelength and 2) temporal
baseline. Higher frequencies exhibit faster decorrelation rates
due to the interaction with smaller (and more variable) elements
in the scene. Moreover, the X-band temporal baseline is 11 days,
almost twice the one available at C-band (six days). As a result,
coherence is very low, and noisy due to its limited estimation, at
X-band for most classes. Therefore, the results obtained by the
X-band data alone are very poor, and, consequently, they also
degrade the combined performance with C-band.

By inspecting the F1-scores, the difference between the results
of both frequency bands follows the same trend for all classes.
In particular, only for rice, forest, urban, and residential zones
the combination of both bands does not degrade much the
performance with respect to C-band alone, but for the other
classes the difference is more noticeable.

4) Land Cover Classification With Intensity and Coherence
Images: In the last tests, both intensity and coherence images
are employed as input features to the classifier.

a) Land cover classification with 16 intensity and 16 co-
herence images at C- and X-band: The initial addition of the
intensity and the coherence is performed in an equitable way, as
only those images which match the first date in the computation
of each interferometric coherence are selected, and they are
restricted to the number of dates of X-band, i.e., 16 dates.
Therefore the datasets for each frequency band are made up
of 16 interferometric coherences plus 16 intensities for each
polarimetric channel. The accuracy metrics obtained are shown
in Tables XIII and XIV.
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TABLE XVIII
F1-SCORE OBTAINED FOR CROP TYPE WITH SEVEN IMAGES PER FREQUENCY BAND

TABLE XIX
OVERALL ACCURACY OBTAINED FOR CROP TYPE WITH 20 IMAGES AT C- AND

X-BAND

The overall accuracy for the three cases considered is quite
high, i.e., above 80%, which evidences the complementarity of
the sensitivity to scene properties provided by backscatter (inten-
sity) and interferometry (coherence). As in previous examples,
C-band performs better than X-band. In addition, in the merged
case, i.e., C- and X-band, the final accuracy improves by 2% to
reach almost 88%.

The class-specific accuracies are also high when observing
the F1-scores. C-band provided better results than X-band, with
the exception of rice (93.99%) in which its score is better at
X-band (94.25%). Once again, there is a noticeable difference
between the F1-scores of residential at C- and X-band (63%
versus 30%), but there is also complementarity, since the merged
result improves up to an F1-score equal to 72%.

b) Land cover classification with all intensity and coher-
ence images at C- and X-band: For this final classification test,
we make use of all the intensities and coherences available
in both X and C-band. This means that, for each polarization
channel, 61 intensity and 60 coherence images will be used at
C-band, whilst the X-band dataset is composed of 20 intensity
images and 16 interferometric coherence images.

Results in Table XV show that, by using all the features
available at the two bands, the OA score reaches almost 90%.
In fact, C-band alone provides almost the same maximum OA
(89.33%), which is much better than the accuracy provided by
X-band (81.38%).

In this test, the C-band dataset comprises 61 images and 60
coherences, whereas the X-band dataset includes 20 images
and 16 coherences. Consequently, the C-band dataset is by far
more complete than the X-band dataset in terms of number of
features and observation period, hence producing this excellent
performance alone. The combined classifier, which exploits the
product-of-experts concept, relies on the C-band results, which
are much better than the X-band ones. However, it must be noted
that, contrarily to Section III-A3b, in this case the OA of the
combination of C- and X-band is slightly better than C-band
alone. This means that X-band provides some extra information
not found in the C-band data.

The F1-scores are shown in Table XVI. By comparing both in-
dividual frequency bands, C-band obtains better accuracies in all
the classes assessed. In fact, except residential zones (68.91%)

Fig. 13. Separability matrix for crop type at L-band.

Fig. 14. Separability matrix for crop type at C-band.

all the F1-scores are above 80%, with water (96.50%) and rice
(94.32%) as the ones reaching the highest scores of the whole
set. Importantly, the scores of all classes are maximized when
using C- and X-band together. It is not a great improvement with
respect to the accuracy obtained with C-band alone, nonetheless
it is consistent for all classes.

B. Crop-Type Mapping

The results for crop classification are presented in this section
following the same tests employed for land cover classification
in the previous section.

