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Abstract—The convolutional neural network (CNN) is widely
used in synthetic aperture radar (SAR) target recognition, but con-
ventional CNN mainly adopts a single-scale convolutional kernel,
resulting in losing part of the feature information of targets and
does not pay enough attention to significant features. On the other
hand, conventional CNN approaches only assign fine-class labels
to SAR targets, ignoring the high-level semantics information of
similar categories, which reduces the feature differences between
categories and the generalization ability of the model. Therefore,
this article proposes a multiscale attention super-class CNN (MSA-
SCNN) for SAR target classification. First, MSA-SCNN combines
multiscale feature fusion with the attention module to improve the
integrity of SAR target feature representation. The attention mod-
ule includes channel and spatial attention modules, which realize
the weighted enhancement of different scale features. Additionally,
MSA-SCNN introduces super-class labels to increase the feature
difference between categories. The classification stage consists of a
fine-class branch and a super-class branch, and the features trained
on the super-class branch are fused to the fine-class branch to
improve the network’s fine classification ability. Experiments on the
moving and stationary target acquisition and recognition dataset
and the FUSAR-Ship dataset show that the proposed MSA-SCNN
outperforms many current existing state-of-the-art methods.

Index Terms—Convolutional neural network (CNN), multiscale
attention, super-class labels, synthetic aperture radar (SAR) target
classification.

I. INTRODUCTION

YNTHETIC aperture radar (SAR) has the ability to obtain
S high-resolution images all-day and all-weather. Compared
with other imaging methods such as optical and infrared, SAR
can acquire target information covered by clouds and vegeta-
tion. Nowadays, SAR is widely used in numerous fields, e.g.,
military reconnaissance and geological exploration [1]. In most
SAR applications, automatic target recognition (ATR) plays an
important research and application value in the field of military
reconnaissance, so it has received considerable attention [2].
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Generally, a standard SAR ATR system usually consists of
three stages: detection, discrimination, and classification recog-
nition [3]. In the detection stage, the region of interest (ROI)
is prescreened according to the local grayscale statistics in the
SAR images [4]. The discrimination stage significantly removes
the false alarm clutter and reserves the real targets [5]. Finally,
the target features are extracted, and a classifier is designed to
classify the SAR targets.

SAR target classification is one of the vital stages of SAR ATR
processing. Generally, the classification methods are divided
into two categories: template-based methods [6] and model-
based methods [7]. The template-based method needs to build a
template database, and the extracted SAR target features will be
best matched with the template database during the recognition
stage. The classification accuracy is related to the manually
designed template, which takes a lot of time to build the template
database [8]. The model-based method adopts three-dimensional
(3-D) modeling and electromagnetic calculations to simulate
SAR images, and iteratively adjusts the model in the process
of predicting SAR target chips. Based on these two mainstream
methods, many SAR target recognition algorithms have been
proposed in recent years, such as principal component analysis
[9], linear discriminant analysis [10], support vector machine
[11], adaptive boosting [12], conditionally Gaussian model
(CGM) [13], and iterative graph thickening [14]. These methods
usually need to extract specific features from SAR images and
predesign complex target recognition algorithms, which brings
tremendous challenges to practical applications.

With the rapid development of deep learning [15], convo-
lutional neural networks (CNNs) have been applied to various
computer vision tasks such as image classification [16], object
detection [17], semantic segmentation [18], etc., and it has
achieved superior performance. CNN directly extracts low-level
and high-level features from raw images through convolutional
and pooling layers, providing an effective solution for SAR tar-
get classification. Many novel works using deep neural networks
have proven to be powerful tools for SAR target classification
[19], [20], [21].

Most CNN methods only use a single-scale convolutional
kernel, resulting in some feature representation loss of the SAR
targets. Ai et al. [22] proposed a novel CNN model based
on multikernel-size feature fusion (MKSFF-CNN), which uses
convolutional kernels of different sizes to extract the multiscale
deep features, and then, MKSFF-CNN concatenates the features
extracted by the convolutional layers of different dimensions to
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achieve the finest classification. Although MKSFF-CNN im-
proves the SAR target feature representation completeness, two
important problems should be solved for SAR target classifica-
tion. First, Multiscale features have information redundancy, and
the network needs to automatically focus on important features
and suppress unnecessary features to increase the representation
power of multiscale features. Second, since SAR images are
sensitive to observation conditions, the network needs to intro-
duce prior knowledge to increase the difference of multiscale
features between different categories, thereby improving the
generalization ability of the model.

In order to increase the feature difference between categories,
Zhang et al. [23] designed a two-stream deep network and
introduced SAR domain knowledge such as target azimuth
and phase into the CNN to assist in classification. For SAR
classification tasks, existing methods mainly introduce prior
knowledge and fuse features at the network input, ignoring
the category labels that actually guide the classification at the
network output. These methods only have one kind of fine-class
label, and the misclassifications between any two classes are
treated equally. In contrast, when humans create categories,
nonparallel semantic relations are established between each
category [24], and categories with communal features belong
to a super-class label, which can assist in fine classification. For
example, there are many different types of tanks, they all belong
to a super-class label—Tanks. When classifying a tank of an
unknown type, it should tend to be classified under the tank
super-class label rather than identified as the armored vehicle or
another class label. Therefore, super-class labels can improve
the generalization ability of the model to unknown classes.

To sum up, in order to solve the problem that the SAR target
features extracted by most networks are incomplete and have
information redundancy, lack of attention to important features,
and small feature differences between categories, this article pro-
poses a multiscale attention super-class CNN (MSA-SCNN) for
SAR target classification. In the extraction stage, MSA-SCNN
combines multiscale feature fusion with the attention module to
improve the integrity of SAR target feature representation. The
attention module includes channel and spatial attention modules,
which focus on important features and suppress unnecessary
features. In the classification stage, MSA-SCNN has a super-
class branch and a fine-class branch, which are corresponding
to the super-class and fine-class labels. The super-class branch
focuses on the communal features of SAR categories so that
the feature difference between super-classes increases, whereas
the fine-class branch focuses on more refined category features.
Finally, features extracted by the super-class branch are fused
to the fine class branch to assist in fine classification. The main
contributions of this article could be summarized as follows.

1) The multiscale features of SAR targets are analyzed and a
new network structure—MSA-SCNN is proposed, which
uses convolutional kernels of different sizes to extract
feature information of different scales, and fuses these
features at each layer. It greatly improves the integrity
of the SAR target feature representation.

2) MSA-SCNN uses spatial and channel attention for multi-
scale feature weighted enhancement, so that the network
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focuses on target features, suppresses the background
clutter, and avoids information redundancy.

