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Object Detection in Large-Scale Remote Sensing
Images With a Distributed Deep Learning Framework
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Abstract—With the accumulation and storage of remote sens-
ing images in various satellite data centers, the rapid detection
of objects of interest from large-scale remote sensing images is
a current research focus and application requirement. Although
some cutting-edge object detection algorithms in remote sensing
images perform well in terms of accuracy, their inference speed is
slow and requires high hardware requirements that are not suitable
for real-time object detection in large-scale remote sensing images.
To address this issue, we propose a fast inference framework for
object detection in large-scale remote sensing images. On the one
hand, we introduceα-IoU Loss on the YWCSL model to implement
adaptive weighted loss and gradient, which achieves 64.62% and
79.54% mAP on DIOR-R and DOTA test sets, respectively. More
importantly, the inference speed of the YWCSL model reaches
60.74 FPS on a single NVIDIA GeForce RTX 3080Ti, which is 2.87
times faster than the current state-of-the-art one-stage detector
S2A-Net. On the other hand, we build a distributed inference
framework to enable fast inference on large-scale remote sensing
images. Specifically, we save the images on HDFS for distributed
storage and deploy the YWCSL model to the Spark cluster. When
using 5 nodes, the speedup of the cluster reaches 9.54, which is
90.80% higher than the theoretical linear speedup (5.00). Our
distributed inference framework for large-scale remote sensing
images significantly reduces the dependence of object detection
on expensive hardware resources, which has important research
significance for the wide application of object detection in remote
sensing images.

Index Terms—CSL, object detection, remote sensing images,
Spark, YOLOv5.

I. INTRODUCTION

OBJECT detection has always been a research hotspot
in computer vision. It is frequently used in practical

problems, such as pedestrian detection, industrial detection,
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building detection, etc. With the continuous development of re-
mote sensing technology, large-scale and high-resolution remote
sensing image datasets have emerged, such as DOTA [1], DIOR-
R [2], HRSC2016 [3], etc. These high-resolution remote sensing
image datasets are rich in ground objects, including common
ground objects such as airplanes, ships, vehicles, and basketball
courts. It is of great significance to classify [4], [5], segment
and detect [6] these remote sensing images. Object detection
technology in remote sensing images [7] has been widely used
in land planning, maritime fisheries, military reconnaissance,
deforestation detection, and other fields [8], [9]. However, in
practical applications, object detection in remote sensing images
is more challenging than in natural scenes [7]. This is mainly
reflected in the following difficulties:

a) Greater Detection Difficulty: Compared with natural scene
images, the background of remote sensing images is more com-
plex, and there are many small objects. The objects in remote
sensing images have the characteristics of arbitrary orientations,
scale variations, extremely uneven distributions, and large as-
pect ratios, which undoubtedly bring more difficulties to object
detection in remote sensing images.

b) Higher Inference Costs: Object detection in remote sens-
ing images often involves large-scale datasets (TB or even PB
level) [10] in practical applications, which require a high data
processing speed. In addition, remote sensing images have a high
resolution [11], and direct input into the model for inference will
take up a lot of memory. Usually, the original image needs to
be cut before being fed into the model for inference, which will
undoubtedly further increase the time overhead of detection.
More importantly, the current state-of-the-art object detection
models in remote sensing images generally rely on expensive
GPU hardware resources in the actual inference process to
achieve a tolerable inference speed, which significantly in-
creases the practical application cost of object detection models
in remote sensing images. It is one of the biggest obstacles to
the widespread application of object detection models in remote
sensing images to practical tasks.

In recent years, many researchers have made outstanding
achievements in the field of object detection in remote sensing
images. For example, cutting-edge algorithms, such as Reti-
naNet OBB [12], Cascade Mask R-CNN [13], and RoI Trans-
former [14], have achieved high accuracy on the DOTA-v1.0
dataset.

However, most of the algorithms presented above are two-
stage detectors, which achieve better detection accuracy results
than one-stage detectors. However, they are generally slower in
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Fig. 1. Comparison of detection accuracy and inference speed between the
YWCSL model and some current state-of-the-art models on the DOTA-v1.0
test set. For inference speed, we test all models on a single NVIDIA GeForce
RTX 3080 Ti, with ReDet, RetinaNet-O, Gliding Vertex, RoI Transformer
models from https://github.com/open-mmlab/mmrotateMMRotate, S2A-Net,
Oriented R-CNN and Faster R-CNN-O from https://github.com/jbwang1997/
OBBDetectionOBBDetection. “*” means using multiscale training and testing.

terms of inference speed. More importantly, these algorithms
require a high hardware environment, which increases the hard-
ware cost of object detection models in practical applications.
In contrast, not only does the algorithm of YOLOv5 combined
with circular smooth label (CSL) [15] have excellent detection
accuracy [16] (slightly lower than ReDet [17]), but also its
performance far exceeds the inference speed of most models
(see Fig. 1). It is more suitable for object detection tasks in
large-scale remote sensing images. Therefore, we use “YOLOv5
with CSL” [16] as the baseline for our follow-up work, which
we refer to as YWCSL for convenience. Our contributions can
be summarized as follows:

1) We introduce the α-IoU loss function [18] to regress the
bounding box on top of the YWCSL model and analyze
in detail how the α-IoU loss function improves the perfor-
mance of the model. Our improvement work enables the
YWCSL model to achieve 64.62%, 79.54%, and 76.28%
mAP on the DOIR-R, DOTA-v1.0, and DOTA-v1.5 test
sets, respectively, and when 0 < α < 1, the YWCSL
model performs more excellently than baseline on the cat-
egory of small and medium pixel sizes. More importantly,
its detection accuracy on the DOTA-v1.0 test set is 0.12%
higher than that of the current state-of-the-art one-stage
detector S2A-Net.

2) We fully demonstrate the excellent inference speed of
YWCSL. We use the DOTA-v1.0 test set on a single
NVIDIA GeForce RTX 3080 Ti to test the inference speed
of some current state-of-the-art algorithms. As shown in
Table IV, the YWCSL model achieves an inference speed
of 60.74 Frames Per Second (FPS), which is 2.89 times
faster than S2A-Net and 2.83 times faster than Oriented
R-CNN. This indicates that the YWCSL model is well

suited for the object detection task in large-scale remote
sensing images.

3) We deploy the YWCSL model in a Spark distributed
cluster to implement a high-performance framework for
object detection in large-scale remote sensing images.
When tested with five nodes, the speedup ratio of the infer-
ence speed of our distributed inference framework reaches
190.8% of the theoretical linear speedup ratio, which
greatly reduces the dependence of object detection in
remote sensing images on expensive GPU resources [19]
and reduces the hardware cost of practical applications. It
plays a crucial role in promoting the wide application of
object detection in remote sensing images.

We will introduce the excellent object detection algorithms in
remote sensing images in recent years in Section II. Section III
will introduce our improvements to the YOLOv5 model and
detail the steps to deploy the model on a Spark cluster for
distributed inference. In Section IV, we compare the detection
accuracy and inference speed of YWCSL with other state-of-the-
art models. In addition, we also analyze the impact of a different
number of nodes and different dataset sizes on the speedup ratio
of the distributed inference framework. Finally, we select remote
sensing images of a 13.53 square km area near the Optics Valley
Plaza in Wuhan, China, to test the detection performance of
our distributed inference cluster in practical applications and
compare the detection details of our model and baseline on some
small objects.

II. RELATED WORK

A. Object Detection in Remote Sensing Images

Object detection has always been a research hotspot in compu-
tational vision. The mainstream object detection models mainly
include anchor-based and anchor-free detectors. Anchor-based
detectors include one-stage detectors represented by the YOLO
series [20] and two-stage detectors represented by Faster R-
CNN [21]. Two-stage detectors usually rely on the Region
Proposal Network (RPN) to generate high-quality Region of
Interests (RoI), which is disadvantageous for real-time detection
tasks. The one-stage detectors extract features directly in the
convolutional neural network to predict object classification
and location, which achieve a good balance between detection
accuracy and inference speed. Therefore, the one-stage detectors
of the YOLO series are especially widely used in real-time
detection tasks. Another type is the anchor-free model, which is
represented by CornerNet [22], ExtremeNet [23], etc.

Nowadays, with the rapid development of object detec-
tion technology, a series of object detection models suitable
for remote sensing images have been proposed, including
R2CNN [24], RRPN [25], and SCRDet [26], which are all im-
proved based on Faster R-CNN. In addition, there are some more
advanced detection algorithms, such as CSL [15], DCL [27], RoI
Transformer [14], ReDet [17]. They all show good performance
on various remote sensing datasets, such as DOTA and DIOR-
R. Unlike traditional object detection tasks, objects in remote
sensing images are more intensive and have different directions.
To align objects more accurately, the oriented bounding box
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Fig. 2. YWCSL algorithm.

(OBB) is often used instead of the horizontal bounding box
(HBB) in detection tasks to wrap the objects in remote sensing
images.

For the oriented object detection, Ding et al. [14] proposed
the Rotated Region of Interests (RRoI) learner module to learn
RRoI from the feature map of the Horizontal Region of Interests.
In addition, they proposed a Rotated Position Sensitive RoI
Alignment module to extract rotation-invariant object features
and finally achieved 69.56% mAP on the DOTA-v1.0 test set,
and their work provides essential ideological support for the
ReDet algorithm.

Yang et al. [15] discretized the regression of the OBB angle as
a classification task and solve the periodicity of angular (PoA)
problem using a window function with periodicity. They use
the FPN-CSL-based model to improve mAP to 76.17% on the
DOTA-v1.0 test set.