1) Separability Analysis: As with the land cover case, the JM
distances are computed for each possible pair of crop classes by
using as input data the intensity time series, limited to seven
dates, of each frequency band: HH + HV for L-band, VV + VH
for C-band, and HH + VV for X-band.

The L-band separability matrix is displayed in Fig. 13. In
general, the JM distances are smaller than for the land cover
case. The values obtained for this band are not very high, ranging
from 0.4 to 1.1. Among all crop types, rice is highlighted as the
class with the highest separability between it and the rest of
crops. In fact, it is the only class with values greater than 0.9.
Apart from rice, there are specific crop pairs with JM distances
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TABLE XX
F1-SCORE OBTAINED FOR CROP TYPE WITH 20 IMAGES AT C- AND X-BAND

Fig. 15. Separability matrix for crop type at X-band.

Fig. 16. Joint RGB representation of the three separability matrices obtained
for crop type at L-band (red), C-band (green), and X-band (blue).

above 0.8, like those formed by pairs of potato, pepper, wheat,
and pumpkin.

The JM distances computed for C-band are shown in Fig. 14.
Compared to L-band, the main range of values is the same, i.e.,
between 0.4 and 1.1. Although rice is also the most separable
class with respect to the rest, at C-band there are many more
cases than at L-band of crop pairs showing JM distance values
above 0.8. Some pairs with values above 0.9 are sweet potato
versus wheat (0.922), pepper versus potato (0.954), and quinoa
versus cotton (0.963). Therefore, the overall separability is better
at C-band than at L-band.

The pairwise separability measured at X-band is depicted in
Fig. 15. At this frequency, no pair presents a JM distance above
1, and we can find combinations of crops with values below 0.3,
e.g., sugar beet versus onion (0.286), pepper versus pumpkin
(0.296), and carrot versus fallow (0.216). Therefore, the overall
separability provided by X-band is worse than that provided by
L- and C-band.

As a combined comparative analysis we show in Fig. 16 the
color composite of the three separability matrices, in which
L-, C-, and X-band are represented by red, green, and blue
colors, respectively. The first comment is obvious: there are

TABLE XXI
OVERALL ACCURACY OBTAINED FOR CROP TYPE WITH

ALL AVAILABLE IMAGES AT ALL BANDS

plenty of different colors in this representation, which means
that there exist complementarity among the three bands for
separating crop classes. Some pairs appear represented mostly
in primary colors, for which one of the bands provides much
better separability than the others. For instance, wheat versus
cotton and maize versus sweet potato exhibit a blue color because
they are best separated at X-band. Maize and tomato are best
separated at C-band (shown in green color), whereas maize and
quinoa are best separated at L-band (shown in reddish color).
In other cases, secondary colors (i.e., addition of two primary
colors) are observed. For instance, carrot and fallow are better
separated at L- and C-band than at X-band, but with much lower
separability, so it is shown in brown (result of low values of red
and green). Finally, a few pairs show high JM distance for the
three frequency bands. We can highlight the rice pairs as the
ones which are the closest. For instance, rice versus cotton is
depicted in a light color because they are very separable in the
three bands.

2) Crop Classification With Intensity Images:
a) Crop classification with seven images per band: The

classification scores, OA and F1-score, obtained using seven
dual-pol intensity images per band are shown in Tables XVII
and XVIII, respectively. Regarding the OA, as it could be antic-
ipated from the separability matrices, the individual frequency
band with best performance is C-band (78%) followed by L-band
(70%) and then X-band (64%). The most interesting results are
obtained when combining these bands, either in pairs or all three
together.

When combined, the best two bands, L and C, improve
significantly the final OA. The fusion of their results makes
the accuracy reach 86%, despite their individual values were
70% and 78%. More notably, the other two combinations, L-
and X-band, and C- and X-band, are not far from this result
as both get OA values above 85%, which is quite remarkable
taking into account the much lower accuracy of each individual
frequency band. Finally, the overall best OA is obtained when
the three frequency bands are merged, yielding an OA above
90%. This maximum score is the result of the complementarity
of the information provided by the three frequency bands taking
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TABLE XXII
F1-SCORE OBTAINED FOR CROP TYPE WITH ALL AVAILABLE IMAGES AT ALL BANDS

TABLE XXIII
OVERALL ACCURACY OBTAINED FOR CROP TYPE WITH 16 COHERENCES

AT C- AND X-BAND

into account their wavelengths and, hence, their sensitivity to
different aspects of the plants and the ground.