3) MSA-SCNN introduces the prior knowledge of super-
class labels into CNN and creates two classification
branches. The high-level semantic features trained on the
super-class branch are fused to the fine-class branch for
final classification. The assistance of super-class labels
increases the feature difference between the categories,
and further improves the generalization ability of the
model.

The rest of this article is organized as follows. Section Il intro-
duces SAR multiscale features and super-class labels. Section I11
elucidates the details of the MSA-SCNN model structure and
training strategies. Section IV is the experimental part, where
comparative experiments and ablation studies are designed
and performed. The classification performance is validated on
the moving and stationary target acquisition and recognition
(MSTAR) dataset and the FUSAR-Ship dataset with a detailed
evaluation. Finally, Section V concludes the article.

II. BACKGROUND KNOWLEDGE OF MSA-SCNN

In this section, the multiscale features of SAR targets and
super-class labels will be discussed in detail. Meanwhile, the
division of super-class and fine-class labels will be given. MSA-
SCNN uses two methods to improve the integrity of the SAR
target feature representation and the generalization ability of the
model.

A. Multiscale Features of SAR Targets

Generally speaking, the deeper the network is, the stronger the
representation and nonlinear fitting ability it will have. VGG [16]
uses stacked small-size convolution kernels to increase the net-
work depth, whereas ResNet [25] introduces skip connections to
alleviate the gradient vanishing problem of deep networks, and
the network is further deepened. However, the existing SAR
target datasets are generally small, and the application of deeper
networks can easily lead to overfitting. Therefore, apart from
deepening the networks, other methods should be considered to
improve the ability of target feature extraction.

GoogLeNet [26] proposed by Szegedy won the championship
in the ImageNet large-scale visual recognition challenge com-
petition that year. This model uses a parallel network structure
to obtain multichannel features through different convolution
branches. The size of the convolutional kernel of each branch
is different, which means that the input of the same layer has
multiple receptive fields of different sizes, so it can extract
multiscale features from images.

Inspired by this, convolutional kernels of different sizes are
used to extract features from SAR images. Fig. 1 displays
the results of the feature maps after activation function binary
processing to facilitate observation and analysis. The usage of
3x3 kernels highlights the local features of the SAR images and
divides the target feature maps into multiple small regions, and
the holes in the feature maps make the global contour features
inconspicuous. As the size of kernels increases, the global
contour features of the target are gradually enhanced. But as
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Raw Images Conv.@3%x3 Conv.@5x5 Conv.@7%7
Fig. 1. Multiscale feature maps of SAR targets under different convolution

kernels. The first column is the raw SAR images.

the hole area of the target feature map decreases, the local detail
features are lost by degrees. This phenomenon also reveals that
the SAR targets have multiscale features. However, the number
of multiscale feature channels without any processing is large,
which leads to information redundancy. Therefore, this article
further extracts important features and suppresses unnecessary
features through attention mechanisms and super-class labels.

B. SAR Domain Super-Class Labels

SAR targets contain lots of prior knowledge in the SAR
domain, such as azimuth angle, phase information, etc. [23].
Unlike optical images, SAR images are sensitive to the azimuth
angle. Under the side-view imaging mode of SAR, some areas
will lose echo signals due to the blocking of the target itself,
and the attribute scattering center (ASC) that reflects the target
structure also changes with the azimuth angle [26]. The SAR
phase also contains additional information. However, the final
focused image will have phase errors due to motion errors and
terrain factors. The introduction of these two prior knowledge
can improve the recognition rate [27], but it is easily affected by
various external factors and becomes unstable.

The above-mentioned prior knowledge in the SAR domain
will be affected by the signal-to-noise ratio of SAR images, and
the extraction results of prior information may be contaminated.
For the SAR image classification problem, the SAR target
category labels are also prior knowledge. While recognizing
unknown targets, our humans use prior knowledge to determine
the high-level super-class labels of objects first and then identify
them finely [24]. Inspired by human recognition of objects,
super-class labels are higher level semantic divisions of classes
with similar features. The conception of super-class was orig-
inally applied to the dataset with unbalanced class distribution
[28], which helps minority classes benefit from abundant sam-
ples under the same super-class. It is interesting to notice that
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Fig. 2. Super-class label division under the MSTAR dataset, black represents
the original fine-class labels, and red represents the super-class labels.

the SAR targets can also abstract the super-class labels, which
are more stable than other prior information, because when the
SAR observation parameters and the scene change, the prior
information of azimuth angle and phase may change, but the
super-class labels will not change. In this way, the super-class
labels can be stably used for SAR target recognition ignoring
the influence of external factors.

Taking the MSTAR dataset as an example, Fig. 2 shows the
super-class labels divided by ten categories of targets, in which
the black classes under each optical image represent original
fine-class labels, and the red classes represent super-class labels.
BMP2, BRDM2, BTR60, and BTR70 are all armored vehicles,
so they belong to a super-class label, whereas T62 and T72
belong to different models of tanks, so they are divided into a
super-class label. The rest of the vehicles have no common char-
acteristics and belong to their labels. MSA-SCNN introduces
super-class labels to guide the network to filter multiscale fea-
tures so that the feature difference between categories increases
and the generalization ability of the model is improved.

III. MSA-SCNN CLASSIFICATION METHOD

In this section, a novel SAR classification method MSA-
SCNN is proposed. This approach combines multiscale feature
fusion with the attention module to improve the integrity of SAR
target feature representation. Meanwhile, it introduces super-
class labels to increase the multiscale feature difference between
categories. The basic structure of the MSA-SCNN model will
be described. Then, the configuration of training implementation
will be given.

A. Structure of MSA-SCNN

The basic structure of the proposed MSA-SCNN is shown
in Fig. 3, which adopts multichannel parallel convolutional
layers for feature extraction, and each convolutional layer uses
convolutional kernels of different sizes, where n is the num-
ber of channels, and the convolutional kernel size is Snx.Sn.
MSA-SCNN extracts multiscale features and fuses them after
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Structure of MSA-SCN for SAR target classification. Blocks of different colors represent network layers of different structures. Green blocks: Convolution

kernels of different sizes and nonlinear activations. Red blocks: Convolutional block attention module (CBAM). Blue blocks: Max-pooling layers. Yellow blocks:
Fully connected layers. Orange blocks: Softmax classifier. S1, 52, ..., Sn: The different sizes of the convolutional kernel.

each convolutional layer to ensure the integrity of the SAR
targets. In addition, MSA-SCNN uses attention modules after
convolutional layers, which focus on important features, sup-
press unnecessary features, and avoid information redundancy.
In the classification stage, MSA-SCNN is divided into the
super-class branch and the fine-class branch. The subsequent
convolutional layer adopts 3 x 3 small-sized kernels to extract
deeper high-level semantic features. Then, the features extracted
by the super-class branch are fused into the fine-class branch,
which increases the feature difference between categories and
assists fine classification. Finally, the softmax classifier assigns
a posterior probability to each target category. The outputs of
the two branches correspond to fine-class labels and super-class
labels. And the total loss of MSA-SCNN is the sum of the loss
weights of the two branches. The details of those layers and
training operations are described in the rest of this section.

