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Abstract—Mapping different types of sea ice that form, grow,
and melt in polar oceans is essential for shipping navigation, climate
change modeling, and local community safety. Currently, ice charts
are manually generated by analysts at the Canadian Ice Service
based on dual-polarized RADARSAT-2/RADARSAT Constellation
Mission imagery on a daily basis. Inspired by the demand for a
computer-based mapping system, we have developed an automatic
sea-ice classification method that integrates spatial contexture (un-
supervised segmentation) with textural features (supervised pixel-
level labeling). First, the full-scene image is oversegmented, and the
segments are merged into homogeneous regions across the entire
scene. Second, pixel-based classifiers (support vector machine and
random forest) are compared for their ability to label the gener-
ated homogeneous regions. Finally, the segmentation and labeling
are combined using a proposed energy function. The proposed
method was tested on 18 dual-polarization RADARSAT-2 scenes
acquired over the Beaufort Sea. This dataset contains water, young
ice, first-year ice, and multiyear ice covering melt, summer, and
freeze-up seasons. The proposed method obtains an average classi-
fication accuracy of 86.33% based on the leave-one-out validation.
The experimental results show that the proposed method achieves
promising classification results in both the quantity and quality
measurements compared with benchmark methods. The robust-
ness against incidence angle variance indicates that the proposed
method is well qualified for operational sea-ice mapping.

Index Terms—Classification, RADARSAT-2, random forest
(RF), sea ice, segmentation, synthetic aperture radar (SAR).

I. INTRODUCTION

THE interpretation of ice types and the analysis of their prop-
erties in polar ocean regions have several crucial applica-

tions, including the ship navigation, global climate monitoring,
and animal migration forecasting [1], [2]. For the considera-
tion of expense, efficiency, accuracy, and timing requirements,
remote sensing has been chosen as an appropriate method for
sea-ice monitoring. The satellite-based synthetic aperture radar
(SAR) is the imaging system of choice for this application since
it is not affected by cloud cover and, since self-illuminated, can
be used equivalently under daytime or nighttime conditions.

Manuscript received 22 April 2022; revised 29 July 2022; accepted 6 Septem-
ber 2022. Date of publication 12 September 2022; date of current version 21
September 2022. This work was supported by the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) under Grant RGPIN-2017-04869,
Grant DGDND-2017-00078, Grant RGPAS2017-50794, and Grant RGPIN-
2019-06744. (Corresponding author: Mingzhe Jiang.)

The authors are with the Vision and Image Processing Research Group, De-
partment of Systems Design Engineering, University of Waterloo, Waterloo ON
N2L 3G1, Canada (e-mail: m63jiang@uwaterloo.ca; dclausi@uwaterloo.ca;
linlinxu618@gmail.com).

Digital Object Identifier 10.1109/JSTARS.2022.3205849

The Canadian Ice Service (CIS) actively performs ice map-
ping generation and interpretation daily. Skilled ice analysts
process SAR images to generate ice charts that have defined
geographical regions, known as “polygons,” with an assigned
“egg code” to each polygon defined by the World Meteorological
Organization [3]. The egg code contains numerical codes that
define ice concentration by the stage of development and floe
size [4].

These ice charts have been used for decades but have limita-
tions. First, egg codes are defined for large regions, so ice types
are not identified at pixel resolution [5]. Second, polygons are
generated subjectively. The results are affected by human bias,
and there would be some variation between analysts. Third, the
number of SAR scenes to be processed is expected to increase
with time. CIS analysts used to process around ten scenes daily
back to 2002 [6]. Nowadays, the manual interpretation of SAR
imagery becomes very challenging due to the higher through-
put required by the increasing data volume provided by the
RADARSAT Constellation Mission [7] and Sentinel-1. Hence,
manual procedures are potentially insufficient for future needs.

Therefore, an automated computer-based sea-ice mapping
method is desirable. A suitable operational automated method
should have the following characteristics:

1) the ability to generate ice maps that are consistent with
expert interpretation;

2) the ability to classify different ice types as required for
operational use on full-scene SAR imagery;

3) the ability to segment boundaries that match the natural
ice and water boundaries;

4) the ability to be invariant to SAR sensor artifacts, such as
banding noise and incidence angle variation.

However, mapping sea ice in SAR imagery is very
challenging. First, different types of ice show very similar
appearances in SAR imagery, especially when they are in
contiguous development stages, such as young ice (YI)
and first-year ice (FYI). Second, the ground truth is minimal.
Supervised machine learning models rely on accurate pixel-level
labels to achieve fair classification accuracy. However, ice
charts released by primary national ice services only provide
coarse labels for regions rather than pixels. Therefore, some
studies prefer using samples selected from high-confidence
regions for training and testing. Moreover, speckle noise and
incidence angle variation can generate poor classification results.
Boundaries between water and different types of ice, which
are essential in sea-ice maps, can be degraded. Although many
studies [8], [9] report high numerical classification accuracy,
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the classification maps lack natural boundary information and
suffer from speckle noise and interscan banding effect [10].

To address these challenges, we have developed and tested an
automatic sea-ice mapping method. The following are the main
contributions of this research.