The commented general improvement resulting from the
combination of bands can be interpreted by attending to the
crop classes which are specifically benefited by this frequency
diversity. For this purpose, the F1-scores are displayed in Ta-
ble XVIII. When using the frequency bands in an individual
basis, C-band gets the highest F1-score in 9 out of 17 classes,
followed by L-band (5 classes), and X-band (3 classes). The
different performance of the bands produces some extreme
cases. For instance, in the case of wheat, the X-band score is
82% whilst at C- and L-band it is 75% and 54%, respectively,
i.e., there is a dynamic range close to 30%. In a reverse way,
the F1-score of pepper and pumpkin ranges from 9 and 18%
at X-band to 43 and 52% at L-band. For quinoa and maize the
F1-score is around 15% better at C-band than at the other two
frequencies.

The physical reasons of the better classification performance
of one band with respect to the others are due to multiple factors.
One of them is the sensitivity of the frequency band to the
plant morphology and the different interaction provided by the
operating wavelength. For instance, wheat, rice, and sunflower
crops are characterized by a vertical structure, high plantation
density, and not so tall plants (up to 1 m). As a result, X-band
enhances the scattering from the top canopy of these crops better
than other bands whose response is more affected by the lower
plant parts and the soil [36], [37], [38]. At the other extreme,
pumpkin and pepper exhibit big wide leaves which make them
better suited to longer frequencies (i.e., L-band). In between,
quinoa and maize, with taller plants and not so dense plantations,
are better separated from the rest at C-band, which offers a
balanced response from the vegetation and the soil [39]. Both
the canopy geometrical structure and the dielectric properties of
the elements in the scene (leaves, branches, fruits, stems, and
soil) have an impact on the radar response obtained at different
frequencies. The vertical distribution of scattering properties of
different crops has been studied in the past using 1-D profiles
in laboratory experiments [40] and SAR tomography with air-
borne data [41]. Finally, and constituting a key asset for crop
classification, all the aforementioned physical properties of the
crops change with time along the growing season. Consequently,

the usage for classification of multitemporal datasets exploits
the crop calendar, which is crop-specific over the same geo-
graphical region [24]. At any acquisition date, the growth status
of the different crops affects the separability between classes
at different frequency bands, and the change of crop features
may favor one band or another. This includes the soil properties
(e.g. moisture and roughness), which constitute an important
contribution of the radar backscatter for most crops, and whose
response and relative weight in the radar echo strongly depend
on the wavelength [42].

In the merged classifications formed by two frequency bands,
there are clear enhancements with respect to the individual
bands. In some cases, like for chickpea and alfalfa, the merged
accuracy is 20% better than any of the individual bands. On the
other hand, most of the resulting F1-scores are quite similar for
the three combinations, offering values within a 10% interval
for each crop type. The most noticeable exceptions are sweet
potato, pepper, and pumpkin, for which the combination of C-
and X-band is worse than the other two (up to 20–25% below
them). All of them are broadleaved crops, hence they are better
characterized with longer wavelengths.

In the end, the best classification performance is obtained
for all classes when using together the three frequency bands.
The accuracy especially improves with respect to the best of the
combinations of two bands for classes, such as chickpea (+14%),
pepper (+9%), quinoa (+9%), and sweet potato (+8%). The only
case with an improvement smaller than 1% is potato, for which
the addition of X-band does not improve much in comparison
with L- and C-band combined.

b) Crop classification with 20 intensity images at C- and
X-band: In this second experiment, we focus only on C- and
X-band but increasing the length of the time series, using 20
acquisitions in both cases. The achieved OA values are shown
in Table XIX. As in the case of seven images, C-band pro-
vides better OA than X-band, but now the difference is smaller
than with seven images (8% instead of 14%). The accuracy
has increased in all cases (individual bands and combination),
reaching almost 92% with the C- and X-band fusion. In fact, this
score is better than the previous result with all the three bands
using seven images. The improved performance is the result of
becoming more sensitive to the changes produced in the crops
along the year, since they are mainly due to their crop calendar,
i.e., specific of each crop type. With 20 acquisition dates along
the year, instead of only seven, it is possible to catch sudden
events, like harvest, and also to observe the crops in different
phenological stages, which clearly helps separate them in the
classifier.