B. Multiscale Convolution and Pooling

The convolutional layer is the core block in our network, and it
can automatically extract the multiscale features from the input
SAR images. The small-size and large-size kernels can extract
local feature information and global contour feature information,
respectively. So MSA-SCNN uses parallel multiscale convolu-
tion kernels for feature extraction and fusion.

Each convolutional layer has n convolution kernels of differ-
entsizes (S1 x S1,S2 X Sa, ..., S, X Sn).LetaZ(-lfl)betheith
feature I(nap in the [ — 1 convolutional layer in the proposed net-

D)

work, a

5 n 18 the jth output feature map of the nth convolutional

channel in this layer. Suppose that wV

;7. ndenote the convolutional
kernel operating the ith input feature map to the jth output feature
map in the nth convolutional channel, and bg»l_)n is the jth bias.
The forward propagation process in the convolutional layer can

be expressed as

A0 =3 al w0 b, (1)
o, = o (=")) @)

where z](l_)n denotes the convolutional result before nonlinear
activation. The symbol * denotes the convolutional operation,
and o (+) is the nonlinear activation function. MSA-SCNN adopts
the rectified linear unit (ReLLU) [29] function as the nonlinear
function, which avoids problems of gradient explosion and
disappearance. In addition, the calculation of ReLU is easy and
efficient.

After multiscale convolution, the network will fuse these
multiscale features. To ensure that feature information of each
scale is not lost, MSA-SCNN concatenates these multiscale
features. Let f,(Ll)be the output feature map of the nth channel in
the /th convolutional layer and F(Vis the fused feature of the /th
convolutional layer, the feature fusion can be expressed as

FO =110 150, D] 3)

Since the 1 x 1 kernel is unhelpful in increasing the receptive
field, the too-large kernel will repeatedly extract feature infor-
mation when it slides on the SAR image with a small stride
[22]. Therefore, in the proposed MSA-SCNN, the number of
convolutional channels is four, and the sizes of kernels are S; =
3,59 =5,53 = 7,54 = 9.The multiscale features extracted by
them are complementary to the fusion process and can represent
the SAR target features better.

The pooling layer is generally connected after the convolu-
tional layer to reduce the dimension of the feature map, thereby
reducing the parameters of the entire network. MSA-SCNN
adopts the maximum pooling [30] and calculates the maximum
response of the pooling window for output.

C. Multiscale Attention Module

The SAR features after multiscale convolutional have mul-
tiple channels, resulting in a lack of attention to significant
features and information redundancy. Interestingly, attention not
only tells where to focus but also improves the representation of
interests. MSA-SCNN adopts the CBAM [31] to focus on im-
portant features and suppress unnecessary ones. Fig. 4 shows the
structure of CBAM, which includes channel attention and spatial
attention modules. Given a multiscale feature F' € RE*H*W ag
input, average-pooled features and max-pooled features are first
generated in each channel. Both features are then forwarded to
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Fig. 4.

shared fully connected layers and the output features are merged
using elementwise summation. Finally, the channel attention
weight We € RO is obtained through the activation func-
tion. The channel attention process can be summarized as

We = o (FC (AvgPool (F)) + FC (MaxPool (F')))  (4)
F'=F®Wq (5)

where F'is the channel attention feature, the symbol ® denotes
elementwise multiplication, and o (-)denotes the sigmoid func-
tion.

Different from the channel attention, the spatial attention
focuses on the interspatial relationship of multiscale features,
which is complementary to the channel attention. Average-
pooled features and max-pooled features along the channel
axis are first generated. Applying pooling operations along the
channel axis is shown to be effective in highlighting infor-
mative regions [32]. Then, both features are concatenated and
forwarded to a convolution layer to produce spatial attention
weight Wg € RUH*W The spatial attention process can be
summarized as

Ws = o (Conv.@1 x 1 ([AvgPool(F"), MaxPool (F”)])) (6)
F'=F @Wg @)

where F”is the channel and spatial attention feature, the
Conv.@1 x 1 represent a convolution operation with the filter
sizeof 1 x 1.

After the introduction of the CBAM, the SAR multiscale
features are further filtered on the channel. Meanwhile, in the
space, the model more focuses on target features and suppresses
the background clutter.

D. Super-Class and Fine-Class Branches

MSA-SCNN introduces the prior knowledge of super-class
labels into CNN and creates two classification branches. The
structure of the branches is shown in Fig. 5. The outputs of the
two branches correspond to the fine-class and super-class labels,
respectively. Generally, the fine-class labels are the original
labels of the SAR target, and the super-class labels are the
high-level classes reassigned for SAR targets. If several fine
classes have the same attribute characteristics, they are assigned
a super-class label. Let [C, Cs, ..., C,,|be the fine-class labels

Structure of CBAM includes a channel attention module and a spatial attention module. GAP: Global average-pooling. GMP: Global max-pooling.

N — —
Fine-class Concatenate
branch Fine-class
Conv.1 Conv.2 Max 3 Soft
@3x3 @3x3 CBAM Pool 6 FC may |— Output
(FCO)
Feature — )
Map
N ) —  —
Super-class
Conv.1 | | Conv.2 Max Soft Output
CBAM FC — bubp
super-class | @3x3 @3x3 Pool max (SCO)
branch
- __Jo _JU )
Fig. 5. Super-class and fine-class branches for SAR target classification.

of SAR targets, and [S1, So, ..., S,]|be the super-class labels,
where m and n represent the number of fine-class and super-class
labels, Then the number of super-class labels must be less than
or equal to the number of fine-class labels (i.e., n < m).

Due to the small feature size after max pooling, the subsequent
convolutional layers use small size 3 x 3 kernels to extract deep
features. The super-class branch extracts the common features
of each super-class to increase the difference between classes,
whereas the fine-class branch pays more attention to the fine
features of different classes. Therefore, the CBAM attention
module is also added after the convolutional layer to make the
two branches pay different attention.

