
7770 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Cross-Domain Association Mining Based Generative
Adversarial Network for Pansharpening
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Abstract—Multispectral (MS) pansharpening can improve the
spatial resolution of MS images, which plays an increasingly im-
portant role in agriculture and environmental monitoring. Existing
neural network-based methods tend to focus on global features
of images, without considering the inherent relationships between
similar substances in MS images. However, there is a high proba-
bility that different substances at the junction mix with each other,
which leads to spectral distortion in the final pansharpened image.
In this article, we propose a cross-domain association mining-based
generative adversarial network for pansharpening, which consists
of a spectral fidelity generator and dual discriminators. In our spec-
tral fidelity generator, the cross-region similarity attention module
is designed to establish dependencies between similar substances
at different positions in the image, thereby leveraging the similar
spectral features to generate pansharpened images with better
spectral preservation. To mine the potential relationship between
the MS image domain and the panchromatic image domain, we
pretrain a spatial information extraction network. The network is
then transferred to the dual-discriminator architecture to obtain
the spatial information of the pansharpened images more accu-
rately and prevent the loss of spatial details. The experimental
results show that our method outperforms several state-of-the-
art pansharpening methods in both quantitative and qualitative
evaluations.

Index Terms—Deep learning, dual discriminators, image
association, multispectral (MS) pansharpening.

I. INTRODUCTION

W ITH the continuous launch of satellites in many coun-
tries, remote sensing images have been widely used in

various fields, such as precision agriculture [1], mineral explo-
ration [2], and ecological environment monitoring [3], [4]. And
most of these applications require high-resolution multispectral
(HRMS) images for higher precision and accuracy. However,
due to the physical limitations, it is difficult for satellite sensors
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to obtain images with both high spatial resolution and high
spectral resolution. They can only provide panchromatic (PAN)
images and low-resolution multispectral (LRMS) images, re-
spectively. To solve this problem, pansharpening aims to fuse
the spectral information of LRMS images and the spatial infor-
mation of PAN images to obtain pansharpened HRMS images.

Over the past few decades, pansharpening has attracted great
attention from researchers and many pansharpening methods
have emerged. Existing methods can be divided into two main
categories: 1) traditional methods and 2) deep learning-based
methods. Traditional methods [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15] mainly rely on the detail injection model.
Spatial details of PAN image are extracted in different ways,
and then injected into MS image with estimated injection co-
efficients, which control the amount of injected details. This
class of methods can obtain a tradeoff between performance
and computational burden. In recent years, with the develop-
ment of deep learning, there have been many works based on
deep learning in the field of pansharpening. The first kinds of
methods based on convolutional neural networks (CNNs), such
as [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29]. These methods make improvements to the
single-image super-resolution network structures or combine
CNNs with traditional methods, mainly focusing on deepening
the network layers to utilize the feature extraction power of
CNNs. In order to obtain more realistic pansharpened images,
researchers have started to explore generative adversarial net-
works (GANs) [30] to solve the pansharpening problem [31],
[32], [33], [34], [35], [36], [37], [38]. Not only the generator
is improved but also multiple discriminators are considered.
Compared with CNNs, GANs can better fit the distribution of
input data due to the adversarial learning between the generator
and the discriminator.

Although deep learning-based methods can achieve remark-
able performance by exploiting the powerful representation
learning capability of neural networks, they mainly focus on
global information and ignore the characteristics of MS images.
In fact, cross-region similarity exists in MS images. The MS
image contains many repetitive regions with similar substances,
and the spectral features of these similar substances are also very
similar. Therefore, this relationship between similar substances
can be exploited to improve the pansharpening quality. As shown
in the example of Fig. 1, M and N represent two different
substances located at the junction. When pansharpening is per-
formed on the junction, the two different substances will interact
with each other, resulting in spectral distortion. However, by
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Fig. 1. Example of multispectral images to illustrate its characteristics. Each
subfigure shows two representative similar regions, represented by boxes of
the same color. The different substances at the junction (denoted by M and N,
respectively) utilize the features of similar regions to generate similar objects,
thus reducing the adverse effect of mixing different substances with each other.

utilizing spectral information from other similar substances,
the mixing of substances at the junction will be avoided, thus
reducing the chance of local error propagation. As shown by
the partial arrows in the Fig. 1, M and N, respectively, focus on
substances that are similar to them and take advantage of their
similar spectral features, thereby reducing the mixing of differ-
ent substances. In addition, the spatial information of PAN image
is partially lost, which leads to a gap between the pansharpened
image and PAN image. Similar to single-image super-resolution
methods, most GAN-based pansharpening methods use a single
discriminator to distinguish the image as a whole, which lacks
the pertinence of spatial and spectral information. A few meth-
ods based on dual discriminators can distinguish the spatial and
spectral information separately, but it is inadequate to acquire
and represent the spatial information of pansharpened image
exactly, resulting in poor preservation of spatial information.