Regarding the F1-scores, which are presented in Table XX, it
can be observed that C-band performs better than X-band for all
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TABLE XXV
OVERALL ACCURACY OBTAINED FOR CROP TYPE WITH ALL COHERENCES

AT C- AND X-BAND

crop types but wheat, rice, and sunflower. Notably, the fusion of
C- and X-band shows better accuracy than the individual bands
for all crop types. In some cases, the improvement with respect
to the best individual band is very clear, such as for pepper, sweet
potato, carrot, sweet potato, chickpea, and pumpkin, for which
the accuracy increase is greater than 10%.

c) Crop classification with all intensity images at all
bands: In this test, all the intensity images available at all bands
are used in the classification process. The resulting values of OA
are shown in Table XXI.

Regarding the use of individual bands alone, we found in the
seven-image test that C-band provided the best results, followed
in order by L- and X-band. However, in this test the order of L-
and X-band is reversed: X-band outperforms L-band. The reason
is the larger number of images (20 instead of 7) for X-band,
which is beneficial for the identification of the crop calendar
and, hence, to distinguish among classes.

It is also important to note that C-band alone reaches an OA of
90%, very close to the maximum OA values found so far. This is a
consequence of the very rich time sampling of Sentinel-1, which
provides 61 images regularly arranged along the whole year. In
fact, the addition of L-band to C-band does not really improve
the results. Moreover, the combined use of the other two bands,
L and X, obtains an OA lower than C-band alone. In contrast,
the fusion of C-band with X-band provides a 2% improvement
with respect to C-band alone. Finally, the best overall score
corresponds to the use of the three bands, with an OA of 93.34%,
which is the best result of all the tests analyzed so far.

As for the accuracy of the individual crops, Table XXII shows
the F1-score of all band combinations. In the cases correspond-
ing to individual bands, C-band outperforms the other bands
in all crop types except for wheat, sunflower, and rice, which
are better classified at X-band, and for pepper, which is better
classified at L-band despite the dataset having comprised only
seven images.

Among the combinations of two frequency bands, the best
F1-score is provided by C- and X-band for all crops but for
pepper, which is improved by the two L-band combinations,
and pumpkin, for which the combination of L- and X-band is
clearly the best case.

Finally, the merged result with three bands offers the best ac-
curacy for 14 out of 17 crops. The exceptions correspond to sugar

beet, onion, and tomato. The L-band dataset performs worse than
other bands in this experiment due to the small number of images
(7 instead of 20 and 61), which limits its sensitivity to the crop
calendar because of an insufficient temporal sampling. The most
noticeable contribution of the combination of the three bands
with respect to two bands is found for pepper (+10%), chickpea
(+8%), sweet potato (+7%), and pumpkin (+5%).

3) Crop Classification With Repeat-Pass Coherence: The
performance of repeat-pass coherence for crop classification
is studied in this section. L-band data are not used because
the available temporal baselines are very long and irregular.
Therefore, the analysis is focused on C- and X-band.

a) Crop classification with 16 coherences at C- and X-
band: The OA values obtained with the same number of co-
herence images (16) for both bands are shown in Table XXIII.
The accuracy is lower than the one obtained with the intensity
images. In this case, C-band is clearly much better than X-band,
since it provides an accuracy improvement of 14%. As it was
discussed for the land cover case, it must be recalled that the
X-band coherence is measured with an 11-day temporal base-
line, whereas the C-band coherence is obtained with a temporal
baseline of six days. The increased temporal baseline produces
more decorrelation over vegetated areas, hence reducing the
dynamic range of the X-band dataset, which contributes less
to crop classification purposes. Anyway, for this test the best
OA is achieved by the joint use of C- and X-band (72.81%)
which improves the performance obtained by any of the two
bands alone.