To increase the feature difference between categories and
further improves the generalization ability of the model, the
features extracted from the super-class branch are fused into the
fine-class branch. Let f, is the feature extracted by the fine-class
branch, and f; is the feature extracted by the super-class branch.
The feature fusion strategy is also concatenating on the feature
channel, ensuring that the SAR target feature information is not
lost. F, the final feature of the fine-class branch after feature
fusion, can be expressed as

F:[fmfs]' ®)

The fused feature F will be sent to the fully connected layer
and the softmax classifier for final classification.
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E. Fully Connected Layer, Dropout, and Softmax

The fully connected layer is essentially equivalent to the
spatial transformation of the feature. The feature information
will be converted into feature vectors and input into the fully
connected layer. Let F}, be the feature vector of the fused feature,
the forward propagation process of the fully connected layer is
expressed as

zW =5 (F, - W + B) ©))

where W and B are the weights and bias of the fully connected
layer, respectively, and Z() is the output of the Ith fully con-
nected layer. Since the fine-class branch fuses the features of
the super-class branch, and the length of the feature vector
after flattening is longer, the number of neural units in the fully
connected layer is also more than that of the super-class branch.
When there are fewer training samples, the deep network will
have overfitting problems, resulting in the bad performance of
the model on the test set. This article uses the dropout method
[33] to suppress this problem effectively. It sets the output of each
hidden unit to zero randomly. Since the parameters of the fully
connected layer are relatively large, our proposed MSA-SCNN
applies the dropout scheme due to complicated parameters in
the fully connected layer and sets the dropout probability to 0.5.
The softmax classifier is often adopted for multitarget classi-
fication by connecting to the back of the fully connected layer
to provide the posterior probability of each category. Let the
output of the last fully connected layer be Z = [z1, 29, ..., z¢],
then the corresponding posterior probability for each class can
be formulated as
p(0i12) = &)
2 =1 0xp(2;)
where y; denotes the ith target category and C indicates the
total number of categories. The output of the softmax classi-
fier is a C-dimensional vector, representing the probability of
each category. For the fine-class and super-class branches, the
softmax output vector dimensions correspond to the number of
fine-class labels and super-class labels, respectively. The two
branches compute the posterior probabilities for their respective
classes.

(10)

FE. Cost Function and Backpropagation
The cost function of multiclassification is the cross-entropy
loss, which is defined as

C
L(w,b) = =Y yilogp (yi| Z;w, b)

i=1

Y

where w and b are trainable parameters in the network. In
the MSA-SCNN model, there are two classification branches
corresponding to two cost functions. Let Ly. and L. be the
fine-class and super-class cost functions, and L is the total cost
function. They are formulated as

Lyc(wi,bi) = = > wilogp (y:l Zye; wi, by)

i=1

(12)
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Fig. 6. Optical images and corresponding SAR images of military targets in
the MSTAR dataset.

Lac(wa,ba) = = yilogp (yil Zec; wa, bo) (13)

=1
L(w7b) =A- Lsc(wl, bl) + (1 — )\.) . Lfc(U)Q,bQ) (14)

where m and n represent the number of fine-class and super-class
labels, and A is the weight coefficient of the super-class cost
function, which is in the range of (0, 1). The total loss is the
weighted sum of the super-class loss and the fine-class loss.
If the value of A is too large, the feature extraction will focus
more on the super-class labels during training. The A value of
MSA-SCNN in this article is 0.5, considering that the super-
class loss and the fine-class loss are equally crucial. Different A
have various impacts on the accuracy, which will illustrate in the
experimental section. w and b can be optimized by continuously
minimizing the cost function during the training process, which
is favorable to the classification accuracy.

Although the proposed MSA-SCNN has two branches, the
way of training parameters is similar to one-branch approaches.
And backpropagation [34] can still be used to compute gradients
and update network parameters.

IV. EXPERIMENTS AND ANALYSIS

A. Datasets and Random Cropping

The SAR image datasets used in this article are the MSTAR
dataset [35] and the FUSAR-Ship dataset [36]. Both datasets are
detailed in the following.

1) MSTAR Dataset: The dataset is acquired by the Sandia
National Laboratory, operating at X-band with a high resolution
of 0.3 m and HH polarization. The MSTAR dataset includes ten
different classes of military vehicles (rocket launcher: 2S1; ar-
mored carrier: BMP2, BRDM?2, BTR60, and BTR70; bulldozer:
D7; tank: T62 and T72; truck: ZIL131; and air defense unit:
7ZSU23/4), which are captured under different conditions, such
as aspect angle, depression angle, and serial number. The optical
images of the targets and their corresponding SAR images are
displayed in Fig. 6. To comprehensively evaluate the classifi-
cation performance of the proposed MSA-SCNN, the standard
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TABLE I
NUMBER OF TRAINING AND TEST IMAGES FOR THE SOC
EXPERIMENTAL SETUP

. Number
Super-classes | Fine-classes -
Train (17°) | Test (15°)
Rocket launcher 281 299 274
BMP2 233 196
Armored carrier BRDM2 298 274
BTR60 256 195
BTR70 233 196
Bulldozer D7 299 274
T62 299 273
Tank T72 232 196
Truck ZIL131 299 274
Air defense unit ZSU23/4 299 274

operating condition (SOC) and extended operating condition
(EOC) [35] were used to test the algorithm.

The SOC refers to that the serial numbers and target config-
urations in the testing set are the same as those in the training
set, but with different aspects and depression angles. Table I
lists a summary of the SOC experimental setup, showing that
SAR images with the depression angle of 17° and 15° belong to
the training set and the testing set, respectively. The proposed
MSA-SCNN adopts two kinds of labels (fine-class labels and
super-class labels). According to the common attributes of the
military vehicles, ten fine-class labels are divided into six super-
class labels, named rocket launcher (2S1), truck (ZIL131), tank
(T62 and T72), armored carrier (BTR60, BTR70, BRDM?2, and
BMP2), air defense units (ZSU23/4), and bulldozer (D7).

The EOC is closer to real battlefield situations and this article
selects the configuration-variant (EOC-C) and version-variant
(EOC-V) datasets. The EOC-C refers to the addition or removal
of discrete components on the target, such as removing the fuel
barrel on the T72. In addition, the EOC-V refers to target version
variation, which means that after some armored vehicles are
finalized, they will be upgraded, such as adding the state-of-
the-art reactive armor or replacing the main gun with a larger
caliber. The EOC dataset contains two BMP2 variants (9566 and
c21) and ten T72 variants (812, S7, A04, A05, A07, A10, A32,
A62,A63, and A64). Optical images and the corresponding SAR
images of the eight T72 targets are shown in Fig. 7. It can be
seen that the T72 variants are almost indistinguishable, which
brings challenges to SAR target recognition.

A summary of EOC-C and EOC-V for training and testing
datasets is listed in Tables II and III. There are four target
types (BMP2, BRDM?2, BTR70, and T72) for EOC training sets
with a depression angle of 17°. The EOC-C test set has two
target types (BMP2 and T72) with seven different configuration
variations, and EOC-V has one target type (T72) with five
version variations. The EOC dataset is of great significance for
evaluating the generalization ability of the MSA-SCNN model.

2) FUSAR-Ship Dataset: The dataset is constructed by 126
original Gaofen-3 images, covering a large variety of sea, land,
coast, river, and island scenarios. It includes different classes of
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Fig. 7.  Optical images and corresponding SAR images of the T72 variants.