1) We propose a novel sea-ice classification method by
integrating segmentation with pixel-based labeling. The
method not only adopts texture features for classification
but also preserves critical boundaries between water and
different ice types. Unlike most of the existing methods
that only focus on improving numerical classification
accuracy, the proposed method also aims to enhance the
quality of classification maps.

2) To determine which classifier is more suitable for ice map-
ping, the performance of using support vector machine
(SVM) and random forest (RF) in sea-ice classification
is compared. The results demonstrate that RF achieves
better overall accuracy compared to SVM. Since previous
research has not sufficiently compared the performance of
the popular RF and SVM classifiers for sea-ice classifica-
tion, this benchmark would benefit other researchers for
choosing the suitable classifier for their sea-ice monitoring
tasks.

3) To evaluate the robustness of the proposed method, we
compared the performances of the proposed method using
SAR images with and without applying incidence angle
correction. The experiment results indicate that the pro-
posed iterative region growing with semantics (IRGS)-RF
is more robust to incidence angle variance than pixelwise
RF.

4) The system is validated on a full-scene dataset cover-
ing nine months (April to December), including melting,
summer, and freezing seasons. The samples for validation
are randomly selected across the full scene without any
preferred regions. The experimental results demonstrate
that the proposed method achieves accurate classification
results in both quantity and quality.

To the best of our knowledge, this is the first work that com-
bines unsupervised segmentation with supervised labeling for
open water (OW) as well as multiple ice types and validated on
a dataset that covers a whole year period. The rest of this article
is organized as follows. Section II provides a review of studies
done in sea-ice classification. The dataset used in this article is
introduced in Section III. Section IV illuminates the steps of the
proposed method. Section V presents the experimental results
and analysis. Finally, Section VI concludes this article.

II. BACKGROUND

Significant research has been published for exploring
automated sea-ice mapping systems based on SAR data in
the last decades. Early studies focused on modeling statistical
distribution for ice types and water using backscattering
intensity. Scheuchl et al. [11] explored the potential of using
cross-polarization SAR imagery to monitor sea ice. The higher
information content from dual-polarization data showed the ca-
pability for developing an automated sea-ice classification sys-
tem. Ward et al. [12] modeled the characteristics of ice and water

using a mixture distribution. However, several studies concluded
that only using backscatter intensity is insufficient in distinguish-
ing different ice types [13], [14]. Therefore, many researchers
turned to polarimetric SAR data since they hold more infor-
mation separating different ice categories. Gill and Yackel [15]
exploited the polarimetric parameters derived by decomposition
algorithms with the maximum likelihood classifier to categorize
different types of FYI. By extracting matrix-invariant-based
features from fully polarimetric ALOS-2 (L-band), Radarsat-2
(C-band), and TerraSAR-X (X-band) data, Singha et al. [16]
separated water from sea ice with 100% accuracy.

Research has shown the potential of using quad-polarization
SAR data for successful scene classification [15], [16], [17].
Nevertheless, the quad-polarization scene is not used oper-
ationally because of its narrow swaths. In contrast, dual-
polarization data have been demonstrated to be a reliable
source for sea-ice–water classification when combined with
textural features and machine learning methods. Many features
have been explored for sea-ice classification, e.g., Shannon
entropy [18], local binary patterns [19], and cross-correlation
between different polarizations [20]. A popular method for
texture feature extraction from SAR sea-ice images is the gray-
level co-occurrence matrix (GLCM) [21]. Clausi [22] analyzed
the relation between gray-level quantization and classification
accuracy using the GLCM features. The study suggested that
using contrast, entropy, and correlation with a quantization level
of 64 is sufficient for classifying sea ice. Liu et al. [23] extracted
GLCM features for segmentation and implemented an SVM to
discriminate ice from water. Su et al. [24] combined surface
temperature and GLCM features from the Moderate Resolution
Imaging Spectroradiometer images to train an SVM model for
ice–water classification. Tan [25] proposed a semiautomated ice
mapping method and obtained a good identification for water.

Besides investigating different features, several studies have
explored sea-ice classification using SAR imagery obtained
at different working frequencies. Mahmud et al. [26] col-
lected SAR data acquired from ALOS PALSAR (L-band),
RADARSAT-2 (C-band), and QuikSCAT (Ku-band) to classify
landfast FYI and multiyear ice (MYI) in the Arctic. The results
indicated thatL-band performed better for FYI, whereasC-band
is robust to distinguish MYI. Given the longer wavelength,
L-band can detect the ice underneath melting ponds and wet
snow in the melting season because of the enhanced penetration
capability [27]. C-band is a better choice to monitor ice in the
cold and dry winter since it provides details of surface roughness
with higher resolution [28], [29].

To distinguish ice types, many classification models have been
used, including the Bayesian classifier [30], [31], SVM [32], de-
cision trees [33], and RF [34], [35]. With the rapid development
of graphics processing unit in the past decade, deep learning has
been applied to remote sensing [36]. Ressel et al. [37] extracted
GLCM-based textural features from TerraSAR-X imagery and
fed them to a neural network and classified three different ice
types. Song et al. [38] combined a residual convolutional neural
network with long short-term memory units to learn spatial and
temporal features for sea ice. Khaleghian et al. [8] compared the
performance of several popular deep learning architectures for
sea-ice classification using Sentinel-1 data.



