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Improving Deep Subdomain Adaptation by
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Abstract—This study aims at improving fine-grained ship clas-
sification performance under the condition that there is no labeled
samples available in SAR domain (target domain) by transferring
the knowledge from optical remote sensing (ORS) domain (source
domain), which has rich labeled samples. The proposed method
improves the original deep subdomain adaptation network (DSAN)
by designing a dual-branch network (DBN) embedding attention
module to extract more discriminative deep transferable features,
thereby improving the performance of the subdomain adaptation.
Specifically, we utilized a deep base network (ResNet-50) and a
shallow base network (ResNet-18) to build the DBN, and embedded
the convolutional block attention module after the first and the last
convolutional layer of each branch. Extensive experiments demon-
strate that the proposed method, which is termed as DSAN++, is
feasible and achieves remarkable improvement than the state-of-
the-art methods on the task of fine-grained ship classification.

Index Terms—Deep subdomain adaptation network (DSAN),
domain adaptation (DA), dual-branch network (DBN), ship
classification, synthetic aperture radar (SAR), transfer learning
(TL).

I. INTRODUCTION

MARINE security has a great impact on economic de-
velopment and the environment. As the most important

carrier of human activities at sea, ships have always been the
focus of maritime surveillance by coastal countries. Space-
borne synthetic aperture radar (SAR) has been widely used
in most marine affairs because it can provide high-resolution,
day-and-night, and weather-independent images [1]. Accurately
identifying the category of ship in SAR images is very signifi-
cant for many tasks, such as combating irregular immigration,
conducting maritime rescue, and traffic monitoring.

With the increasing resolution of SAR, the classification
of ship images becomes possible. Most of existing researches
on ship classification in SAR images are based on supervised
learning methods and have achieved great success [2], [3],
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[4], [5], [6], [7], [8], [9], [10], but these approaches rely on a
large amount of labeled SAR ship data. As we know, collecting
sufficient training data is often expensive, time-consuming, or
even unrealistic, which may hinder the further development of
supervised learning methods in practical SAR ship classification
scenarios. Recent years, transfer learning (TL), which aims
to improve the performance of learner on the target domain
by transferring the knowledge from the different but related
source domain [11], [12], [13], has been introduced to solve
the problem of ship classification under the condition that there
are very few or even no samples that are not enough to train
a good classifier in SAR domain. Lang et al. [14] used the
automatic identification system (AIS) data as the source do-
main to extract naive geometric features (NGFs) of the ships,
and designed a multiclass adaptive support vector machine as
classifier to realize knowledge transfer between two domains.
Xu et al. [15] proposed the method of discriminative adaptation
regularization framework-based transfer learning (D-ARTL),
which is an improvement to the original ARTL by adding a
novel source discriminative information preservation regular-
ization term to achieve a transfer from AIS domain to SAR
domain. Xu et al. [16] proposed the method of geometric transfer
metric learning (GTML), which improves the ship classification
performance in SAR domain through joint application of TL
and metric learning. Rostami et al. [17] proposed to transfer the
knowledge of the high-resolution optical remote sensing (ORS)
domain to the SAR domain to realize the classification of ships
and nonships. In the feature extraction part, they designed two
deep encoders, which are coupled to map data points into a
common feature space, and then utilized the sliced wasserstein
distance (SWD) [18] to measure and minimize the distribu-
tion discrepancy between the source and target domain. Song
et al. [19] proposed to use CycleGAN [20] to transfer the labeled
ORS images into SAR-style intermediate images with attribute
labels first, and then use a domain adaptation (DA) network
combining adversarial learning and metric learning to classify
military-civilian ships. Yang et al. [21] proposed a dynamic
joint correlation alignment network to achieve semisupervised
heterogeneous TL from AIS domain to SAR domain. Lang
et al. [22] proposed a multisource heterogeneous TL method
for SAR ship classification. Analyzing the above methods, [14],
[17], [19], [21], and [22] require the support of a small number of
labeled samples in SAR domain, while [15] can work without
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Fig. 1. Schematic diagram of DA. The triangle, circle, and cross symbols
represent three subclasses (subdomains), whose colors in red and blue indicate
that they belong to the source domain and target domain, respectively. (a) Before
DA. (b) DA only with marginal distribution adaptation (MDA) and (c) DA with
joint distribution adaptation, that is conducting both MDA and class-conditional
distribution adaptation (CDA).