On the basis of previous work, Han et al. [17] proposed
the Rotation-invariant RoI Align (RiRoI Align) module, which
adaptively extracts rotation-invariant features from rotation-
equivariant features according to the direction of RoI and im-
proves mAP to 80.10% on the DOTA-v1.0 test set, while signif-
icantly reducing the size of the model.

Most of the cutting-edge algorithms mentioned above are
two-stage models. Although they bring much improvement in
accuracy, they also bring a lot of inference time overhead.
Aiming at the balance between model inference speed and
accuracy, Han et al. [28] proposed a high-performance one-stage
detection model S2A-Net. They proposed a feature alignment
module (FAM) to generate high-quality anchors and used an
oriented detection module (ODM) to alleviate the inconsistency
between classification scores and localization accuracy, achiev-
ing 79.42% mAP on the DOTA-v1.0 test set and improving the
inference speed to 16.0 FPS (test on a single NVIDIA Tesla
V100 GPU). In addition, Wen et al. [29] chose to use the CSL
module to improve the YOLOv5 model (see Fig. 2) and used
data enhancement methods such as mosaic to participate in the
training. The improved YOLOv5 model achieves 58.2% mAP
on the DOTA-v2.0 test-dev set, which is an excellent detection
performance. The open-source model in [16] uses a similar ap-
proach to combine the YOLOv5 model with CSL (YWCSL) and
exhibits 77.30% mAP and 73.19% mAP on the DOTA-v1.0 and
DOTA-v1.5 test sets, respectively. Moreover, YWCSL retains

the excellent inference speed of YOLOv5, which is very suitable
for object detection tasks in large-scale remote sensing images.

B. Distributed Deep Learning Computing Framework

As a mainstream Big Data computing framework, Apache
Spark [30] provides efficient Big Data processing capabilities.
Unlike Hadoop [31], the intermediate data generated during
Spark calculation is directly stored in the memory, reducing the
time spent interacting with disks. More importantly, Spark gen-
erates a directed acyclic graph (DAG) internally based on pro-
gram execution logic, which significantly speeds up distributed
parallel computing. Therefore, Spark’s computing speed is usu-
ally much higher than Hadoop’s.

Nowadays, machine learning has been integrated into all
walks of life. For example, Liu et al. [32] used KNN-XGBoost
to predict missing values, which played an essential role in the
task of detecting transmission line risks in smart grids. Song
et al. [33] proposed a Bi-CLKT to track students’ learning, which
helps education departments to formulate systematic learning
plans for students. However, most of the above work is based
on the traditional single-machine computing mode, which is not
good at processing Big Data as the amount of data in the actual
task increases rapidly. Instead, Spark’s distributed computing
model, which combines a Big Data processing framework with
machine learning algorithms, has been widely used in various
industries. The MLlib module of Spark provides a wealth of
machine learning algorithms, such as Kmeans, ASL, SVM,
and other mainstream algorithms. Users can easily use various
machine learning algorithms in the MLlib module by calling
a simple interface. In addition, a more efficient deep learn-
ing framework suitable for Big Data processing has become
one of the current research hotspots. In recent years, many
well-known distributed deep learning computing frameworks
have been proposed, such as Google’s DistBelief [34], Baidu’s
DeepImage [35], SparkNet [36], TensorFlowOnSpark [37], and
BigDL [38], etc.

1) TensorFlowOnSpark: TensorFlowOnSpark is a distribu-
ted deep learning computing framework developed by Yahoo,
which supports all functions in TensorFlow, including model
parallelization, data parallelization, and synchronous or asyn-
chronous training and inference. It uses server-to-server direct
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communication to speed up the operation, supports Hadoop
and Spark clusters, and implements distributed deep learning
on GPU and CPU clusters. TensorFlowOnSpark provides dis-
tributed TensorFlow training and inference for Spark clusters
but currently does not support other mainstream deep learning
frameworks such as Pytorch.

2) BigDL: Dai et al. [38] point out that the current
mainstream distributed deep learning frameworks (CaffeOn-
Spark [39], TensorFlowOnSpark [37], etc.) all adopt a “con-
nector approach” method and use an integrated workflow to
develop suitable interfaces to connect different data processing
and deep learning components. In practice, the adaptation of
other frameworks will bring a lot of overhead (such as data serial-
ization, persistence, and interprocess communication). More im-
portantly, this training mode will have the problem of impedance
mismatches [40]. Big data systems and deep learning systems
have very different execution modes. Tasks in Big Data systems
are parallel and independent, while in deep learning systems,
tasks are coordinated and interdependent. When a worker in
Spark fails, the tasks will be restarted, which may cause the
entire workflow of the system to block indefinitely. Therefore,
BigDL takes a different approach to directly implementing dis-
tributed deep learning support in Big Data systems, eliminating
the impedance mismatch problem. BigDL has realized support
for mainstream frameworks, such as Pytorch and TensorFlow,
which significantly improve the development and operation
efficiency of Big Data deep learning applications.