7966 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

The studies mentioned above did achieve reasonable results.
However, none of them has been deployed for operational sea-ice
classification for the following reasons. First, deep learning
models usually perform inference on image patches rather than
whole images. The patch size constrains the receptive field.
A small patch size might provide insufficient characteristics
for classification, while a large window size might contain
different ice types and contaminate the information extracted.
Thus, classification maps produced by pixelwise deep learning
models are usually contaminated by noise [39], [40]. Moreover,
boundaries between ice and water can be smudged because of
the inhomogeneity of the patch [41]. Similarly, GLCM features,
since they depend on fixed sized windows, also generate segmen-
tation errors at class boundaries [42]. The defective classification
result caused by this drawback is demonstrated and discussed
in Section V. Second, supervised machine learning methods
require many reliable pixel-level labeled samples for training
and testing. Since leading national agencies, such as CIS, the
Norwegian Ice Service, and the Russian Arctic and Antarctic
Research Institute, do not provide pixel-level ice charts, applying
deep learning methods for operational use is not feasible at
this time. Applying traditional machine learning methods with
limited labeled samples has led to only training and validating on
particular regions or sample points rather than full scenes [43],
[44], [45].

As only using pixelwise classifiers usually leads to poor-
labeled sea-ice classification maps [46], some researchers tried
to refine the pixelwise results to more visually appealing ice
maps. Ochilov and Clausi [47] built a Markov random field with
maximum a priori estimation for ice–water classification. Zhu
et al. [43] first classified sea ice into five categories based on
SVM. Then, a conditional random field (CRF) was applied to
the original result as postprocessing. Leigh et al. [48] combined
spatial and contextual features by modeling a CRF using a
pixel-based classifier for ice–water classification.

This study aims to explore the operational sea-ice mapping
system. Inspired by the idea of producing detailed sea-ice maps
with high accuracy and natural boundaries to meet the oper-
ational requirements, we have designed and implemented an
automated sea-ice mapping system that combines unsupervised
segmentation with supervised labeling. One of the challenges
for sea-ice mapping is the SAR incidence angle effect [49].
Some studies [50], [51] consider utilizing SAR incidence angle
as one of the features to refine classification accuracy. In this
article, we did not aim to directly solve the incidence angle effect
using incidence angle normalization/correction. However, we
note that the region-based segmentation approach adopted in this
article is effective in mitigating its adverse effects. Furthermore,
the texture-based features adopted in this study are robust to
incidence angle variation [52]. More details are elaborated in
Section IV.

III. DATASET USED IN THE STUDY

The dataset we used to validate our algorithm is a subset of
the dataset of Leigh et al. [48] used for ice–water classification.
The original dataset contains 20 scenes acquired by C-band

TABLE I
DATASET USED IN THIS STUDY

RADARSAT-2 SAR satellite under dual-polarized (HH and HV)
ScanSAR wide beam mode. Owing to the lack of detailed ice
charts, only 18 scenes are selected for ice types mapping in this
article. The date of capture for each scene is listed in Table I.
The dataset was acquired in the year 2010 at overlapping regions
over the Beaufort Sea. Fig. 1 displays the geographical location
of the dataset . The nominal pixel spacing is 50 by 50 m,
and the image dimension is around 11 000 by 10 000, which
represents the largest range size produced by RADARSAT-2.
The coverage of each scene is 500 km in both azimuth and
range. The incidence angle varies from 20◦ to 49◦ in both the
ascending and descending orbits. The dataset was acquired from
April to December, which contained melt and freeze-up seasons,
the most challenging times of the year. Sea-ice conditions from
January through March are more stable and less important
for operational purposes, as well as less challenging for scene
classification. Therefore, the dataset does not contain this period.

We downsample the original images using a four-by-four
window for average pooling to reduce the computational cost
and processing time. Although the pixel resolution reduces to
200 m after the downsampling, it still provides a substantially
more detailed ice map than human interpretation.

In this study, we focus on classifying OW, YI, FYI, and MYI in
SAR imagery [53]. An example scene from the dataset is shown
in Fig. 2, which is acquired on April 26, 2010. This scene is
quite complicated with the appearance of different types of ice
(FYI and MYI) and land. The backscatter decreases from right
to left due to the incidence angle effect. The HV scene has a
lower signal-to-noise ratio and is darker compared with the HH
scene.

For training and testing purposes, we randomly labeled 500
sample pixels per scene for all 18 scenes. These sample points
are used to train the classifiers and validate the performance.
An example of a scene with labeled sample points is shown
in Fig. 2(d). The scene is covered by FYI (yellow) and MYI
(red). In order to produce an appropriate dataset for training and
testing, all the labeled samples are randomly selected across the
whole scene without any preferred region.
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Fig. 1. Location of the 18 scenes in the Beaufort Sea.

Fig. 2. Example scene captured on April 26, 2010 (Scene ID: 20100426_040439). (a) HH polarization. (b) HV polarization. (c) Reference ice chart. (d) 500
sample points selected for training and test (Yellow: FYI. Red: MYI).