labeled samples in SAR domain, and Xu and Lang [16] can
handle both labeled samples available and unavailable situations.
In terms of source domain usage, AIS data is used as the source
domain by [14], [15], [16] and [21]. The authors in [17] and [19]
utilized ORS images. While Lang et al. [22] used both AIS and
ORS data as source domains. In terms of TL solution, the work
in [14] is a parameter transfer based method and the others are
the methods of DA, which aims at learning a well-performing
model from a source data distribution to a different target data
distribution. To alleviate the domain shift of data distributions
across the source and target domains, the authors in [17] and [19]
aligned the class-conditional distribution between the two do-
mains, the authors in [15], [16], and [21] aligned both the
marginal distribution and class-conditional distribution.

Many existing DA methods demonstrate that if only marginal
distributions are aligned, although the distributions of the two
domains appear to be roughly aligned overall, different sub-
domains (subclasses) may also be mixed together, making it
difficult to classify them correctly [23], [24], [25], [26]. This
situation is illustrated in Fig. 1(a) and (b). While if taking the
relationship between subdomains (subclasses) into account and
aligning both marginal and class-conditional distribution (or say
joint distribution), as shown in Fig. 1(a) and (c), the methods will
achieve a better classification performance [15], [16], [21], [27],
[28], [29], [30], [31], [32], [33].

Finding a correct distance metric and using the learned metric
to fit a good classifier is very important in fine-grained classifi-
cation tasks. Transfer metric learning methods, which combine
TL and metric learning techniques, have been widely used in
many applications [34]. For example, Deng et al. [35] proposed
a deep metric learning feature embedding model suitable for
unsupervised TL, and it can learn the similarity between sample
pairs. Dong et al. [36] proposed joint distance transfer metric

learning to increase the interclass distance while reducing the
intraclass distance on the basis of maximum mean discrepancy
(MMD). The authors in [37] and [38] reduced the distance
between source and target domains by minimizing empirical
risk while maximizing the consistency of the manifold structure
of the data with the classifier.

This study aims at improving fine-grained ship classification
performance under the condition that there is no labeled samples
available in SAR domain (target domain) by transferring the
knowledge of ORS domain (source domain) with rich labeled
samples under the framework of DA based on deep neural
networks. The motivation of this study mainly stems from the
following three aspects.

1) No labeled samples available in SAR domain is a common
application scenario, which is more valuable and challenging
for research, but there is very few reports at present [15], [16].

2) Compared with AIS data, ORS images can provide richer
semantic feature, which is not limited to geometric information.
Both ORS and SAR belong to image data, although their imaging
mechanisms are different, it is assumed that there are some
internal connections between them. Whether a ship is captured
by a SAR sensor or an optical camera, the image data should
share some common macroscopic features (such as geometric
features) and some microscopic features (such as texture fea-
tures), which can be extracted by the deep neural network and
be utilized as transferable features. Based on this consensus,
several existing works [17], [19], and [22] have also conducted
studies on knowledge transfer from ORS to SAR, and the results
prove that such transfer is not only feasible but also effective.
Therefore, there is reason to believe that ORS can become a
better source domain to assist fine-grained ship classification in
SAR domain.

3) Recent studies have shown that deep neural networks can
learn more transferable features for DA, which is achieved by
embedding DA modules in the pipeline of deep feature learning
to extract domain-invariant representations.

Specifically, this article proposed to improve the deep subdo-
main adaptation network (DSAN) [33] by utilizing a dual-branch
network (DBN) embedding attention mechanism to enhance
deep transferable feature extraction capability and realize sub-
domain adaptation from ORS domain (source) to SAR domain
(target). DSAN is a newly proposed deep DA method, which
can align both global (marginal) and local (class-conditional)
distributions between two domains as well as learn transfer-
able representations simultaneously, by integrating deep feature
learning network (DFLN) and subdomain adaptation network
(SDAN) into an end-to-end deep learning mode [see Fig. 2(a)]. In
this study, we improve the DFLN of the original DSAN by using
a dual-branch architecture, and embed the attention mechanism
into each branch [see Fig. 2(b)–(c)]. By fully mining the image
information of two domains, it can extract more discriminative
deep transferable features, which further boosts the performance
of subsequent subdomain adaptation process. In this sense, we
refer to the proposed method as DSAN++. In-depth analysis
and extensive experiments show that in the common subspace
mapped via the deep feature extracted by the DSAN++, the
marginal distribution shift between the target and source domain