However, whether TensorFlowOnSpark, BigDL, or other
mainstream distributed deep learning frameworks, they still face
many problems during the training phase [38], [40]. For ex-
ample, TensorFlowOnSpark and similar distributed deep learn-
ing frameworks using the “connector approach” training mode
face the above impedance mismatches problem. BigDL does
not support training on distributed GPU clusters. Moreover,
with the frequent updates of deep learning frameworks such
as TensorFlow, various new versions of BigDL need to be
maintained frequently. At present, the maintenance of the BigDL
community is not enough, and the community users are not
active enough, which shows that the technology of applying the
distributed deep learning framework to the training phase is not
mature enough. Of course, we do not deny this kind of distributed
training mode here. On the contrary, we firmly believe that this
kind of distributed deep learning training technology will soon
get widespread attention and greatly promote the development
of deep learning after it is perfected.

Given the impedance mismatches and other issues associated
with applying deep learning tasks to training on Big Data clus-
ters, using the traditional stand-alone model for training and
inference on Big Data clusters seems to be a better choice.
Practice has proved that this is a very convenient and low-cost
way to fully demonstrate the performance of object detection
models in remote sensing images.

In this work, we encapsulate the inference of the model into
a generic function, and each node of the cluster can execute
this function independently and in parallel, and their execu-
tion resources are uniformly managed by YARN. As a result,
we implement a lightweight and high-performance distributed
inference framework, which is very suitable for object detection

in large-scale remote sensing images. In addition, to improve the
detection accuracy of the model on remote sensing images, we
introduce the α-IoU [18] loss function to improve the detection
effect of the model on small object detection. We will introduce
our work in detail in the next section.

III. METHOD

In this section, we first introduce the nature of α-IoU and
analyze the effect of different α values on the loss and gradient
of the training process in Section III-A. Next, we detail the
principles of the distributed inference framework, including data
storage, resource management, and model inference steps, in
Section III-B. We use cheap CPU cluster resources to build a
lightweight and high-performance distributed inference frame-
work suitable for object detection in large-scale remote sensing
images, which significantly reduces the dependence of the model
on expensive GPU resources in practical applications and has
essential research significance for the practical application of
object detection in remote sensing images.

A. α-IoU [18]

In the Anchor-based detector, the bounding box regression
and object classification are usually divided into two subtasks
for learning. In the bounding box regression subtask, the local-
ization loss is generally calculated according to the Intersection
over Union (IoU) of the bounding boxes and the ground truths.
Since the traditional IoU loss has the problem of gradient van-
ishing when there is no overlapping area between the bounding
boxes, scholars have successively proposed different loss func-
tions, such as generalized intersection over union (GIoU) [41],
distance-IoU (DIoU), and complete IoU (CIoU) [42] to solve
this problem.

In GIoU, Rezatofigh et al. [41] introduced the minimum en-
closing rectangle of the predicted bounding box and the ground
truth to reflect their coincidence degree and solve the problem of
gradient vanishing caused by the loss of zero when the predicted
bounding box and the ground truth do not overlap. In DIoU [42],
the central point distance, overlap rate, and scale between the
predicted bounding box and the ground truth are also considered,
which makes the bounding box regression more stable to achieve
a faster convergence speed than GIoU. Based on DIoU, not only
the overlap area, central point distance, but also the aspect ratio
between bounding boxes are considered in CIoU.

The α-IoU used in this article can cover all of the above IoU
loss functions [18]. In addition, the loss and gradient of high-
IoU objects and low-IoU objects can be adaptively weighted to
further improve the performance of the model. α-IoU can be
defined as follows:

Lα−IoU =
1− IoUα

α
, α > 0. (1)

This approach introduces three important properties as fol-
lows [18]:

1) Order Preservingness
It is not difficult to obtain that α-IoU loss is the same as
GIoU, DIoU, and other loss functions. With the increase
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Fig. 3. Influence of different α values on the weight factors of loss and
gradient.

of IoU, the loss decreases monotonically. Whenα = 1.00,
the α-IoU loss becomes the traditional IoU loss.

2) Relative Loss Reweighting
α-IoU loss can be regarded as IoU loss multiplied by a
weighting factor. The definition of the weighting factor
can be expressed as follows:

wLr
=

Lα−IoU

LIoU
= 1 +

(IoU− IoUα)

(1− IoU)
. (2)

The above formula can be obtained that limIoU→0wLr
= 1

and limIoU→1wLr
= α. When α > 1, wLr

will increase
the loss weight of high-IoU objects as IoU increases,
making the model pay more attention to objects with high
IoU (see Fig. 3). On the contrary, when 0 < α < 1, wLr

will reduce the loss weight of high-IoU objects as IoU
increases, and the model naturally pays more attention to
regressing the bounding boxes of low-IoU objects.