IV. METHODOLOGY

A. Problem Formulation

Let Y denote the SAR image that consists of N pixels, i.e.,
Y = {yi|i = 1, 2, . . ., N} and L is the associated label map
L = {li|i = 1, 2, . . ., N} that consists of a total of K classes of
different ice types, where l = {1, 2, . . .,K}. Sea-ice mapping
from SAR image aims to estimate L given Y .

Algorithmically, first, Y is segmented into a total of T homo-
geneous regions Y = {R1, R2, . . ., RT }, where Rr consists of
nr pixels

Rr = {yri |i = 1, 2, . . ., nr} . (1)

To estimate the label of Rr, denoted by lRr
, the label of each

pixel, i.e., {lyi
|i = 1, 2, . . ., nr}, in Rr is estimated. Then, {lyi

}
is used to derive the label of the region lRr

via the proposed
energy function.

The proposed classification system consists of two main com-
ponents shown in Fig. 3. The system uses HH and HV polarized
images of the scene, a pretrained pixelwise classifier, and an

optional landmask file as inputs. The left block in the flowchart is
the IRGS segmentation [54] to generateY = {R1, R2, . . ., RT },
and the right block is the pixelwise labeling to determine lyi

.
Details are described in the following subsections.

B. Unsupervised Segmentation

Operational SAR imagery used for sea-ice mapping at CIS has
large extents. The gradual change of incidence angle from near
range to far range leads to a corresponding change in within-
class backscatter. Therefore, a two-step segmentation strategy
called “glocal,” shown in Fig. 3, was introduced to suppress the
incidence angle effect [48]. First, the whole scene is segmented
into subregions called “autopolygons” [55] using a modified
watershed algorithm [56]. Only the HV scene is used in this
step, which is shown in Fig. 4(a), because it is less sensitive to
both incidence angle variation and surface roughness caused by
winds [57].

Within each autopolygon, an IRGS segmentation is performed
using the HH and HV polarized images. This step is presented in
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Fig. 3. Flowchart of the ice mapping system. Inputs are HH/HV images,
landmask (optional), and a trained classifier (SVM or RF). The left block
calculates contextual information by the unsupervised segmentation, while the
textural feature is extracted in the right block. Then, these features are combined
using the proposed energy function to generate the final classification map.

Fig. 4(b). Each region in an autopolygon results from overseg-
mention and is regarded as a node in a region adjacency graph.
Since each node is homogeneous and only contains water or
one ice type, an arbitrary label is assigned to each region for
further processing. This is the local step of the unsupervised
segmentation. The effects of speckle noise and incidence angle
are restrained by processing each autopolygon individually.

The second step is called “global.” Once the oversegmented
result is available, a gluing step is operated across the whole
image. The edge strength and statistical information from HH
and HV polarization are considered during this merging step.
The final segmentation result contains six classes with arbitrary
labels. This method is called “glocal” as it combines local
oversegmention and global merging.

The structure of IRGS segmentation is elucidated in [58].
Each autopolygon is segmented into four clusters, and the clus-
ters are merged into six classes in the global step. The following
parameters are applied to the segmentation for all the scenes
in the dataset. β1 and β2 used for estimating multilevel logistic
model are 3 and 0.4, respectively. The number of iterations is
set to 100 to achieve an oversegmented result. According to
previous experiment results, the values of β1 and β2 have little
impact on the final oversegmentation results when the iteration
reaches 100.

TABLE II
GLCM PARAMETERS USED IN THE STUDY

C. Supervised Labeling

1) Features: The following GLCM features [59] are selected
to build the automated sea-ice classification model in this study:

1) angular second moment (ASM);
2) contrast (CON);
3) correlation (COR);
4) dissimilarity (DIS);
5) entropy (ENT);
6) homogeneity (HOM);
7) inverse moment (INV);
8) mean (MU);
9) standard deviation (STD).
The choice of window and step size of GLCM features can im-

pact the performance of sea-ice classification. The window size
determines the perceptive area for textural feature extraction. For
instance, a small window usually works for distinguishing OW
since calm water surface has less texture in contrast to different
types of sea ice. Small window sizes also work better to detect
textural features from within leads and floes, while the complex
repeating patents caused by fissures and cracks in different ice
types require larger window sizes to capture. The spatial distance
of GLCM features determines the scale of repeating patterns.
For example, FYI has more dense repeating patterns compared
with MYI. The chosen window and step sizes of GLCM features
are listed in Table II. In addition to the 162 GLCM features, we
add individual pixel intensity, local average, and maximum pixel
intensities in 5 × 5 and 25 × 25 windows. All the features are
extracted from HH and HV polarized scenes, resulting in a set
of 172 features [48].