In agreement with the overall accuracy, the F1-scores obtained
for each crop type, which are listed in Table XXIV, are higher
at C-band than at X-band in all cases but in one (potato). The
maximum difference is found for wheat, whose C-band F1-score
is 24% higher than at X-band. Regarding the fusion of both
bands, the scores are only slightly better (less than 5%) than
the ones provided by the C-band alone. The exception to this
behavior is rice, for which the merged accuracy reaches almost
84% although the individual ones were 72% and 54% at C- and
X-band, respectively.

b) Crop classification with all C- and X-band coherences:
This test corresponds to the scenario in which all the coherence
values are used as input features of the classifier: 60 at C-band
and 16 at X-band. The OA is shown in Table XXV. In com-
parison to the previous test, the performance of C-band alone
is greatly improved, reaching an OA above 84%, instead of
70%. This performance enhancement is a direct consequence
of the one-year length of the time series and the fact that
all possible six-day coherence values are available. Thanks to
this observation scheme, all changes produced in the crops
along the year are well captured, hence allowing the classifier
to better distinguish among them by exploiting their different
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TABLE XXVII
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cultivation calendar and their changes along their phenological
development.

In this specific example, the poor performance of the X-band
classifier produces a degradation of the overall accuracy when
the two datasets are merged, reducing the OA value to 81%.

When it comes to the F1-scores, listed in Table XXVI, we
can appreciate that there are different behaviors in the fusion of
the two bands with respect to the use of a single band. In 14 out
of the 17 classes the accuracy obtained with the combination of
bands (C and X) is worse than for C-band alone. The exceptions
are fallow, chickpea, and sweet potato.

4) Crop Classification With Intensity and Coherence Images:
In the last tests, both intensity and coherence images are em-
ployed as input features to the classifier.

a) Crop classification with 16 intensity and 16 coherence
images at C- and X-band: The OA provided by the fusion of
intensity and coherence, using 16 dual-pol images of each type
at both bands, is illustrated in Table XXVII. The first obvious
comment is on the high values obtained at the two independent
bands (89.19% at C-band and 87.50% at X-band). For C-band
alone this OA value is close to the 90.43% reached when using
the whole time series of 60 intensity images (see Table XXI).
Therefore, this demonstrates the complementarity of the infor-
mation provided by interferometry with respect to backscatter,
since they exhibit sensitivity to different properties of the scene.
More importantly, this complementarity is more evident at X-
band: the fusion of intensity and coherence improves by 7% the
overall accuracy with respect to only intensity.

Regarding the combination of C- and X-band, it provides an
OA above 93%, i.e., an improvement of 4% with respect to
C-band alone and 6% with respect to X-band alone.

The class-specific accuracy scores are listed in Table XXVIII.
The mentioned complementarity between frequency bands is
obvious in these values: around half of the classes performs
better at one of the two bands (10 at C-band and 7 at X-band),
with a maximum difference of 10%. Then, in all classes the
combination of the two bands outperforms the individual bands.
The most remarkable improvements of the fusion of frequencies
are obtained for pumpkin (+19%), sweet potato (+18%), pepper
(+17%), chickpea (+15%), onion (+14%), and quinoa (+11%).

b) Crop classification with all intensity and coherence
images at C- and X-band: In the final experiment, all available

intensity and coherence images of the two bands are consid-
ered. The OA values obtained are shown in Table XXIX. The
result with C-band alone (91.64%) is 1% better than using
only intensity and 7% better than using only coherence. As for
X-band, the OA is 88.21%, that is, 7% better than using only
intensity and 31% better than using only coherence. Therefore,
for both bands the improvement is evident.

As for the combination of C- and X-band, it provides the best
OA score of all tests, reaching 93.88%. This value is 0.5% better
than the OA provided by all the intensity images of the three
bands (see Table XXI) and 1.5% better than the OA provided by
all the intensity images of the same two bands (see Table XXI).

Results in Table XXX show the F1-scores for all crops present
in our reference data. The comments are similar to the previous
test (Table XXVIII), i.e., since there is an obvious complemen-
tarity between the two bands for the employed fusion of intensity
and coherence. The most noticeable increase of accuracy with
respect to the results of individual bands is found for the same
classes: pumpkin (+17%), pepper (+17%), chickpea (+16%),
and sweet potato (+15%).

IV. DISCUSSION

The main objective of this work is the assessment of the
contribution of time series of multifrequency SAR data in two
classification domains: 1) land cover and 2) crop type. As it was
previously mentioned, due to the different sensor characteristics,
not only the frequency band, the datasets available enable the
evaluation of time series of multiplatform SAR data in classifi-
cation.