8040 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 2. Architecture of the proposed DSAN++. (a) Original DSAN is composed of a DFLN and a SDAN. (b) The proposed DSAN++ uses a DBN embedding
attention module to excute deep feature extraction. (c) ResNet-50 and ResNet-18 are used as the deep and shallow network, CBAM are embedded into each branch
of the DBN.

and the class-conditional distribution discrepancy cross each
subdomain are minimized (compared with original DSAN and
other comparison methods).

The main contribution of this article is three-fold.
1) This study proposes DSAN++ which improves the original

DSAN by designing a DBN embedding attention mechanism
to extract the deep feature. This change allows the network
to extract more discriminative transferable features, further im-
proving the performance of the subdomain adaptation.

2) This is the first work to solve the fine-grained ship classi-
fication problem in SAR domain by transferring the knowledge
from ORS domain as source domain, focusing on the application
scenario that there is no labeled samples available. In contrast,
although the authors in [17] and [19] studied the TL from ORS
domain to SAR domain, Rostami et al. [17] only realized the
classification between ships and nonships, and Song et al. [19]
studied the classification of military and civilian ships, neither
of which is a more complex fine-grained ship classification. The
application scenario of [22] is supervised, which is different
from us.

3) Extensive experiments demonstrate the effectiveness and
reliability of the proposed method.

The rest of this article is as follows. Section II introduces
the proposed method in detail, including the overall framework,
DBN, and the method of CBAM embedding. Section III de-
scribes the datasets and experimental protocol. Next, we report
and analyze the experimental results in Section IV. Finally,
Section V concludes this article.

II. PROPOSED METHOD

A. Overall Framework

DSAN can learn a transfer network by aligning the rele-
vant subdomain distributions (i.e., class-conditional distribu-
tion) of multiple domain-specific layers across source and target
domains on the basis of local maximum mean discrepancy
(LMMD) [33]. As shown in Fig. 2(a), it is composed of a DFLN

followed by an SDAN. Experiments have shown that by embed-
ding DA modules in the pipeline of deep feature learning helps
us to extract domain-invariant feature representations. More
importantly, subdomain adaptation has the ability to capture the
fine-grained information for each category, thereby improving
fine-grained classification performance.

As reported by previous studies [7], [16], fine-grained ship
classification in SAR images is not a trivial task since ships only
have subtle visual appearance variation between different cate-
gories. Therefore, it is particularly important to extract features
that are sufficiently discriminative. As shown in Fig. 2(b), for the
purpose of fully exploring the feature representation potential
of ORS and SAR images, this article improves the DFLN of
the original DSAN with a DBN, which is composed of a deep
base network, a shallow base network, and a fusion layer. This
improvement is inspired by [39], which demonstrates that the
deeply fused network is able to learn multiscale feature represen-
tations due to the complementary contribution of multiple base
networks with different depths. Another improvement is shown
in Fig. 2(c), this study embeds the convolutional block attention
module (CBAM) [40] after the first and the last convolutional
layer of each branch to further improve feature representation
power.

B. Dual-Branch Network

Following the suggestion of previous work [39], [41], the
proposed DBN is formed by one deep (ResNet-50) and one
shallow (ResNet-18) base networks as shown in Fig. 2(b) and
(c). The features extracted from ResNet-50 and ResNet-18 are
different. Comparatively speaking, the features extracted by
ResNet-18 have a higher resolution and contain more location
and details information, but lower semantics information and
higher noise. The high-level features extracted by ResNet-50
have stronger semantic information, but the resolution is very
low, and the perception of details is poor. In this article, we try to
efficiently integrate the two and take advantage of their strengths
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to improve the feature representation capability. Another reason
we choose ResNet-50 and ResNet-18 as the backbone network is
that the residual structure is implemented in the form of shortcut
connection, which solves the degradation problem of deep neural
networks. It avoids the loss of information to a certain extent
when transmitting information, and protects the integrity of the
information. The features of the input ship images are extracted
by two branch networks, respectively, then are fused in the fusion
layer, where the concatenation operation is applied to connect
the two features.