In order to minimize computation time and to minimize
the “curse of dimensionality” [60], [61], a feature search was
performed to reduce the number of features. Recursive feature
elimination with cross validation [62] is applied to select the
best feature combination in this study. The feature with the least
importance is discarded in each iteration. The process is repeated
until the best feature combination is found. Since the dataset
used in this article consists of 18 scenes, the feature search is
deployed with a cross-validation strategy. The feature search
executes 18 times. In each loop, a feature importance estimator
is trained on the 17 scenes and tested on the remaining scene
to determine the importance of each feature. This procedure
was carried out 18 times, and each scene has enrolled in both
training and test sets. This cross-validation strategy is called
leave-one-out (LOO). After the LOO is performed, the feature
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Fig. 4. IRGS result for April 26, 2010 (scene ID 20100426). (a) Autopolygons generated by the modified watershed algorithm. (b) Local oversegmentation result.
(c) Glocal results.

TABLE III
LIST OF SELECTED 30 FEATURES USING RFE AND CROSS-VALIDATED SCHEME

importances from each iteration are summed up to calculate
the final feature ranking. After running the feature search, the
30 most important features are selected. The result is listed
in Table III.

An appropriate classifier is crucial for a classification task. Xu
et al. [63] compared the performance of different classification
techniques (SVM, artificial neural network, decision trees, gen-
eralized additive model, and penalized linear discriminant anal-
ysis) using RADARSAT-1 imagery. In their study, tree-based
classifiers and SVM achieved better performance than the others.

Therefore, RF and SVM were chosen as the labeling methods
in our study.

2) Support Vector Machine: An SVM is a supervised learn-
ing model for classification and regression. The object of SVM
is to calculate a linear hyperplane in the feature space to separate
data from different classes. Only a subset of the training samples
called support vectors, are chosen to determine the hyperplane.
The hyperplane maximize the margin to the support vectors is
selected as the decision boundary. The training process of SVM
is to minimize the following loss function:[

1

n

n∑
i=1

max
(
0, 1− yi

(
wTxi − b

))]
+ λ ‖w‖2 (2)

where w and b are parameters for the hyperplane. yi are class
labels∈ {1, 2, 3, 4}. YI, FYI, MYI, and water are assigned labels
1, 2, 3, and 4, respectively. The original max-margin SVM only
works with linearly separable data. However, the tasks in the
real world are usually non-linear separable. Therefore, a kernel
function is applied to map data from low feature dimensions to
higher feature dimensions for linear separability. Polynomial,
radial basis function (RBF), and sigmoid are the most popular
nonlinear kernel function. The RBF kernel is applied for SVM
in this article with the form

K
(
ti, t

)
= exp

(
−γ

∣∣ti − t
∣∣2) (3)

where γ is a Gaussian parameter for sample scaling. RBF kernel
projects samples to high-dimensional feature space and makes
them separable. ti and t are two samples, and the similarity is
measured in Euclidean distance. Since the decision boundary of
SVM is computed based on a few support vectors, it requires less
memory and computational power. Fewer support vectors also
help to reduce the overfitting in training. Moreover, SVM is ver-
satile with different kernel functions for various classification.
missions [64].

3) Random Forest: RF [65] is an ensemble learning model
for classification and regression. It is an aggregation of diversi-
fied decision trees binding by bootstrap aggregating (bagging)
strategy. The key idea of RF is random—both samples and
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features are selected to train the decision trees and their nodes.
Each decision tree is trained by a subset of the whole dataset
using bootstrap sampling, and the node of the tree is grown
from a random feature of the input data. This learning method
averages the learned weights for all the features and helps to
prevent overfitting problems. The bagging method makes the
classifier tolerate the noise appearing in the dataset, which is
crucial for our research since SAR images are contaminated by
speckle noise. The aggregation of decision trees can be trained by
parallel computing and reduce the training and testing time [66].
In contrast to SVM, RF does not require feature searching since
features are randomly selected, and the importance is assigned
to each feature using GINI index [67]. The hyperparameters
of RF are determined by utilizing cross-validation-based grid
searching. The search range for the number of trees is ∈ {25 →
500 | step = 10}, max depth is ∈ {2 → 20 | step = 2}, and
minimum samples per leaf is ∈ {1 → 10 | step = 1}. The best
combination of hyperparameters determined by grid search is:
the number of trees = 200, max depth = 12, and minimum
samples per leaf = 2. In order to evaluate the performance of
SVM and RF using the same feature set, RF is trained on the
selected features in this article.

In this study, SVM and RF are deployed as pixelwise classi-
fiers for the following reasons. First, both the models have been
applied for remote sensing tasks, and the results are promising
according to previous studies. Second, SVM and RF have their
own techniques to suppress overfitting and increase robustness.
Finally, the runtime for predicting each scene is less than 30 min,
which is acceptable for operational use.

D. Combination of Segmentation and Labeling

By performing the unsupervised segmentation algorithm,
Y = {R1, R2, . . ., RT } is determined. Each Rr in Y is ho-
mogeneous and is assigned an arbitrary label. For the results
carried out by pixelwise classifiers, SVM and RF, each pixel is
labeled as an ice type or water. The flowchart of the proposed
automatic sea-ice mapping system is illustrated in Fig. 3. The
system ingests the HH and HV polarized images of the scene, a
pretrained pixelwise classifier, and an optional landmask file to
neglect the land and image boundary. The pixelwise classifier,
which is SVM or RF in this article, is trained using the selected
30 features. Inspired by the mechanism of RF, an energy function
E(k) is proposed to obtain lRr

using {lyi
|i = 1, 2, . . ., nr}

E(k) =
1

nr

nr∑
i=1

K∑
k=1

w(k, lyi
) (4)

w(k, lyi
) =

{
0 lyi

= k
1 yyi

�= k
(5)

lRr
= arg min (E(k)) (6)

where nr is the number of pixels in the homogeneous region
Rr. w is the weight function and k ∈ {1, 2, . . .,K} is the class
label. When combining the unsupervised segmentation with
supervised labeling, all the pixels in the same region share the

TABLE IV
CLASSIFICATION RESULT FOR ALL 18 SCENES

same label, which is determined as the dominant class according
to the pixelwise classification result, with all pixels within it.