In the land cover case, a previous work of similar charac-
teristics was conducted in [8] with a single image per band,
not with time series, and the L- and C-band images were fully
polarimetric. Moreover, the scene features and classes present in
the area were different from this work. Consequently, a relative
comparison, not an absolute one, is better suited.

In this work, we have found that the combination of intensity
images at the three frequency bands (L, C, and X) increases
by 5% the OA with respect to the best of the individual bands,
whereas a 7% improvement was found in [8] using full-pol data.
In both cases, L-band is the best individual frequency. It has to
be pointed out that the use of the dual-pol intensities, HH+HV
at L-band and VV+VH at C-band, yields similar values to the
accuracies reported in [8], i.e., 81% at L-band and 75% at C-
band, which here are 81% and 78%, respectively. However, here
we are employing seven images per frequency band, not only
one.

Besides this confirmation of a previous result, we have ob-
tained other relevant results which have not been reported in
the literature of land cover classification with SAR data. The
first one is that adding a second band provides equivalent results
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of increasing the length of the intensity time series of a single
band. For instance, the OA obtained with 20 dual-pol intensity
images at C-band is 84%, and it reaches 86% with 60 images.
The same OA (86%) is provided by combining 20 dual-pol inten-
sity images of C- and X-band. In the same vein, adding a third
band provides equivalent results with fewer images. With our
dataset, the same 86% of OA is achieved with the combination
of seven dual-pol images of the three bands. In terms of total
amount of images, the multifrequency set employs fewer images,
so there is a compromise between availability of frequency
bands (normally from multiple sensors) or availability of a long
time series (from the same sensor). The relative improvement at
X-band is the same (+7%) when passing from 7 to 20 intensity
images. Regarding the merge of all available intensity images
of all bands, it still improves the overall accuracy over the
single- and dual-band tests, reaching 89%. The complementarity
of information among the three bands considered has proven
especially useful for some classes, like water, fruit trees, res-
idential zones, and urban areas, for which their classification
performance differs notably between frequency bands.

An original aspect of this study is the inclusion of repeat-pass
interferometric coherence in the multifrequency and multitem-
poral framework. Despite being limited to C- and X-band, due to
the data availability, we have found that the sensitivity to scene
properties, and their changes along time, offers an excellent
complement to the intensity data. At C-band the separate uses of
all the intensity images or all the coherences get an OA around
86% in both cases, whereas their combination reaches 89%.
At X-band, for which the temporal baseline is larger than at
C-band, and the number of acquisition is smaller, the OA of the
combination reaches 81%, in contrast to the 77% obtained with
the images and the 62% obtained with the coherences alone.
Then, the fusion of C- and X-band data formed by 16 pairs
of images and coherences yields an OA of almost 87%, which
increases to nearly 90% when all images and coherences are
exploited.

Regarding crop classification, as reviewed in the Introduction,
there are more examples than for land cover in the literature
about the combination of multiple frequencies. In all cases the
joint results improve the overall accuracy with respect to any
single band, and this is also confirmed in the study presented
here. Regarding the best frequency band, we found that C-band

performs better than L-band. This is in agreement with the
findings published in [12], but the opposite was found in [11]
and [7]. In these studies, the radar data correspond to single-date
acquisitions, so the growth status of the different crops affects the
separability between classes at different bands, and the change
of crop features may favor one band or another.

Following the previous argument, it is then better to compare
our results with those obtained with time series of images,
especially because the time coordinate is a key element in crop
classification due to the inherent dynamics of the scene. Unfor-
tunately, from the multifrequency perspective, we have found
only a few published studies in which multitemporal datasets
acquired at different microwave frequencies are combined, not
only compared. This combination was studied in [14] and [19],
whereas comparisons can be found also in [13] and [16]. By
using air-borne SAR data, it was found in [14] that both C- and
L-band performed similarly in a multitemporal scenario, with
slightly better results at C-band. Moreover, the combination
of the two bands clearly improved the overall accuracy. With
satellite data, the results obtained in [19] by C- and X-band data
showed that with eight images per band the accuracy improved
by 10% over the individual bands. Therefore, the present work
is the first example of multifrequency combination in which: 1)
three bands were considered (L, C, and X), 2) data were gath-
ered by operational satellites, and 3) repeat-pass interferometric
coherence was incorporated as an input feature.