C. CBAM Embedding

We assume that the transferability of different semantic con-
tents in an image is different and DA methods need to focus
on the meaningful knowledge that are highly relevant to the task
while ignoring the irrelevant information. Based on this assump-
tion, we propose to embed attention mechanism into the feature
learning process to exploit the effective semantic features. The
essence of the attention mechanism is to reweight the feature
maps for adaptive feature optimization, so that the important
parts of the image will be given higher weights, and the unim-
portant parts will be given lower weights, which will enhance
the feature representations. There are many well-performing
attention modules that can be used to realize our concept [42],
such as squeeze-and-excitation (SE) networks, efficient channel
attention network (ECA-Net), and CBAM [40]. Considering
that CBAM can both center on “what” is meaningful for a
input image with its channel attention module and concentrate
on “where” is the informative part in the input image with its
spatial attention module, which is more suitable to realize our
conception, this study utilizes CBAM. As shown in Fig. 2(c),
we embed CBAM after the first convolutional layer and the last
convolutional layer for the purpose of not changing the network
structure of ResNet so that we can use pretraining parameters
instead of training from scratch.

D. Loss

Through the end-to-end training of deep neural networks,
we aim to minimize the distribution discrepancy between the
related subdomains activated in the domain-specific layers L =
{1, 2, 3, . . .}. The total loss is

min
f
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The cross-entropy loss is used to calculate the classification
error, which needs to be minimized on source domain, where ns
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where p and q are the distributions of source domain and target
domain. d̂l(p, q) is the unbiased estimator of LMMD following
the definition in [33] and l ∈ L. C is the number of classes of
ships. nt is the number of samples in the target domain, ωsc

i

and ωtc
j represent the weight of each sample in the source and

target domain. And zsl
i and ztl

j denote the activation features
generated by the network at layer l, respectively. λ > 0 is a
tradeoff parameter between the classification loss and DA loss.

III. EXPERIMENT

A. Datasets

1) Target domain: There are two SAR ship datasets for this
research. The first is GF-SAR dataset, which consists of 150
Gaofen-3 images (3 ship classes, namely bulk carrier, container
ship, and oil tanker, 50 images per class), of which 88 are from
the FUSAR-Ship dataset [43] with about 1.0 m azimuth reso-
lution and about 1.7 m slant range resolution, and the other 62
are collected by the authors with about 0.5 m azimuth resolution
and 0.3 m range resolution. All class labels have been matched
by AIS information. The second is HR-SAR dataset, which was
collected by Xing et al. [2] from six TerraSAR-X stripmap-mode
SAR imagery with 2.0 m azimuth resolution and 1.5 m range
resolution. This dataset also contains three classes of ships,
including cargo, container ship, and oil tanker, 50 images per
class. Some ship samples of above two SAR datasets can be
seen in Fig. 3(b) and (c), respectively.

2) Source domain: For the research purpose, we specially
collected ship images from Google Earth with submeter res-
olution to build the ORS dataset. This dataset includes four
classes of cargo, bulk carrier, container ship and oil tanker, with
1000 images per class, whose information are matched with the
official website.1 Unlike some existing ORS ship datasets [17],
whose single image slice may contain multiple ships or even
incomplete ship. As shown in Fig. 3(a), the vast majority of
image slices in our dataset are segmented more carefully, and
each of them only contains a single ship that is more suitable
for ship classification research. The ORS dataset is available at
https://github.com/BUCT-RS-ML/MS-HeTL-via-MS-HFA.

In the experiments of this study, for two target domain datasets
GF-SAR and HR-SAR, we select the corresponding ship classes
from source domain ORS dataset to conduct knowledge transfer
task, respectively.