V. EXPERIMENTS AND ANALYSIS

This study has trained and tested two benchmark classifiers,
SVM and RF, and two classifiers based on the proposed frame-
work, IRGS-SVM and IRGS-RF. Both numerical and visual
results are presented in this section. The LOO cross-validation
strategy is applied to evaluate the robustness and generalization
ability of the proposed methods. The classification results of
each scene are produced by the classifier that is trained using the
rest 17 scenes in the dataset. The cross validation is performed 17
times to ensure no samples from the same scene are employed
for both training and test. The overall accuracy based on 500
reference pixels per scene is shown in Table IV. Pixel-based
SVM and RF achieved average overall accuracies of 81.13% and
83.84%, respectively. Both SVM and RF struggle when dealing
with the freeze-up season. The scene with the worst prediction is
on November 14, 2010, with the accuracy of 60.50% and 65.40%
executed by SVM and RF, respectively. This scene is the most
challenging one in the dataset and will be discussed later in this
section. The least challenging scene was acquired on September
7, 2010, when only OW was presented in it.

After integrating with the segmentation results based on the
proposed framework, the IRGS-SVM and IRGS-RF achieved
average overall accuracies of 84.07% and 86.33%, with im-
provements of 2.94% and 2.49% compared with pixelwise SVM
and RF, respectively. The contribution of the proposed methods
can be observed in most scenes in terms of increased classifi-
cation accuracies. However, the accuracy may decline due to
the imbalanced spatial distribution of the SVM and RF results,
which the proposed methods adopt as input.

Several studies [27], [50] indicate that conducting incidence
angle correction may contribute to higher classification accu-
racy. Therefore, the improvement of applying incidence angle
correction is also investigated in this article. RF and IRGS-RF,
which outperform the other two classifiers, are trained and tested
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TABLE V
CLASSIFICATION RESULTS BEFORE AND AFTER INCIDENCE ANGLE (IA) CORRECTION FOR RF AND IRGS-RF

using the HH/HV scenes calibrated to sigma naught based on the
sigma lookup table. Table V gives the comparison of classifica-
tion accuracy before and after incidence angle correction. The
overall accuracy achieved by RF is boosted by 0.91% on the
corrected dataset. However, accuracy decline is also observed
in several scenes. A potential cause is that the correction may
weaken texture patterns for specific GLCM features in the near
range. Similar results are reported in [52], [68], and [69]. In
contrast, IRGS-RF is robust to incidence angle variation, and
improvement by introducing correction is neglectable for all the
scenes in terms of classification accuracy. The glocal strategy
in IRGS mitigates the effect caused by the incidence angle
variation, and the integration mechanism minimizes pixel-level
errors caused by outliers in RF results.

The classification results indicate that GLCM features are
qualified to distinguish different sea-ice types and water when
incorporated with a suitable classifier. Since SVM and RF em-
ploy different strategies to solve linearly separable problems,
the separability of different sea-ice types and the effectiveness
of features that contributed to the classification results are worth
investigating. Fig. 5 shows the distributions of GLCM features
for different sea-ice types and OW. OW can be efficiently sepa-
rated from sea ice by some GLCM features, such as ASM and
HOM. The distributions of COR for sea ice are highly correlated
and are not feasible to discriminate sea-ice types when utilized
solely. The distributions of HOM and INV are very similar,
indicating information redundancy when using HOM and INV
with the same parameters. In agreement with previous research,
the results demonstrate that most GLCM features can contribute
to the partial separation of OW and different sea-ice types.

The classification results for the April 26, 2010 scene, which
was previously shown in Fig. 2 to demonstrate all the steps
of the proposed method, is shown in Fig. 6. SVM has been
demonstrated as an effective method to classify ice and water,
but it does not generate a reasonable ice map in this scene.

There are several issues that should be considered when applying
pixel-based classifiers. First, the selection of crucial hyperpa-
rameters is essential. SVM requires tuned C and gamma, while
the number of trees is the only key hyperparameter for RF. More
hyperparameters require more computation for grid search and
may cause overfitting. Second, SVM uses a kernel function to
improve the separability of the features, and the speckle noise
in the dataset is more likely to be augmented in the higher
dimension. In contrast, the voting and bagging scheme in RF
makes it less sensitive to speckle. Fig. 6(e) displays noticeable
noise-like errors across the whole scene. Unlike SVM, RF
achieves more consistent classification results. According to
visual interpretation and ice chart, there is no YI in this scene.
However, both SVM and RF misclassified FYI and MYI in the
middle right of the scene as YI. On a pixelwise classification
level, RF obtains better accuracy compared to SVM. After being
combined with the IRGS segmentation result, the noise-like
errors are suppressed, and the boundaries are well preserved for
both IRGS-SVM and IRGS-RF. Despite that, the improvement
of IRGS-RF is negligible in numerical accuracy, because this is
validated only on 500 sample points in each scene. The classified
image using IRGS-RF is the most visually satisfying among the
four methods. IRGS-RF also improves the misclassified YI in
the other three scenes. IRGS-RF also improves the misclassified
YI area.