With our dataset, when we restricted the acquisitions to be in
the same amount for all three bands (seven dual-pol intensity
images at each band), we obtained that C-band (OA 78%) per-
formed better than L-band (OA 70%), which in turn performed
better than X-band (OA 64%). When combined in pairs, all
frequency pairs provided almost the same OA (85–86%), i.e., 8%
better than the best band alone. And, notably, the combination of
the three bands provided an OA greater than 90%. This improve-
ment is a direct consequence of the different sensitivity provided
by each frequency to the scene properties, which translates in a
varying separability between classes as a function of the radar
frequency. In this sense, the joint RGB representation of the
pairwise separability provided by the three bands (Fig. 16) offers
a clear view of the richness of the multifrequency data for this
application.

Another interesting aspect is the performance when the num-
ber of images is increased, first to 20 images per band (at C and
X) and then to all available (61 at C-band, 20 at X-band, and
7 at L-band). The OA provided by the 20 intensity images at
C- and X-band is 91.87%, hence better than the one achieved
with three frequencies using seven images per band. As a further
improvement, the series of 61 C-band intensity images provides
an OA equal to the test with the three bands (90.37%). Therefore,
one concludes that using more bands with fewer images per band
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is equivalent to exploiting longer time series of images from
fewer frequency bands. In fact, the use of the whole time series
of C-band alone, which covers the whole year with short refresh
rate, produces also the same final OA (90.43%). Consequently,
a tradeoff between number of bands and length of the time series
is found. In any case, when we add the available images of the
other two bands to the one-year long C-band dataset, the final
accuracy is improved further (+3%), reaching an OA equal to
93.34%. This means that the multiple sensitivity provided by the
wavelength diversity is different from the sensitivity provided by
a multitemporal dataset acquired in a single frequency, and hence
they both combined improve the classification performance.

This work has considered also the inclusion of repeat-pass
coherence in crop classification by adding the multifrequency
perspective. Examples at single frequencies were published
in [24] at C-band and in [43] at X-band. In both cases, it was
demonstrated that coherence and backscatter offer complemen-
tary information which help to improve classification when
they are merged. This aspect is also confirmed in this work.
But, more importantly, we have seen that C- and X-band are
also complementary in this aspect, since the combination of 16
intensity and coherence images per band enabled the OA to reach
93%, starting from 89% and 87% obtained at C- and X-band
alone, respectively. That overall accuracy is nominally the same
as in the best tests.

V. CONCLUSION

This work has served to first confirm the findings of pre-
vious studies in which multifrequency SAR data were tested
for land cover classification and crop-type mapping. In the two
classification domains, time series of SAR images acquired by
satellite at different frequencies have been employed. In both
applications, the fusion of L-, C-, and X-band data outperforms
the use of only one or two bands. In second place, the exploitation
of repeat-pass interferometric coherence at multiple bands has
demonstrated also a contribution to enhance the classification
accuracy in a multifrequency framework. Therefore, backscatter
intensity and coherence offer complementary sensitivity to the
scene properties, which is also frequency dependent.

A tradeoff between the length of the time series and the
number of frequency bands has been found, although using
all the available data (all dates and frequency bands) increases
further the overall classification accuracy. Therefore, adding new
images, either from the same sensor or from a different one, is
beneficial in this context.

From the point of view of future systems, the next launch
of L-band missions with improved revisit times and consistent
acquisition schemes is expected to contribute with an additional
sensitivity source. The features derived from these future sen-
sors, both intensity and repeat-pass coherence, are expected to

enhance further the classification scores obtained in this work,
in combination with the already available C- and X-band sensors
and future ones.

In this work, the data available at the three frequency bands are
also characterized by different sensor properties (polarimetric
channels, resolution, incidence angle, etc.). Therefore, a multi-
platform combination has been analyzed. If one aims at isolating
the contribution of frequency from the rest of radar variables,
frequency should be the only sensor parameter to change among
sensors. For that purpose, specific acquisition campaigns should
be designed and carried out.
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