1[Online] Available:http://www.marinetraffic.com/.

https://github.com/BUCT-RS-ML/MS-HeTL-via-MS-HFA
http://www.marinetraffic.com/.
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Fig. 3. Ship samples in the source and target domains. (a) ORS dataset, from left to right are cargos, bulk carriers, container ships, and oil tankers. (b) GF-SAR
dataset, including three categories of bulk carriers, container ships and oil tankers. (c) HR-SAR dataset, including three categories of cargos, container ships and
oil tankers.

TABLE I
METHODS OF COMPARISON

B. Experimental Protocol

1) Evaluate criteria: Following the setting of [13] and [16],
we adopted accuracy as the criteria to evaluate the SAR ship
classification performance, which is defined as

accuracy =
|{x|xt

j ∈ Dt ∧ f(xt
j) = yj}|

|Dt| (4)

whereDt denotes the test data, f(xt
j) and yj denote the predicted

label and the ground-truth label of sample xt
j , respectively. And

the operator | · | represents the number of elements in the set.
2) Comparison methods: In this study, we compared the

proposed method with nine state-of-the-art TL methods, in-
cluding DAN [23], Deep-CORAL [24], DANN [25], JAN [27],
DAAN [44], MRAN [31], D-ARTL [15], GTML [16], and
DSAN [33], which conducted same TL task on the same datasets.
The specifics of these comparison methods can be seen in Table I.

3) Parameter setting: For DSAN and the proposed DSAN++,
we used minibatch stochastic gradient descent optimizer with a
momentum of 0.9, and the batch size is set to 16. The learning
rate follows the formula: ηθ = η0/(1 + αθ)β , where η0 = 0.01,
α = 10, β = 0.75, and θ is changing from 0 to 1, which is
optimized to promote convergence and reduce error on source
domain [27], and the settings of these parameters are the same as
those in [33]. In order to suppress noisy activations in the early
stages of training, λ is not fixed. Instead, λ follows a progressive
schedule: λθ = 2/ exp(−γθ)− 1, where γ = 10 is defined by
the experiments [25]. The progressive schedule can not only
stabilize parameter sensitivity but also ease model selection
for DSAN++. The epoch is set to 200, and the dropout rate
is 0.5 to avoid feature redundancy. For the rest methods, the
parameters are set to the default values or the recommended
values mentioned in their original articles. For fair comparison,
ResNet-50 is selected as the backbone network of all deep
learning-based methods. The pretrained models trained on the
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TABLE II
RESULTS OF THE ABLATION STUDY ON GF-SAR DATASET

TABLE III
RESULTS OF THE ABLATION STUDY ON HR-SAR DATASET

ImageNet were used as the initialization model. For traditional
methods, we follow [15] and [16] to extract NGFs from source
and target domains for the transfer task.

The experiments were performed with Intel i9-9980XE CPU
3.00 GHz and GeForce RTX 2080 Ti. Each method was imple-
mented three times, and the average accuracy were adopted as
the experimental results.

IV. RESULTS AND ANALYSIS

A. Effectiveness of DBN and CBAM Embedding

In order to validate the effectiveness of the proposed two im-
provements, i.e., DBN and CBAM embedding, we conducted the
following three comparison experiments on two target domain
datasets, respectively:

1) Only replacing the original DFLN with the DBN
without attention module embedding to obtain
DSAN + DBN;

2) Only embedding CBAM into the original DFLN to obtain
DSAN + CBAM;

3) Replacing the original DFLN with DBN embedding
CBAM to obtain the proposed DSAN++.

From the classification performance listed in Tables II and III,
it is found that both DBN and CBAM embedding can effectively
improve the performance of DSAN, which implies that: 1)
Compared with the original DFLN, which is a single branch
network, the proposed DBN has a stronger deep discrimina-
tive feature extraction ability and 2) CBAM embedding can
further improve the deep feature extraction capability of the
network. The proposed method combines the two strategies,
fully exploiting their specialties in deep feature extraction, and
greatly improves the performance of the original DSAN by
6.44% (from 82.67% to 89.11%) on GF-SAR dataset, and 4.89%
(from 84.00% to 88.89%) on HR-SAR dataset. Additionally,
we use LMMD to measure the discrepancy in local subdo-
main feature distributions, and MMD to measure the global
distribution discrepancy between the source and target domain.
The smaller the two values, the smaller the discrepancy in the
distribution of features within the local subdomain and between

the two domains. From Tables II and III, we can find that the
proposed DSAN++ achieves the lowest LMMD and MMD on
both SAR datasets, that is, DSAN++ achieves the closest feature
distribution of the corresponding ship classes in the ORS images
and the SAR images, thereby obtaining the highest the ship
classification accuracy. These results illustrate that with the
increase of the discriminative power of the deep feature, the
distribution discrepancies measured by LMMD and MMD are
gradually reduced.