3) Relative Gradient Reweighting
Similar to the second property, α-IoU can also adaptively
weight the gradient. The weighting factor is defined as
follows:

w∇r
=
|∇IoULα−IoU|
|∇IoULIoU| = αIoUα−1. (3)

When 0 < α < 1, the weighting factor decreases with the
increase of IoU, and when α > 1, the weighting factor
increases with the increase of IoU. It is worth noting
that when α �= 1, the α-IoU loss function re-weights the
gradient of the object according to the IoU, and then
adjusts the learning speed of different objects.

In order to verify the above theory, we will show the perfor-
mance of the YWCSL model under different α values through
experiments in Section IV.

B. Distributed Inference Framework for Object Detection in
Large-Scale Remote Sensing Images

The distributed inference framework for object detection in
large-scale remote sensing images built in this article mainly
includes a data storage layer, data loading and preprocessing
layer, distributed computing layer, and visualization layer (see
Fig. 4).

We store large-scale remote sensing image data in HDFS to
achieve distributed storage and ensure data reliability and high
fault tolerance in the data storage layer. In the data loading
layer, we use the interfaces in RasterFrames [43] and PyHDFS

Fig. 4. Distributed Inference framework.

to interact with HDFS to realize data reading and writing of
conventional remote sensing image formats such as tif, png, and
jpeg.

For the distributed computing layer, we choose Apache
Spark [30] as the underlying computing engine to build a
distributed and fast inference framework suitable for Big Data
processing. We deploy the pretrained YWCSL model to each
worker node of the Spark distributed cluster. When the program
starts to execute, the Driver process will assign the task to the
corresponding worker according to the data location to minimize
the network transmission overhead. Each worker will load the
pretrained YWCSL model into memory and load the RDD
partition data to execute the task (see Algorithm 1). The number
of tasks is related to the number of partitions of the RDD, which
determines the program’s parallelism and affects the program’s
running time. We adopt a custom partitioner (RankPartition)
based on self-incrementing primary key modulo to distribute
the remote sensing image data into each partition as evenly as
possible. As shown in Fig. 11, we built a three-node Spark
cluster and compared Spark clusters’ inference speed using
two different partitioners: RankPartition and HashPartition. To
more clearly demonstrate the advantage of RankPartition over
HashPartition, we define the inference speedup of Spark clusters
using HashPartition partitioners as 1.0 and calculate the speedup
ratio of the inference speedup of Spark clusters when using
RankPartition. RankPartition is significantly more efficient than
the default HashPartition. In the case of the same number of
CPU cores, the larger the amount of data, the more pronounced
the improvement in inference speed brought by RankPartition.

For the visualization layer, we choose to store the inference
results of the model in HBase [44] to support fast querying of
massive unstructured data. Users can query the specified remote
sensing images in real time according to attributes such as area
name and geographic location and visualize the inference results
of the model to the front end for further data analysis.

The inference steps of the distributed inference framework
for object detection in large-scale remote sensing images imple-
mented in this article are as follows:
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Algorithm 1: Principle of Distributed Inference Framework.
1: Initialize numPartition and pID;
2: // RankPartition;
3: for each image path in HDFS do
4: id = pID++ % numPartition;
5: Send image path information for taskid;
6: end for;
7: for each Worker ∈ Spark cluster do
8: Worker← CPU cores and memory, etc.
9: Worker pull tasks and loading model;

10: for each batch image paths ∈Worker’s task do
11: images← getImage(image paths);
12: images← Processing(images);
13: results = model(images);
14: if the images is split then
15: Send the results to Driver for the next merge

operation.
16: else
17: Write the results directly to HBase.
18: end if;
19: end for;
20: end for;

1) First, split the original image into segments of 1024×
1024, and store these segmented images and segment
information in the specified path of HDFS.

2) The Driver reads the path information of the above image
fragments, builds a DataFrame, and uses the RankPartition
partitioner to repartition the DataFrame. The model infer-
ence process is encapsulated as a UDF function (including
an image loading module, a data processing module, a
model Inference module, and non-maximum suppression
(NMS) module), the input is batch path information, and
the output is the model inference result (including predic-
tion bounding box coordinates, category, confidence, and
other information).

3) Yarn is responsible for cluster resource management, as-
signing program running resources to each Worker, and the
Worker pulls the task and calls the above UDF function.
The model results are fed back to the Driver.

4) The Driver summarizes the model inference results of
each shard and merges the results according to the shard
information. Each Worker, in parallel, can perform the
merging operation.

5) The merged results are directly written to HBase after the
last NMS.

The above execution process has a high fault tolerance mech-
anism. When an exception occurs in a Worker, the Driver will
receive the exception feedback and call other available workers
to restart the abnormal task.

IV. EXPERIMENTS

A. Datasets

To validate our proposed method, we conduct experiments
using two large-scale remote sensing datasets, DIOR-R [2] and

Fig. 5. Size of each category in DIOR-R and DOTA datasets. (a) DIOR-R
dataset. (b) DOTA dataset.