TABLE II
NUMBER OF TRAINING IMAGES FOR THE EOC-C AND EOC-V EXPERIMENTAL
SETUP (DEPRESSION: 17°)

Super-classes | Fine-classes | Types | Number
BMP2 9563 233
Armored BRDM2 | E-71 | 298
carrier
BTR70 c71 233
Tank T72 132 232
TABLE III

NUMBER OF TEST IMAGES FOR THE EOC-C AND EOC-V EXPERIMENTAL
SETUP (DEPRESSION: 15° AND 17°)

Datasets glggseé; clfeilrslseés Types | Number
Armored | BMP2 | 9566 428
carrier BMP2 2l 429
T72 | 812 426
EOC-C T72 | Ao4 573
Tank 172 | A0s 573
72 | A07 573
T72 | Al0 567
T72 S7 419
72 | A32 572
pocv | Tank | 10 | Ae2 | 573
72 | A63 573
T72 | A64 573

ship chips as well as samples of strong scatterer, bridge, coastal
land, islands, sea, and land clutter. In this article, ten categories
of samples are used to verify the effectiveness of the proposed
MSA-SCNN model, and the SAR images of ten categories are
shown in Fig. 8. In addition, a summary of FUSAR-Ship for
training and testing datasets is listed in Table IV. Like the
MSTAR dataset, the fine-class labels are divided into several
super-class labels, named ships (cargo, fishing, tanker, and other
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Fig. 8. SAR images of ten categories in the FUSAR-Ship dataset.

TABLE IV
NUMBER OF TRAINING AND TEST IMAGES FOR THE FUSAR-SHIP
EXPERIMENTAL SETUP

. Number
Super-classes Fine-classes -

Train | Test

Cargo 366 156

. Fishing 248 | 106

Ships Tanker 150 | 64
Other ships 312 | 133

Bridges 1023 | 438

Lands Coastal lands 707 | 303
Land patches 1137 | 487

Sea Sea patches 1250 | 535

Sea clutter waves 1378 | 590

Strong scatterer | Strong false alarms | 299 | 128

ships), lands (bridges, coastal lands, and land patches), sea (sea
patches and sea clutter waves), and strong scatterer (strong false
alarms).

Both MSTAR and FUSAR-Ship datasets have different sizes
of images for categories. To ensure that the SAR image size is
the same as the network input size (88 x88), this article adopts
the random cropping method to process the data uniformly. Ten
image slices are cropped for each SAR image as the training set,
one of which is the center crop as the raw SAR image dataset,
and the rest nine are randomly cropped as an expanded dataset.
The randomly cropped SAR target may be incomplete, which
is helpful to improve the generalization ability of the network,
while avoiding the overfitting problem. Fig. 9 shows the result
of randomly cropping one of the SAR images.

9011

M @

Fig. 9. Schematic diagram of random cropping from the MSTAR dataset.
(1) Raw SAR image. (2) Cropped SAR image slices. The first one on the top
row is a center-cropped SAR image slice, and the remaining nine are randomly
cropped SAR image slices.
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Fig. 10. Confusion matrix of fine-class classification result by MSA-SCNN
under SOC experiment (Accuracy rate: 98.31%).

B. Results and Analysis Under SOC

In this experimental setup, the performance of the proposed
architecture will be evaluated under the SOC dataset. The super-
class and fine-class labels are set according to Table I. And
all the training SAR images are randomly cropped to expand
the datasets. Each convolutional layer has four channels with
dimensions 3 x 3,5 x 5,7 x 7, and 9 x 9. Meanwhile,
considering that the super-class and fine-class losses are equally
significant, the super-class loss weight A is set to 0.5.

Fig. 10 shows the fine-class classification performance of the
proposed MSA-SCNN in the form of the confusion matrix on the
SOC experiment. The confusion matrix is the visualization tool
used to evaluate the target classification performance, whose
rows correspond to the true category labels of the target, and
columns represent the predicted category labels of the target.
The total accuracy of ten fine-class classifications is calculated
to reach 98.31%. From Fig. 10, the diagonal elements are much
larger than the confusion matrix in other positions, which means
MSA-SCNN has high classification accuracy for each target type
in the SOC experiment. For the ZIL131 and ZSU?23/4 categories,
the accuracy even achieves 100%.

MSA-SCNN also has classifier output in the super-class
branch. Fig. 11 shows the super-class classification performance
in the form of a confusion matrix on the SOC experiment. It can
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TABLE V
CLASSIFICATION ACCURACY OF VARIOUS TARGETS IN DIFFERENT METHODS UNDER SOC EXPERIMENT (%)

Method 2S1  BMP2 BRDM2 BTR60 BTR70 D7 T62 T72  ZIL131 ZSU23/4 | Total
MSRIHL-CNN [21] | 85.77  82.56 96.35 96.41 98.98 98.18 91.21 100 98.54 93.80 94.14
VDCNN [37] 96.30  98.35 98.70 93.10 96.60 9945 9795 9895 99.25 99.45 97.81
VGG-Net [16] 95.71  95.63 97.81 94.87 98.32  99.10 9793 97.81 99.64 99.71 97.75
Res-Net [25] 93.07 99.49 99.27 91.10 89.80  98.54 90.11 9031 97.81 100 95.38
ViT-B/16 [38] 95.27  96.41 98.46 96.41 91.84 100 99.17 98.95 100 100 97.98
Swin-T [39] 96.91 9231 95.25 96.92 100 100 9891 9949  99.27 100 98.06
CA-MCNN [40] 99.64  97.27 99.27 99.64 98.98  99.63 99.64 93.85 100 94.16 97.81
MKSFF-CNN [22] | 93.80 94.36 97.45 98.46 99.49  99.27 9524 100 99.27 97.81 97.44
MSA-SCNN 97.08 95.92 98.54 95.39 98.47  99.27 98.90 97.96 100 100 98.31
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Fig. 11. Confusion matrix of super-class classification result by MSA-SCNN
under SOC experiment (Accuracy rate: 98.02%).

be seen that the classification accuracy under six super-class
labels reaches 98.02%, which indicates that the features learned
by the MSA-SCNN model can distinguish super-classes.