After combining unsupervised segmentation with supervised
labeling, Both IRGS-SVM and IRGS-RF achieve better classi-
fication accuracy, gaining over 2% compared with pixelwise
results. The confusion matrices of SVM, IRGS-SVM, RF, and
IRGS-RF are shown in Tables VI–IX, respectively. All four clas-
sifiers distinguish water from ice with accuracy over 94%. Even
with the interference caused by wind and wave, the features are
sufficient to describe their characteristics. However, SVM and
RF struggle to separate YI from other classes. A possible reason
for the misclassified YI may lie in similar backscattering to FYI.



7972 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 5. Distribution of GLCM features for different sea-ice types and OW in box-and-whisker plots. (a) ASM. (b) CON. (c) COR. (d) HOM. (e) INV. (f) MU.
All the GLCM features are calculated using a size of 51 with stride of 20.

Fig. 6. Classification results of April 26, 2010 (scene ID 20100426). Water (blue), YI (purple), FYI (yellow), and MYI (red). (a) HH polarization. (b) HV
polarization. (c) Ice chart. (d) IRGS segmentation result (e) SVM pixel-based classification result with an accuracy of 83.40%. (f) RF pixel-based classification
result with an accuracy of 88.00%. (g) IRGS-SVM classification result with an accuracy of 86.40%. (h) IRGS-RF classification result with an accuracy of 88.10%.
There should not be YI in this scene according to ice chart. False YI is reduced by combining IRGS result. The final result is more reasonable.
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Fig. 7. Classification results of August 7, 2010 (scene ID 20100807). Water (blue), YI (purple), FYI (yellow), and MYI (red). (a) HH polarization. (b) Ice chart.
(c) Ice chart. (d) IRGS segmentation result. (e) SVM pixel-based classification result with an accuracy of 91.90%. (f) RF pixel-based classification result with an
accuracy of 93.30%. (g) IRGS-SVM classification result with an accuracy of 94.70%. (h) IRGS-RF classification result with an accuracy of 95.30%.

TABLE VI
CLASSIFICATION CONFUSION MATRIX OF SVM

TABLE VII
CLASSIFICATION CONFUSION MATRIX OF RF

TABLE VIII
CLASSIFICATION CONFUSION MATRIX OF IRGS-SVM

TABLE IX
CLASSIFICATION CONFUSION MATRIX OF IRGS-RF

34.45% of YI is categorized as FYI by RF. YI only appears in
five scenes in the dataset, covering from late October through
December. The limited labeled samples may cause the poor
performance of classifying YI. Although pixel-based classifiers
do not achieve satisfactory results, the proposed IRGS-SVM
and IRGS-RF are able to boost the classification accuracy and
present visual-appealing sea-ice maps.

Mapping sea ice during the summer melting season is usually
tricky. The melting reduces the surface roughness of ice and
degrades the texture captured by backscatter. The melting ponds
presented onsite also change the electromagnetic characteristics
of the ice beneath. An example scene obtained on August 7,
2010 is depicted in Fig. 7. It is a complex scene that contains
FYI, MYI, and OW. All four models distinguish the OW in
the lower part of the scene. Although water around the image
boundary is misclassified as FYI by pixelwise SVM and RF,
these errors are effectively mitigated by the combined models,
IRGS-SVM and IRGS-RF. The upper part is more challenging
since the surface roughness of sea ice is reduced by melting.
Different types of ice show a very similar texture to OW in this
scene, leading to confusion when discriminating OW and sea-ice
types. Therefore, the presence of FYI is overstated by SVM and
RF. The proposed IRGS-RF is robust to these FYI errors and
achieves higher classification accuracy of 95.30%. Most MYI
floes in the upper right corner are also preserved in the results.

The classification result of October 21, 2010 is displayed in
Fig. 8. The gray ice appearing in the top left corner has a much
lower backscattering level than other gray ice displayed in the
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Fig. 8. Classification results of October 21, 2010 (scene ID 20101021). Water (blue), YI (purple), FYI (yellow), and MYI (red). (a) HH polarization. (b) HV
polarization. (c) Ice chart. (d) IRGS segmentation result. (e) SVM pixel-based classification result with an accuracy of 89.40%. (f) RF pixel-based classification
result with an accuracy of 90.80%. (g) IRGS-SVM classification result with an accuracy of 92.60%. (h) IRGS-RF classification result with an accuracy of 95.60%.