DOTA [1]. The DIOR-R dataset is an extended version of the
DIOR dataset [45] with a total of 23 463 images and 192 518
object instances. All objects are annotated with a rotating bound-
ing box, which contains 20 object categories: Airplane (APL),
Airport (APO), Baseball Field (BF), Basketball Court (BC),
Bridge (BR), Chimney (CH), Dam (DAM), Expressway Service
Area (ESA), Expressway Toll Station (ETS), Golf Field (GF),
Ground Track Field (GTF), Harbor (HA), Overpass (OP), Ship
(SH), Stadium (STA), Storage Tank (STO), Tennis Court (TC),
Train Station (TS), Vehicle (VE), and Windmill (WM). The
image size of the DIOR-R dataset is 800×800, and the dataset is
divided into a trainval set and a test set. The trainval set contains
11 725 images and 68 073 instances, and the test set contains
11 738 images and 124 445 instances.

There are three versions of the DOTA dataset: DOTA-v1.0,
DOTA-v1.5, and DOTA-v2.0. The first version contains 2806
images, 188 282 instances, and a total of 15 categories of objects:
plane (PL), baseball diamond (BD), bridge (BR), ground track
field (GTF), small vehicle (SV), large vehicle (LV), ship (SH),
tennis court (TC), basketball court (BC), storage tank (ST), soc-
cer ball field (SBF), roundabout (RA), harbor (HA), swimming
pool (SP), and helicopter (HC). The train, validation, and test
datasets contain 1411, 458, and 937 images. DOTA-v1.5 uses the
same data as DOTA-v1.0 but adds many small objects (less than
10 pixels) and a new category container crane (CC) containing
402 089 instances. The division of the training set, validation set,
and test set is consistent with the DOTA-v1.0 version. Compared
with DOTA-v1.5, DOTA-v2.0 adds two categories, airport (Air)
and helipad (Heli), with 11 268 images and 1 793 658 instances.
The training, validation, test-challenge, and test-dev sets con-
tain 1830, 593, 6053, and 2792 images and 268 627, 81 048,
1 090 637, and 353 346 instances, respectively. The size of each
category of the above two remote sensing datasets is shown in
Fig. 5.

B. Implementation Details

For the DIOR-R dataset, we directly use the original images
of the trainval dataset to train for 100 epochs, and then use
the original test set to validate the performance of the model.
The image size of the DOTA dataset is between 800×800
and 20 000×20 000, considering the large memory footprint
associated with feeding images directly into the network, we
slice the original image into a series of 1024×1024 slices with
a stride of 824. For multiscale testing, we scale the original test
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TABLE I
COMPARISON WITH STATE-OF-THE-ART METHODS ON DIOR-R DATASET

Fig. 6. Detection details of partial images in DIOR-R test set.

TABLE II
COMPARE THE ACCURACY OF THE STATE-OF-THE-ART MODEL ON THE DOTA-V1.0 TEST SET

set images by three scaling factors (0.5, 1.0, 1.5) and slice them
into 1024×1024 slices with a stride of 512. We first train on the
DOTA training set for 100 epochs, and then train on the training
and validation sets for 50 epochs.

All models are trained on a single NVIDIA RTX 3080 Ti
with a batch size of 8. We employ a stochastic gradient descent
(SGD) optimizer with an initial learning rate of 0.01, momentum
of 0.937, and weight decay of 0.0005. For training, we used data
augmentation with random flips, Mosaic [46], Mixup [47], and
no data augmentation for testing.

C. Comparison With State-of-the-Arts

a) Results on DIOR-R: As shown in Table I, when α = 0.75,
the YWCSL model achieves 64.62% mAP on the DIOR-R test

set, which is 0.21% higher than AOPG. Compared with the
state-of-the-art algorithm DODet, the YWCSL model has higher
detection accuracy on small and medium-sized objects such as
APL, APO, BF, BR, STO, ETS, WM, VE, and CH. Especially
on the extremely small objects such as APL, BF, STO, and WM,
the detection accuracy of the YWCSL model is 8.21%, 7.11%,
6.62%, 6.22% higher than that of the DODet model, respectively.
The partial inference results of YWCSL on the DIOR-R test set
are shown in Fig. 6.

b) Results on DOTA: As shown in Tables II and III, the
YWCSL model can achieve up to 79.54% and 76.60% mAP on
the DOTA-v1.0 and DOTA-v1.5 test sets, respectively. Notably,
whenα = 0.5, YWCSL reaches the state-of-the-art of one-stage
detectors, which is 0.12% higher than S2A-Net. Compared with
advanced algorithms such as Oriented R-CNN and DODet, the
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TABLE III
COMPARE THE DETECTION ACCURACY ON THE DOTA-V1.5 TEST SET

Fig. 7. Detection details of partial images in DOTA-v1.5 validation set.