In order to comprehensively validate the superiority of the
proposed MSA-SCNN, a series of commonly used SAR target
classification methods are compared with the proposed MSA-
SCNN. These methods include MSRIHL-CNN [21], VDCNN
[37], VGG-Net [16], Res-Net [25], ViT-B/16 [38], Swin-T [39],
CA-MCNN [40], and MKSFF-CNN [22]. MSRIHL-CNN op-
timally fuses the deep features extracted by CNN and the local
edge features extracted by Haar-like template. VDCNN is a mul-
tiview deep neural network that fuses SAR image features from
multiple views for the same target layer by layer. VGG-Net and
Res-Net are two commonly used deep neural network models.
ViT and Swin-T are current existing state-of-the-art methods
for image classification. CA-MCNN adopts the ASC model to
extract SAR target component information and then fuses it with
the deep features of CNN to improve the recognition accuracy.
MKSFF-CNN uses convolutional kernels of different sizes to
extract the multikernel-size deep features of the SAR target, and
then, these features are fused in an optimal way to acquire the
lowest loss.

Table V displays the classification accuracy of these meth-
ods under the SOC experiment. MSRIHL-CN, VDCNN, and
CA-MCNN introduce the prior knowledge in the SAR domain,

which improves the completeness of SAR feature representation.
However, the way to acquire prior knowledge is very compli-
cated, and the prior information is easily changed by external
factors. VGG and Res-Net increase the network depth to extract
the deep features of the SAR target and improve the classi-
fication accuracy. However, they use fixed-size convolutional
kernels, which lose part of the scale features of SAR images.
MKSFF-CNN uses convolutional kernels of different sizes to
extract the multiscale features, but does not pay enough attention
to significant features and has information redundancy. ViT and
Swin-T replace the backbone network from CNN to transformer
structure, and the accuracy is improved.

The MSA-SCNN proposed in this article focuses on important
features and suppresses unnecessary features due to combining
multiscale feature fusion with the attention module. Meanwhile,
the prior knowledge of super-class labels is introduced to in-
crease the multiscale feature difference between categories. The
final accuracy rate reaches 98.31%, which is higher than other
methods. In particular, the 2S1, T62, ZIL131, and ZSU23/4 cat-
egories have higher accuracy, and it is found that these categories
belong to different super-class labels, indicating that the model
has indeed learned the different features of super-classes. When
fusing features into the fine-class branch, the differences be-
tween the categories are increased, and the recognition accuracy
is also improved.

To more intuitively explain the effectiveness of MSA-SCNN,
the raw SAR test images and the output vectors of the fully
connected layers of MSA-SCNN are mapped to a 2-D Euclidean
space by the t-distributed stochastic neighbor embedding (t-
SNE) [41] algorithm. The t-SNE is a powerful dimensionality
reduction algorithm that can help us study the distribution char-
acteristics of high-dimensional data in low-dimensional space.

Fig. 12 illustrates the input SAR images and the fine-class
classification output of Res-Net, MKSFF-CNN, and MSA-
SCNN. It can be observed that the visualization results of the raw
samples are mixed and difficult to classify. The outputs of Res-
Net and MKSFF-CNN have been significantly improved, but the
feature distribution is uneven, which is easy to misidentify. How-
ever, after being processed by MSA-SCNN, the samples with
the same class label became closer, and the feature distribution
distances between categories are farther, so they are easier to
be recognized. Fig. 13 illustrates the super-class classification
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Visualization of fine-class classification result. Points with the same color belong to the same target class. (a) Input of SAR images under the fine-class

labels. (b) Output of Res-Net. (c) Output of MKSFF-CNN. (d) Output of the fine-class branch in MSA-SCNN.
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Fig. 13. Visualization of super-class classification result of MSA-SCNN.
Points with the same color belong to the same target class.

output of MSA-SCNN. The introduction of super-class labels
also makes the super-class samples more clearly separated from
each other.

C. Results and Analysis Under EOC

In the EOC experiment, all training SAR images of EOC are
also randomly cropped to expand the datasets. Each convolu-
tional layer has four channels with dimensions 3 x 3,5 x 5,
7 x 7,and 9 x 9. Meanwhile, considering that the super-class
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0.0 & <
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(a) (b)
Fig. 14. Confusion matrix of classification result by MSA-SCNN under

EOC-C experiment. (a) Fine-class classification result. Accuracy rate: 98.46%.
(b) Super-class classification result. Accuracy rate: 98.57%.

and fine-class losses are equally significant, the super-class loss
weight X is set to 0.5.

Figs. 14 and 15 show the fine-class and super-class classifi-
cation performance of the proposed MSA-SCNN in the form of
the confusion matrix on the EOC-C and EOC-V experiments. It
can be seen from the figures that both the fine-class accuracy and
the super-class accuracy are around 97%. Especially for the T72
variants A04, A32, and A62, the accuracy has reached 100%.
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TABLE VI
CLASSIFICATION ACCURACY OF VARIOUS TARGETS IN DIFFERENT METHODS UNDER EOC-C EXPERIMENT (%)

Method BMP2-9566 BMP2-c21 T72-812 T72-A04 T72-A05 T72-A07 T72-A10 | Total
CGM [13] 85.95 89.95 78.87 70.16 87.61 76.79 82.01 81.22
Res-Net [25] 83.88 86.71 98.30 99.68 99.43 98.48 96.47 95.24
VDCNN [37] 92.55 95.75 98.75 91.57 99.15 90.52 96.90 95.45
ViT-B/16 [38] 93.46 95.80 98.35 95.11 96.68 91.27 94.18 94.87
Swin-T [39] 90.65 93.24 97.42 96.34 98.08 95.81 97.88 95.85
MSA-SCNN 94.39 94.41 99.30 100 100 100 99.29 98.46
TABLE VII

CLASSIFICATION ACCURACY OF VARIOUS TARGETS IN DIFFERENT METHODS UNDER EOC-V EXPERIMENT (%)

Method T72-S7 T72-A32  T72-A62 T72-A63 T72-A64 | Total
CGM [13] 85.92 83.39 77.31 71.20 68.94 76.86
Res-Net [25] 98.09 98.75 96.14 95.68 93.63 96.37
VDCNN [37] 94.72 99.62 96.87 93.12 92.95 95.46
ViT-B/16 [38] | 98.60 97.73 90.23 92.67 99.28 95.50
Swin-T [39] 97.90 99.48 96.86 93.19 96.90 96.86
MSA-SCNN 98.81 100 100 100 99.13 99.63
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Fig. 15. Confusion matrix of classification result by MSA-SCNN under
EOC-V experiment. (a) Fine-class classification result. Accuracy rate: 99.63%.
(b) Super-class classification result. Accuracy rate: 99.70%.

Despite the targets having lots of variants, after introducing the
super-class labels and attention module, the common features of
the same super-class can be extracted so that the target can be
wellrecognized. These results also substantiate that the proposed
network can adapt to the target classification of different types
and has a good generalization ability.