Taking the classification results on the GF-SAR dataset as
an example, as shown in Fig. 4, we randomly select a part of
samples from the source domain and target domain, and use
t-SNE technique [48] to visualize the feature distribution of
the four methods of DSAN, DSAN+DBN, DSAN+CBAM, and
DSAN++ in the common feature space. In Fig. 4, different colors
are used to distinguish source and target domains, and different
markers indicate different ship classes. Since the deep features
extracted by the deep neural network have extremely high di-
mensions and are difficult to be visualized, t-SNE maps those
high-dimensional features into two-dimensional space through
dimensionality reduction so as to visually display their distri-
bution. t-SNE pays more attention to preserving the distribution
relationship of the original data: in this two-dimensional space,
the data that was nlrgoriginally close in distance would also
be close after dimensionality reduction; similarly, the distance
that was originally far away would be far after dimensionality
reduction. Based on the abovementioned cognition, we can find
that the original DSAN [see Fig. 4(a)] uses ResNet-50 to extract
the deep features of ORS ship images and SAR ship images, and
then uses SDAN to align the class-conditional distribution and
marginal distribution between the two domains. Compared to
the other three methods, the distances between subclass samples
are tighter. By learning and extracting more discriminative deep
features, DSAN+DBN and DSAN+CBAM [see Fig. 4(b) and
(c)] can further separate samples between subclasses. While the
proposed method DSAN++ [see Fig. 4(d)] obtains transferable
features with more significant class discrimination ability, and
makes the intrasubclass samples more closely clustered and
widens the distance between the subclass samples, which is
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Fig. 4. Visualization of feature distribution in the common feature space on GF-SAR dataset. (a) DSAN. (b) DSAN + DBN. (c) DSAN + CBAM. (d) DSAN++.

more conducive to the transfer task, thereby improving the
fine-grained classification performance.

B. Various Attention Mechanism Modules Embedding

In our study, we proposed to embed CBAM attention mech-
anism module into the feature learning process to exploit the
effective semantic features. Considering that there are also vari-
ous attention mechanism modules possessing similar effects, for
the purpose of helping researchers to have a more comprehen-
sive and in-depth understanding of the proposed architecture
as shown in Fig. 2, in this section, we conducted an experi-
ments with the other two well-performing attention mechanism
modules: SE [49] and efficient channel attention (ECA) [50],
which were embedded into the proposed architecture using the
same strategy, and reported and compared the performance with
the CBAM adopted in this article. Both SE and ECA module
are channel attention mechanisms. The difference is that SE
reweights each channel of the feature map through the fully
connection operation, while ECA pays attention to the rela-
tionship between neighbor channels of the feature map, and it
turns the two fully connected operations in the channel attention
mechanism into a one-dimensional convolution to reassign the
weight. SE module and ECA module are embedded in DBN,
respectively (added to each residual block), and the classification

TABLE IV
PERFORMANCE WITH DIFFERENT ATTENTION MECHANISMS EMBEDDING

EVALUATED ON ACCURACY (%)

results of different attention mechanism embeddings are listed
in the Table IV.

It can be found that embedding these attention mechanisms
all can increase the classification accuracy. But relatively, the
CBAM module performs better than the SE module and the ECA
module embedding on the two target datasets. The reason for this
phenomenon may be that CBAM considers the channel relation-
ship and spatial relationship of feature maps, while SE and ECA
modules only consider the relationship between channels of
feature maps. This experiment demonstrates the effectiveness of
CBAM module embedding in our proposed method. Observing
the classification confusion matrices on GF-SAR dataset in
Fig. 5 , we can find that embedding CBAM module can handle
ship subclass classification better. Compared with embedding
SE module, embedding CBAM has higher classification accu-
racy in each subclass. Although the performance of embedding
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Fig. 5. Classification confusion matrix after three attention mechanisms are embedded into the DBN on GF-SAR dataset. (a) DSAN + SE. (b) DSAN + ECA.
(c) DSAN + CBAM.