To address the abovementioned issues, we design a cross-
domain association mining-based GAN for pansharpening. The
contributions of our work can be summarized as follows.

1) A Cross-Region Similarity Attention Module-Based Spec-
tral Fidelity Generator: In order to take full advantage of
the promotion of homogeneous features to pansharpening,
a cross-region similarity attention module is proposed
to establish similarity dependencies between distant but
highly similar substances. In particular, it can reduce the
adverse effects of the features at the junction by other adja-
cent different features, avoiding severe spectral distortion.

2) Dual-Discriminator Architecture by Transferring our Pre-
trained Apatial Information Extraction Network: To ac-
curately obtain the spatial information to be involved in
the spatial discriminator, we pretrain a spatial information
extraction network which can achieve the ability to ob-
tain the spatial component information of MS image by
learning the potential relationship between ground truth
and PAN images. Through the adversarial learning of
the spatial discriminator and the generator, the spatial
information of the pansharpened image is as consistent
as possible with the input PAN image. Moreover, blurring
and downsampling are performed on the pansharpened
image to obtain its spectral component information, which
is then entered into the spectral discriminator to maintain
spectral information.

The rest of this article is organized as follows. Section II
summarizes the related work. Section III gives details of the
proposed pansharpening method. In Section IV, the experiments
and results are described. Finally, Section V concludes this
article.

II. RELATED WORK

A. Traditional Methods

Traditional methods are mainly divided into three categories,
i.e., 1) component substitution (CS) methods, 2) multiresolu-
tion analysis (MRA) methods, and 3) hybrid methods. The CS
methods usually separate the spatial and spectral components
of MS image in the transformed domain, where the spatial
component is substituted by a histogram matched version of
PAN image. Then the pansharpened image is obtained by
the inverse transformation back to the original domain. The
widely employed transformations in CS methods mainly include
intensity–hue–saturation (IHS) [5], principal component anal-
ysis (PCA) [6], Gram–Schmidt (GS) [7], and so on. The CS
methods can preserve the spatial details of the PAN image, but
are easily affected by the correlation between PAN image and
the spatial component of MS image. The smaller the correlation
between the two, the more severe the spectral distortion of the
pansharpened image. The MRA methods obtain spatial details
by multiresolution decomposition of PAN image, which are then
injected into MS image. Some representative instances of such
methods are modulation transfer function (MTF) [8], Laplace
pyramid [9], wavelet transform [10], and curvelet transform [11],
[12].The MRA methods mainly operate on PAN image instead
of changing the original structure of MS image, so they can
preserve the spectral information of MS image. However, the lin-
ear injection of detail information can lead to spatial distortion.
Hybrid methods [13], [14], which are the combination of CS
and MRA methods, have the advantages of these two methods,
but increase the complexity and difficulty of implementation. In
addition, Xiao et al. [15] propose a variational pansharpening
method with context-aware details injection fidelity, which can
fully explore the complicated relationship between the PAN
image and the HRMS image in the gradient domain with adaptive
coefficients estimation. The method is effective in extracting the
main features from the two inputs to be fused.

B. CNN-Based Methods

In recent years, CNNs have received great attention in pan-
sharpening research. Zhong et al. [16] introduced CNNs into
this field for the first time, using a CNN to enhance the in-
tensity component of MS image and then fusing it with PAN
image through GS transform. Inspired by the single-image
super-resolution network structure SRCNN [39], Masi et al. [17]
designed a simple CNN to achieve pansharpening. Compared
with the traditional methods, the performance of this method
has been greatly improved. Yang et al. [18] used a residual
network [40] in the pansharpening task for the first time and
trained the network in the high-frequency domain to better
preserve the spatial information of PAN image. Recent studies
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have shown that shallow networks are not sufficient to extract
abundant features [41], [42], while deeper networks usually
perform better. Wei et al. [19] presented a deep residual neural
network for pansharpening. Yuan et al. [20] designed a mul-
tiscale and multidepth CNN by using convolution kernels of
different sizes and two branch networks of different depths, in
which features of different sizes and depths are fully utilized to
achieve high pansharpening quality. Scarpa et al. [21] proposed
a target-adaptive pansharpening method to ensure good results
even in the case of mismatched training sets. Based on the
idea of super-resolution, Hu et al. [22] proposed a two-stage
pansharpening method, including a super-resolution stage and
an image fusion stage. In the first stage, a residual network is
used to improve the resolution of MS image. Then a multilevel
detail injection network is designed in the second stage for image
fusion.