To sufficiently verify the superiority of the proposed MSA-
SCNN under the EOC experiment, this section compares the
MSA-SCNN with other methods under the EOC experiment.
Tables VI and VII display the EOC-C and EOC-V classification
accuracy of different methods. It can be seen that the CGM has
lower accuracy than the deep learning methods and cannot effec-
tively extract the target features. Although Res-Net increases the
network depth, it cannot fully represent SAR target features only
by fixed-size convolutional kernels. The performance of ViT and

Swin-T on EOC is not as good as that on SOC, and the accu-
racy is similar to the CNN methods. VDCNN fuses multiview
SAR target feature information, but it cannot effectively extract
common features from variant targets, resulting in no significant
improvement in classification accuracy. The MSA-SCNN com-
bines multiscale feature fusion with the attention module to get a
more complete SAR target feature representation and introduces
super-class labels for different category types. Therefore, the
network learns the common features of the super-class and
assists in the final fine classification. And the MSA-SCNN
can adapt to different types and configuration variants of the
target, with 98.46% accuracy on EOC-C and 99.63% accuracy
on EOC-V. Finally, these results also indicate that the proposed
MSA-SCNN outperforms other methods.

D. Results and Analysis Under FUSAR-Ship

The FUSAR-Ship dataset has a variety of complex categories,
including ships, lands, sea clutter waves, strong scatterers, etc.,
which brings huge challenges to SAR image classification.
Meanwhile, it can also verify the effectiveness of the proposed
method MSA-SCNN. Figs. 16 and 17 show the fine-class and
super-class classification performance of the proposed MSA-
SCNN in the form of the confusion matrix. It can be seen from the
figures that the fine-class accuracy and the super-class accuracy
are 94.05% and 98.44%, respectively.

Similar to the previous experiments, this section compares
MSA-SCNN with other methods, and the accuracy of each
category is recorded in Table VIII. In terms of total accuracy,
the proposed MSA-SCNN is more than 10% higher than other
CNN methods. ViT and Swin-T, the two optimal image classifi-
cation methods, also have higher accuracy than the conventional
CNN methods. In terms of each category, the cargo, fishing,
and tanker categories have lower accuracy than the others in all
methods, whereas MSA-SCNN introduces super-class labels,
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TABLE VIII
CLASSIFICATION ACCURACY OF VARIOUS CATEGORIES IN DIFFERENT METHODS UNDER FUSAR-SHIP EXPERIMENT (%)
Method Bridges Cargo Coastal Fishing Land  Other Sea Sea Strong  Tanker | Total
lands patches  ships clutter patches  false
waves alarms
VGG-Net [16] 89.50 53.21 78.88 37.74 77.00 4586 95.76 95.51 80.47 50.00 | 81.67
Res-Net [25] 64.38 69.87 77.23 34.91 80.49  91.73 9847 97.94 96.88 87.5 83.71
ViT-B/16 [38] 98.40 69.23 98.35 58.49 97.54 8120 99.15 98.69 93.75 65.62 | 93.78
Swin-T [39] 98.63 79.49 95.71 44.34 96.71 66.16  98.64 97.76 92.97 70.31 | 92.55
MKSFF-CNN [22] 91.78 66.67 89.77 50.94 89.53 82.71  98.31 98.69 76.56 78.12 | 89.59
MSA-SCNN 97.26 79.49 93.07 60.38 96.30 87.97 98.81 98.69 92.19 84.38 | 94.05
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Fig. 16. Confusion matrix of fine-class classification result by MSA-SCNN
under FUSAR-Ship dataset (Accuracy rate: 94.05%).
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Fig. 17.  Confusion matrix of super-class classification result by MSA-SCNN
under FUSAR-Ship dataset (Accuracy rate: 98.44%).

which increases the feature difference between categories and
makes them easier to distinguish.

All the experiments carried out have manifested that the
proposed MSA-SCNN has a good recognition capability in both
the MSTAR and FUSAR-Ship datasets, and clearly verify the
superiority of the proposed framework.

weights under SOC experiment.

E. Analysis of Super-Class Loss Weight )\

This section gives the classification performance of the
proposed MSA-SCNN model under different super-class loss
weights A. The experiments are carried out under the SOC
dataset, with ten fine-class and six super-class labels. All condi-
tions follow the settings in Table I and only change the different
super-class loss weights A. Fig. 18 clearly shows the change in
fine-class and super-class accuracies with a line graph.

It can be seen from the figure that with the increase of A,
the super-class and fine-class accuracies both increase first and
then decrease. When X is 0.5, the super-class and fine-class
losses are considered equally important, and the fine-class
accuracy reaches the maximum value of 98.31%. However, the
super-class accuracy is not the maximum at this time. When A
is 0.6, the super-class accuracy reaches the maximum value of
98.38%. The model trained with a larger A pays more attention
to the super-class features. When the X is too large, the fine-class
branch has little effect on the network, and the learned features
are not enough to distinguish fine classes. In this way, the total
loss of the network is too large, and the accuracy of super-class
and fine-class both decreases.

When A approaches 0, the network hardly pays attention to
the features extracted by the super-class branch, which reduces
the final feature difference of the target. So the super-class and
fine-class accuracy are both low. These experiments also certify
the importance of introducing super-class labels. In practical
applications, the value of A can be flexibly changed as needed.
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Fig. 19. CBAM visualization results of super-class and fine-class branches of
MSA-SCNN.

F. Attention Visualization

To analyze the effect of the attention module CBAM, we
apply the Grad-CAM [42] to the super-class and fine-class
branches using SAR images from the SOC dataset. Grad-CAM
is a recently proposed visualization method that calculates the
importance of the spatial locations in convolutional layers. By
observing the regions that MSA-SCNN has considered impor-
tant for predicting a class, we attempt to look at how this network
is making good use of multiscale features.

The best visualizations are often obtained after the deep-
est convolutional layer in the network, and localizations get
progressively worse at shallower layers [42]. Therefore, this
article selects the last CBAM layer features of the super-class
and fine-class branches in MSA-SCNN to generate visualiza-
tion results. Fig. 19 illustrates the CBAM visualization results
of different branches of MSA-SCNN, and Grad-CAM results
clearly show areas of interest. It can be seen that different
branches pay different attention to SAR targets. The super-class
branch focuses on the global contour features of the SAR target,
whereas the fine-class branch pays more attention to the local
detail features. Therefore, the two branches make full use of the
multiscale features of the SAR target. In addition, the intro-
duction of the attention module makes the model focus on the
target features, and the background clutter features of the SAR
image are suppressed. Finally, MSA-SCNN fuses the features
of the two branches to further increase the multiscale feature
difference between categories and improve the generalization
ability of the model, which is well proved by the EOC and the
FUSAR-Ship experimental results.

G. Classification Accuracy Evaluation Under Small-Size
Training Datasets

In order to show that the proposed MSA-SCNN still has
good performance even with a small sample size, a series of
comparative experiments are carried out under the incomplete
SOC datasets. A certain proportion of samples are randomly
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Fig. 20. Classification accuracy of different methods under a small sample
size in the SOC datasets.