Fig. 6. Visualization of feature distribution in the common feature space of comparison methods to DA on GF-SAR dataset. (a) DAN. (b) DANN. (c) MRAN.

CBAM is slightly lower than embedding ECA on the “oil tanker”
subclass (90.67% versus 92.00%), embedding CBAM achieves
higher classification accuracy on the other two subclasses.

C. Comparison With State-of-the-Art

In the last experiment, we compared the proposed DSAN++
with the state-of-the-art methods as shown in Table I, which can
be roughly divided into the following three categories, where
D-ARTL [15] and GTML [16] are traditional methods (non-
deep learning based methods), DANN [25] and DAAN [44] are
adversarial-based methods, and the other methods together with
the proposed method belong to statistic moment matching-based
methods. Specifically, for GF-SAR dataset, the experimental
results in Table V show that most of deep neural network
based DA methods (the only exception is Deep-CORAL [24])
outperform two traditional methods D-ARTL (59.67%) and
GTML (66.00%), which illustrates the importance of more
discriminative deep feature. The poor performance of Deep-
CORAL (65.33%) is mainly due to the fact that it only aligns
the global domain shift. The similar situation happens to
DAN [23] (67.33%), which just aligns the global distribution.
Two adversarial-based methods DAAN (67.33%) and DANN
(71.33%) are slightly better than the previous methods but not
as good as the other statistic moment matching-based methods.

TABLE V
SAR SHIP CLASSIFICATION PERFORMANCE OF DIFFERENT ALGORITHMS

JAN [27] adapts the joint distribution difference of multiple
layers with joint-MMD (JMMD) and achieves 72.00% accuracy.
MRAN [31] improves the accuracy to 81.00% by extracting
multiple feature representations from a single perspective using
an inception attention module (IAM) and minimizing CMMD.
Thanks to utilizing LMMD, which can measure the distribution
of related subdomains with considering the weight of each
sample in both source and target domains, DSAN [33] cap-
tured more fine-grained information and improved classification
performance to 82.67%. As mentioned before, with the exact
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same SDAN as DSAN, the proposed DSAN++ explodes the
performance to 89.11% (which outperforms DSAN by 6.44%)
through improving the DFLN. Similar results appeared on an-
other HR-SAR dataset, which are listed in Table V. The tradi-
tional methods D-ARTL and GTML obtain 71.33% and 68.67%
classification accuracies, respectively, which are slightly lower
than those based on deep learning. It also can be observed
that the ship classification performance of those DA methods
that only align marginal distributions, DAN (72.00%), DANN
(76.67%), and Deep-CORAL (74.67%) are slightly lower. While
those methods that align class-conditional distributions, JAN
(79.33%), DAAN (78.67%), MRAN (84.00%), and DSAN
(84.00%) achieve relatively good classification accuracy. On the
basis of DSAN, the proposed method DSAN++ gets the best
classification accuracy of 88.89%. In terms of running time, the
proposed DSAN++ is comparable to JAN, DSAN, only slightly
slower than DAN, and faster than other methods, especially
traditional methods.

Different unsupervised DA methods explore the transferable
features in different ways. In order to provide a more intuitive
comparison and reveal the reasons behind the classification
performance, we also utilize t-SNE to visualize the feature
distribution in the common feature space of GF-SAR dataset and
corresponding ORS ship dataset for several typical comparison
methods, DAN, DANN, and MRAN, as shown in Fig. 6, where
the meanings of different colors and markers are the same as
those defined in Fig. 4, and to compare with DSAN and the
proposed DSAN++, as shown in Fig. 4(a) and (d). It can be
seen that the data points in both domains are not distinguishable
so well in these three subplots. The performance of the target
domain will be affected by the source domain. DAN and DANN
[see Fig. 6(a) and (b)] methods only achieve the marginal distri-
bution alignment of the extracted features of source and target
domains. None of them handle class-conditional distributions
of features well, resulting in the confounding of samples from
various subclasses (especially in SAR domain), which hinders
the improvement of the classification performance. MRAN [see
Fig. 6(c)] utilizes CMMD to realize the class-conditional dis-
tribution alignment between the features of source and target
domain, which relatively reduces the domain shift and greatly
improves the classification accuracy of SAR ship images. That
is, by aligning the class-conditional distribution of ship features
extracted in the ORS domain and SAR domain, the transferable
features will be class-discriminative, which is more beneficial to
the fine-grained classification task of SAR ship images. When
comparing with Fig. 4(a) and (d), it shows that DSAN and
DSAN++ matches both global and local distributions through
subdomain adaptation, thus greatly improving the classification
performance.