TABLE IV
WE USE THE DOTA-V1.0 TEST SET TO TEST THE PERFORMANCE

OF SOME CURRENT STATE-OF-THE-ART MODELS ON

AN NVIDIA GEFORCE RTX 3080 TI

YWCSL model achieves superior detection accuracy on small
objects such as SV, SH, ST, SP, and BD. The partial inference
results of YWCSL on the DOTA test set are shown in Fig. 7

c) Comparison of Model Inference Speed: As shown in Ta-
ble IV, the biggest advantage of the YWCSL model is its
fast inference speed. We use the DOTA-v1.0 test set to test
state-of-the-art algorithms on a single NVIDIA GeForce RTX
3080 Ti. The table shows that the inference speed of the YWCSL
model reaches 60.74 FPS, which is 3.83 times that of the current
state-of-the-art model, the Oriented R-CNN. More importantly,
it still maintains a high detection accuracy, which is higher than
the current state-of-the-art one-stage algorithm S2A-Net. This
shows that the YWCSL model is very suitable for the real-time
detection task of large-scale remote sensing images.

TABLE V
COMPARING THE ACCURACY OF MODELS WITH DIFFERENT IMPROVEMENT

STRATEGIES ON THE TEST SET

D. Ablation Studies

a) The Effect of Different α Values on the Performance of
YWCSL:We conduct ablation experiments on the DOTA dataset
and the DIOR-R dataset, respectively. We train 100 epochs using
the conventional CIoU loss and α-CIoU loss, respectively. As
shown in Table V, the YWCSL model trained with α-CIoU loss
is 0.52% and 0.46% mAP higher than the model trained with
CIoU loss for the single scale processing of the DOTA-v1.0
and DOTA-v1.5 test sets, respectively, and when the multiscale
expanded test set is used, the detection accuracy of the former
is 0.77% and 0.04% mAP higher than that of the latter. Fig. 9(a)
shows the detection accuracy of YWCSL in each epoch when
α is 0.5/0.75/1.00/3.00. The results show that when 0 < α < 1,
the detection accuracy of the YWCSL model improves faster.

According to Tables I–III, when 0 < α < 1, the detection
accuracy of the YWCSL model is usually higher than that of the
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Fig. 8. Comparison of the bounding box regression of the first five epochs of YWCSL with different α values.

Fig. 9. (a) When the value of α is 0.50, 0.75, 1.00, and 3.00, respectively,
YWCSL compares the detection accuracy of each epoch on the DIOR-R test
set. (b) The effect of different DIOR-R training set sizes on the performance of
the YWCSL model when α takes different values.

TABLE VI
EFFECT OF DIFFERENT TRAINING SET SIZES ON THE TRAINING TIME OF THE

YWCSL MODEL

model when α > 1. The experimental results in the table show
that, consistent with the analysis in Section III-A, when 0 < α <
1, the YWCSL model pays more attention to learning difficult
examples with lower IoU. For example, when 0 < α < 1, the
detection accuracy of the model on low mAP categories such as
APO, BR, and TS is significantly higher than that of the model
when α >= 1. The former also performs better on classes with
smaller pixel sizes, such as BF, CH, ETS, and WM. Fig. 8 shows
the bounding box regression in the first five epochs of YWCSL

Fig. 10. Effect of the number of nodes and the number of images on cluster
performance.

Fig. 11. Comparison of Spark cluster performance when setting different
partitioners HashPartition and RankPartition.

training with different α values. It can be seen that more and
higher-quality bounding boxes are produced when α = 0.75.

b) Effect of Training Set Size on YWCSL Performance:
Fig. 9(b) shows the effect of different data amounts on the
performance of the YWCSL model. We divided the DIOR-R
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TABLE VII
EXPERIMENTAL ENVIRONMENT UNDER DIFFERENT INFERENCE MODES

Fig. 12. Detection effect of the YWCSL model in remote sensing images of China Optics Valley Square. For the first row, we use CIoU Loss as the loss function
for the bounding box, trained for 100 epochs on the DOTA-v1.5 training set, and for the second row, we use α-CIoU Loss (α = 0.5) as the bounding box regression
loss function. The same epochs were trained on the DOTA-v1.5 training set. We use the yellow dotted box to mark the areas with different detection results. It can
be seen that α-CIoU Loss (α = 0.5) can effectively improve the detection effect of the model on small objects.

training set by 50%, 70%, 90%, and 100% in each category, and
the test set was not processed in any way. To avoid chance, we
trained on each case three times and took the average mAP as the
experimental result. The results show that α-CIoU only shows
advantages when the data volume of the training set reaches
90% of the original data set and performs poorly when the data
volume is small. To sum up, we should setα to around 0.75 when
the training data is large and set α to 1.00 when the training data
is small. The impact of different data sizes on the training speed
of the YWCSL model is shown in Table VI. It can be seen that
it takes about 400 s to train an epoch using all the data sets.