Fig. 9. Classification results of November 14, 2010 (scene ID 20101114). Water (blue), YI (purple), FYI (yellow), and MYI (red). (a) HH polarization. (b) Ice
chart. (c) Ice chart. (d) IRGS segmentation result. (e) SVM pixel-based classification result with an accuracy of 60.50%. (f) RF pixel-based classification result
with an accuracy of 68.80%. (g) IRGS-SVM classification result with an accuracy of 65.40%. (h) IRGS-RF classification result with an accuracy of 75.60%.
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scene. Another challenge presented is the noticeable banding
artifacts in the middle of the HV scene. The dataset is collected
under ScanSAR wide beam mode, and adjoining multiple scan
beams cause these vertical bands. Since HV polarization has
a much lower signal-to-noise ratio, the banding artifacts are
quite common in the HV scene. SVM and IRGS-SVM do not
get affected by banding artifacts. However, there is no FYI in
this scene, and SVM and IRGS-SVM misclassify YI as FYI.
RF obtains much better results compared to SVM. Although
the banding artifacts greatly impact the pixelwise RF result,
the combination with segmentation almost resolves this issue,
leaving only a small error on the IRGS-RF result.

Fig. 9 (November 14 2010) represents the most challeng-
ing scene with different ice types and water. The proposed
IRGS+RF achieves the lowest accuracy of 75.60% of all 18
scenes. First, the incidence angle effect is significant in the
scene. The backscattering signature is inconsistent across the
whole image—the left of the scene is brighter than the right side.
Second, given the 200 m × 200 m pixel size, a single pixel may
contain several types of ice and water. The pixelwise classifiers
struggle to distinguish these mixed pixels. Third, there are nu-
merous leads presented among sea ice in this scene. These leads
may have generated misleading texture features that confused
the classifiers. Although the pixelwise results are unsatisfying,
the combined methods suppress these phenomena and achieve
higher classification accuracy and natural boundaries between
different ice types and water.

The experiments are run on a computer with the following
configuration: Intel Core i5-6600K, 16-GB RAM, Windows
10 operating system. The average execution time to generate
a sea-ice map based on a RADARSAT-2 scene is less than
25 min. Specifically, it takes 3 min to oversegment the scene
into homogeneous regions. The GLCM feature extraction, as the
most time-consuming part of the workflow, takes around 15 min.
SVM takes 5 min for pixelwise labeling, while RF only takes 20 s
credited to parallel computing. The proposed system is qualified
to deploy on business computers with average configurations and
classify sea ice in a scene within half an hour.

VI. CONCLUSION

An automatic sea-ice classification system using
RADARSAT-2 SAR imagery is proposed in this article.
To the best of the authors’ knowledge, this is the first study
combining segmentation with pixelwise labeling, using an
energy function, to classify different sea-ice types. The
unsupervised IRGS segmentation algorithm extracts spatial
contextual information in the SAR scene to divide the whole
image into homogeneous regions, while the pixelwise classifier
exploits backscatter intensities and textural features to label
each region. Two benchmark pixelwise classifiers, SVM and
RF, and two proposed models, IRGS-SVM and IRGS-RF, were
trained and tested on a dataset to find the best combination for
building the system.

To better evaluate the proposed models, a dataset consisting of
18 RADARSAT-2 scenes of the Beaufort Sea is used to evaluate
the proposed models. The dataset includes scenes from melting,

summer, and freezing seasons. The LOO strategy is applied for
cross validation to avoid using samples from the same scene for
both training and testing. The results show that the proposed
models achieve an overall accuracy of 86.33% on the dataset
and are robust to melting season, which is the most challenging
period of the year.

When only applying pixelwise classifiers, RF obtains an
overall accuracy of 84.07% compared to 81.13% by SVM.
Comparing the visual results, the sea-ice maps generated by
RF contain fewer noise-like errors than SVM. In general, RF
outperforms SVM on most of the scenes in the dataset, indicating
that RF is a more reliable choice when dealing with sea-ice
classification based on texture features. After combining IRGS
segmentation results with the pixel-level labels, the classification
accuracies of IRGS-SVM and IRGS-RF are both improved.
IRGS-RF achieves the best performance with an 86.33% success
rate for distinguishing ice types and water.

Moreover, experiments are conducted on calibrated SAR data
to evaluate the robustness of the proposed method. The classi-
fication accuracies of RF are boosted for most scenes using the
SAR imagery calibrated to sigma naught. However, IRGS-RF
achieves almost identical overall accuracies on both calibrated
and uncalibrated data because the integration mechanism in
IRGS-RF minimizes pixel-level errors caused by outliers in RF
results. The results indicate that the proposed method is robust
to the incidence angle variation in dual-pol SAR data.

The novel sea-ice classification method not only achieves
promising classification results, but also produces visually ap-
pealing ice maps. The boundaries between water and different
ice types are well preserved, and the pixel-level errors are re-
fined. The final sea-ice maps are highly consistent with the CIS’s
ice charts. Analysts can apply these automatically generated
maps as references for sea-ice interpretation in the operational
pipeline at ice services. The proposed model will be tested on
dataset with different temporal and spatial distributions using
transfer learning in future work. The significance of applying
noise floor correction will be explored. The effect of utilizing
information of neighboring segments to improve the sea-ice
classification performance will also be investigated.
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