V. CONCLUSION

This article proposes DSAN++ which improves the original
DSAN [33] by designing a DBN embedding CBAM attention
mechanism to extract more discriminative deep transferable
features, thereby improving the performance of the subdo-
main adaptation. Extensive experiments on two SAR datasets

TABLE VI
FINE-GRAINED CLASSIFICATION PERFORMANCE OF SAR SHIPS WITH

DIFFERENT NUMBER OF SUBCLASSES

demonstrate that the proposed DSAN++ is feasible and achieves
remarkable improvement than the state-of-the-art methods.

APPENDIX

In the main part of this article, we have demonstrated the
superiority of the proposed method from various aspects. In this
section, we try to further illustrate that the proposed DSAN++
is also capable of handling more complex fine-grained classi-
fication tasks, i.e., subdividing more subclasses. We hope this
additional study is useful for interested readers. To conduct this
study, we further expand the GF-SAR dataset (target domain)
and the ORS dataset (source domain) to include more subclasses.
With no public dataset available for direct use, dataset expansion
(especially for SAR dataset) is not a trivial task. By bringing
together the samples from FUSAR-Ship dataset [43] and our
self-collected, we add two new subclasses (50 samples per
category), i.e., cargo and fishing ship, to the original GF-SAR
dataset, which is introduced in Section III-A. The ORS dataset
is also expanded accordingly by adding the fishing ship category
to the original ORS dataset as introduced in Section III-A.
The appended fishing ship samples come from two datasets,
FGSC-23 [51] and ShipRSImageNet [52] with 102 and 171
samples, respectively.

Next, we evaluate the performance of the proposed DSAN++
in two multiclass SAR ship classification tasks and compare the
results with those of DSAN (the best state-of-the-art method as
described in Section IV-C) on the same tasks. The first task is
to categorize four subclasses, which is conducted on GF-SAR-
4 dataset (i.e., GF-SAR + cargo subclass), and the second for
five subclasses classification conducted on GF-SAR-5 dataset
(i.e., GF-SAR + both cargo and fishing ship subclasses). The
comparison results and detailed confusion matrices are shown
in Table VI and Fig. 7 in this Appendix.

As can be seen from Table V in the main part and Table VI in
the Appendix, with the number of categories increases, the over-
all classification accuracy decreases gradually. For DSAN++, it
is from 89.11% (three subclasses) to 81.83% (four subclasses)
then to 69.60% (five subclasses). This result and trend are
consistent with theoretical cognition. We also notice that the
proposed DSAN++ performs better on any task than DSAN,
which is the best state-of-the-art method, leading 6.44%, 4.66%,
and 3.60%, respectively. It is also reasonable that this gap
decreases as the number of categories increases. In-depth anal-
ysis of the confusion matrix (see Table VI), it can be found
that DSAN++ and DSAN are slightly different in their ability
to handle different subclasses on a specific task. DSAN per-
forms better than DSAN++ for “cargo” subclass (85.33% versus
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Fig. 7. Confusion matrix for (a) four-class and (b) five-class ship classification.
Left column for DSAN and right column for DSAN++.

82.67%) on GF-SAR-4 dataset, and for “fishing ship” subclass
(62.00% versus 48.00%) on GF-SAR-5 dataset, respectively. At
the same time, because DSAN++ far outperforms DSAN in other
more subclasses, making its overall performance better than that
of the latter. These experiments demonstrate the effectiveness
of the proposed DSAN++ method in handling the problem
of fine-grained classification of multiclass ships.
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