E. Spark Cluster Performance Comparison

To reflect the advantages of the distributed inference frame-
work built in this article, as shown in the Table VII, we compared
the inference speed in three different modes: single-machine
CPU, single-machine GPU, and 8-node Spark cluster mode. The
comparison results are shown in Fig. 10. It can be observed that
the average speedup ratio (11.785) of the 8-node Spark cluster
built in this article is much larger than the linear speedup ratio
(8.000). Moreover, it can be seen that as the amount of data
or the number of nodes increases, the greater the speedup ratio
brought by the Spark cluster (the Spark cluster partitioner below
uses RankPartition by default). Compared with the Single GPU
mode, the Spark cluster inference framework we established
can achieve a detection speed of 80.61% of the Single GPU

mode in an environment that only uses the same CPU resources
(same memory and CPU cores). Moreover, as the amount of
data increases, the speeds of the two different inference modes
of Spark cluster and Single GPU are closer.

In addition, to investigate the influence of different node
numbers on Spark cluster inference speed, we compared the in-
ference times on the validation set (5297 images, 6.77 GB, image
size is 1024×1024) from a traditional Single CPU to eight nodes.
As shown in Fig. 10(a), as the number of nodes increases, the
Spark cluster inference speed increases, and the actual speedup
ratio is far beyond the theoretical linear speedup ratio. However,
after the number of nodes reaches 5, the speedup ratio of Spark
cluster gradually degenerates to a linear speedup ratio.

F. Practical Application of Distributed Inference Framework

To test the detection effect of our distributed inference frame-
work for object detection in large-scale remote sensing images
in practical applications, we used the baseline in [16] and our
improved model for deploying to the Spark cluster. The test
dataset was intercepted from the 13.53-square-kilometer area
near the Optics Valley Square in Wuhan, China, in the ArcGIS
map. The image resolution reaches 17520×11712, and the size
is 211 MB. As in Section IV-B, we first scale the original image
by three scaling factors (0.5, 1.0, 1.5) and then cut the image
into slices of 1024×1024 with a stride of 512. After cutting, the
number of images is 2669, and the data size is 3.3 GB.
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As shown in Fig. 12, when α takes the value of 0.5, the
YWCSL model outperforms the baseline on small objects such
as SV and SH. In addition, we compared the Single CPU in-
ference mode and the Spark cluster inference mode. The former
took 2883.98 s, while the 8-node Spark cluster we built took only
268.53 s, which improved the inference speed by 9.74 times.

V. CONCLUSION

This article proposes a distributed inference framework for
large-scale remote sensing images that can achieve rapid object
detection in large-scale remote sensing images using relatively
cheap CPU cluster resources. Notably, the actual speedup ratio
of our established distributed inference framework for object
detection in large-scale remote sensing images far exceeds the
theoretical linear speedup ratio. As the number of data increases
or the number of nodes increases, the actual speedup ratio in-
creases (see Fig. 10). When using only eight nodes, the speedup
ratio can reach 12.28 under the data volume of 84.97 GB in
this experiment, which is 53.5% higher than the linear speedup
ratio of 8.00. It has crucial research significance for the practical
application of object detection in large-scale remote sensing
images.

For the balance between model inference speed and accu-
racy, we further improve the accuracy and inference speed
of the model based on [16]. Our improved model achieves
64.62%, 79.54%, and 76.28% mAP on the DIOR-R, DOTA-
v1.0, DOTA-v1.5 test sets, respectively, which is better than
the current state-of-the-art one-stage detector S2A-Net performs
better. The distributed inference framework for object detection
in large-scale remote sensing images established in this article
can also support distributed GPU inference. However, we did
not conduct experiments on GPU clusters due to the lack of
sufficient GPU cluster machines. In addition, the distributed
inference framework for object detection in large-scale remote
sensing images that we have established supports the flexible
switching of models. Users can deploy their models directly on
distributed clusters without paying attention to the underlying
distributed inference details.

There are still some shortcomings in our improvement work.
As analyzed in Section IV-D, the YWCSL model performs
poorly when the training data is insufficient after the introduction
of α-IoU. More importantly, the detection performance of the
YWCSL model is more sensitive to the value of α taken. In
general, if a dataset contains many difficult examples, α can be
set between 0.50 and 1.00. Otherwise, α can be set between
1.00 and 3.00. According to the analysis in this article, the
model learns better on the bounding boxes with low IoU when
0 < α < 1, and performs better on the bounding boxes with
high IoU when α > 1. In the early stage of training, most
of the bounding boxes have low IoU, so the former performs
better in the early stage of training, while in the later stage of
training, a proper boost of α will help the model learn better.
Our subsequent work will investigate the adaptive α-IoU loss to
ensure that the YWCSL model can be trained more stably and
efficiently.
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