TABLE IX
NUMBER OF PARAMETERS, MODEL SIZE, AND COMPUTATION TIME SPENT BY
EACH METHOD

Number of | Model Computation

Method parameters size time per

/10° /MB batch/s
VGG-Net [16] 17.82 203 0.225
Res-Net [25] 38.21 436 0.274
VDCNN [37] 15.61 85 0.116
ViT-B/16 [38] 85.81 327 0.118
Swin-T [39] 27.53 105 0.112
MKSFF-CNN [22] 71.73 348 0.095
MSA-SCNN 6.91 27 0.107

selected for each category in SOC datasets for training. Fig. 20
shows the classification accuracy of each method under different
numbers of training samples with the line graph.

It can be seen from Fig. 20 that no matter how the proportion of
samples changes, the classification accuracy of MSA-SCNN is
always higher than that of other methods. Even if the proportion
of the sample is 0.2 in each category, the classification accuracy
of MSA-SCNN can reach 87.21%. This can be explained by
the introduction of the attention module and super-class labels,
which makes MSA-SCNN easier to focus on important features
and increase the feature differences between categories with
small samples. Meanwhile, MSA-SCNN avoids the problem of
overfitting and improves the generalization ability of the model.

H. Model Size and Computing Efficiency Evaluation

The computation time is an important indicator of the effi-
ciency of the classification method. All experiments were run
under the same computing station, which is composed of an
Intel Core 17-7700K CPU with 4.20 GHz frequency, a 32.0 GB
memory, and an Nvidia GeForce RTX 3090 GPU with 24.0
GB memory. The number of parameters, model size, and the
computation time per batch including 64 SAR images for all
models are recorded in Table IX.
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TABLE X
RESULTS OF THE ABLATION EXPERIMENT

Multi-scale Attention Super- Size of Accuracy
feature module class convolutional (%)
fusion CBAM branch kernels

Yes No Yes No | Yes | No

v v v 3X3 94.32
v v 4 3X3 96.13
v v v 3X3 96.48
v v v 3X3 97.13
v v v 3x3 and 5%5 97.56
v v v 3x3 and 7x7 97.44
v v v 5%5 and 7x7 97.26
v v v 5x5 and 9x9 97.13
v v v 3x3,5x5, and 7x7 98.26
v v v 3x3, 5%5, and 9x9 97.93
v v v 5x5, 7x7, and 9x9 97.46
v v v 3x3,5x5,7x7,and 9x9|  98.31

In terms of the model size and parameters, MSA-SCNN is
much smaller than that of other models. This is because the
designed network structure is simple and the number of network
layers is small. Compared to MSA-SCNN, VGG-Net, Res-Net,
and MKSFF-CNN have higher structural complexity, so the
model has more parameters. The ViT model using the trans-
former structure has the largest number of parameters. Swin-T
uses the tiny version, so its model parameters are less than ViT.
MKSFF-CNN fuses the multiscale features of each layer into the
final fully connected layer, resulting in a sharp increase in the
parameters of the fully connected layer. Compared to MKSFF-
CNN, the proposed MSA-SCNN introduces an attention module
to avoid the redundancy of multiscale feature information and
greatly reduce the parameters of the fully connected layer. In ad-
dition, in terms of computation time, MSA-SCNN has a shorter
inference time than VGG-Net and Res-Net with deeper net-
works. MSKFF-CNN has a parallel multiscale feature extraction
network, so the computation time is equivalent to MSA-SCNN.
In general, the proposed MSA-SCNN model has a simpler
structure and shorter computation time than other methods.

1. Ablation Experiment

The ablation experiments are designed under the SOC datasets
to illustrate the superiority of MSA-SCNN objectively and com-
prehensively. The MSA-SCNN is divided into three parts: mul-
tiscale feature fusion, attention module CBAM, and super-class
branch. Table X records the impact of each part on the SAR
target classification performance.

According to Table X, all the multiscale feature fusion, atten-
tion module, and super-class branch methods are beneficial for
enhancing classification accuracy. First, only adding the super-
class branch improves the classification accuracy by about 2%,
reaching 96.48%, demonstrating the effectiveness of super-class
labels in the MSA-SCNN. And only adding the attention module
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MSA-SCNN model combined with two-stage detector for SAR target

also improves the accuracy. Then, after applying convolutional
kernels with different sizes, the feature representation of SAR
targets is more complete and the classification accuracy is better.
When two convolutional kernels of different sizes are combined
and used for feature extraction, the classification accuracy ob-
tained increases by about 3% to reach 97%. When three con-
volutional kernels of different sizes are combined, the accuracy
is further improved. Finally, when convolutional kernels with
sizesof 3 x 3,5 x 5,7 x 7,and 9 x 9 are combined, such as
the proposed MSA-SCNN, the classification accuracy obtained
increases by about 4% to reach 98.31%. In addition, the ablation
experiment also proves that it is reasonable for the proposed
MSA-CNN to choose the convolutional kernels with sizes of
3x3,5%x5,7x7,and 9 x 9 for feature extraction.

J. Combine With Detection Networks

The proposed MSA-SCNN model can be combined with the
detector to achieve the task of SAR target detection. Object
detection methods are usually divided into two-stage detectors
and one-stage detectors. In two-stage detectors, e.g., Faster-
RCNN [43] and FPN [44], the ROIs are generated by the
region proposal module in the first stage. Then, the features of
these proposals are processed by two branches of bounding box
regression and classification. Since the bounding box regression
and classification of the two-stage detector are separated, the
proposed MSA-SCNN can replace the original classification
branch. Fig. 21 shows the combination of MSA-SCNN and the
two-stage detector.

In one-stage detectors, e.g., single shot detector (SSD) [45],
you only look once (YOLO) [46], the network directly predicts
locations and class labels of the potential object at several feature
maps without ROI proposals. Therefore, if MSA-SCNN is to be
combined with the single-stage detector, a separate branch needs
to be added, and this work will be studied in the future.

V. CONCLUSION

This article proposes a novel network called MSA-SCNN for
SAR target classification. First, this method combines multiscale
feature fusion with the attention module, so that the network
focuses on target features, suppresses the background clutter,
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and avoids information redundancy. Second, MSA-SCNN in-
troduces super-class labels to extract the common features of
the super-classes, which are fused into the fine-class branch to
increase the feature difference between the categories. Finally,
experiments on the MSTAR and FUSAR-Ship datasets show that
MSA-SCNN can achieve better classification performance than
the traditional CNN methods. Especially in EOC and FUSAR-
Ship experiments, the generalization ability of MSA-SCNN
is stronger. Future work will include research on other prior
knowledge of SAR images and MSA-SCNN combined with the
one-stage detector.
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