Most of the above methods treat the CNN as a black box,
without specific knowledge of pansharpening and lacking a
explicit physical interpretation. For this problem, He et al. [23]
and Deng et al. [24] adopted the detail injection framework
of traditional methods to design networks. They exploited the
nonlinear characteristics of CNNs to extract details, which were
then injected into the upsampled MS image. Both methods
are clearly interpretable and achieve fast convergence. Zhang
et al. [29] proposed an network structure with two layers, two
branches and two directions, which injects multiscale spatial
details of PAN images into MS images in a layered and bidi-
rectional manner, thus producing high spatial resolution output.
According to the traditional MRA method, a block is designed to
extract structure information from PAN image. And multiscale
convolution kernel modules are also used to deepen and broaden
the network.

Although these methods have greatly improved the pansharp-
ened results, they mainly focus on the design of the depth of
the network. The features extracted by the network are not fully
and reasonably utilized. Motivated by the great success of atten-
tion mechanisms in various deep learning-related fields, such
as image classification image segmentation, some researchers
have introduced existing attention mechanisms to pansharpening
tasks. Li et al. [25] designed a multiscale residual network by
introducing the channel attention mechanism. Luo et al. [26] pro-
posed a channel similarity attention fusion network by improv-
ing the channel attention module, which effectively suppressed
redundant features. Rui et al. [27] and Wang et al. [28] use both
channel attention and spatial attention modules to fully exploit
useful features and suppress less useful ones to further improve
pansharpening quality. In general, compared with traditional
methods, CNN-based methods can better preserve spatial and
spectral information.

C. GAN-Based Methods

Recently, GANs [30] have been successfully applied to var-
ious vision tasks due to their powerful image generation capa-
bilities. Therefore, some works [31], [32], [33], [34], [35], [36],
[37], [38] have also appeared to solve the pansharpening tasks by
GANs. GANs have their own unique network structure. In gener-
ally, a GAN consists of a generator network and a discriminator

Fig. 2. Overall framework of the algorithm.

network. Through continuous adversarial learning between the
two, the generator eventually produces more realistic image
samples that cannot be distinguished by the discriminator. Liu
et al. [31] introduced GANs into the pansharpening field for the
first time, generating HRMS images through a two-stream fusion
generator network. Then they [33] proposed three different
generator networks which are the extension of the previous [31].
Based on conditional GANs, Shao et al. [32] employed an
encoder–decoder network with residual structure as the gener-
ator to avoid the loss of details caused by network deepening.
Zhao et al. [36] applied fast guided filter and spatial attention
mechanism to GANs to better preserve spatial information. In
addition to designing the generator, some works improved GANs
by using dual discriminators. Ma et al. [37] proposed a pan-
sharpening method based on dual-discriminator network, which
employs two discriminators to force the spectral and spatial
information of the pansharpened image to be consistent with
the LRMS and PAN images, respectively. Spectral information
is discriminated from upsampled LRMS and pansharpened MS
images, and spatial information is discriminated from average
pooled pansharpened MS and PAN images. Gastineau et al. [38]
also designed a GAN structure with dual discriminators, by using
the intensity component and near-infrared band of pansharpened
image for spatial information discrimination, and using Cr and
Cb components for spectral information discrimination.

III. PROPOSED METHOD

A. Overview of the Framework

The overall framework of the proposed method is illustrated
in Fig. 2, which consists of a spectral fidelity generator and dual
discriminators. The spectral fidelity generator can generate the
pansharpened image from the input PAN and LRMS images. Its
network can be mainly divided into three parts: 1) the shallow
feature extraction part (SFE), 2) the deep feature mapping part
(DFM), and 3) the residual image reconstruction part (RIR). In
the DFM, we design a cross-region similarity attention module
to establish the relationship between similar features. Then the
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Fig. 3. Overall architecture of the spectral fidelity generator. **** and
⊕

denote concatenation operation and elementwise sum operation, respectively.

spatial component image of the pansharpened image is obtained
through the pretrained spatial information extraction network.
We pretrain the spatial information extraction network by using
ground truth and PAN images. The ground truth is used as the
input of the network, and the output image is compared with
the PAN image to obtain the loss function to train the network.
Finally, the network is capable of extracting spatial information
of MS images. The pretrained network is then fixed in our
dual-discriminator architecture to extract the spatial information
of the pansharpened HRMS images. In other words, we utilize
the invariant relationship between MS and PAN images, and
transfer the relationship between ground truth and PAN image
to the relationship between pansharpened HRMS image and
its spatial component image. And spectral component image
is obtained through blurring and downsampling. Finally, the
spatial discriminator discriminates the spatial component image
and PAN image, and the spectral discriminator discriminates
the spectral component image and LRMS image. Through the
continuous adversarial learning between the spectral fidelity
generator and the dual discriminators, the generated image can
preserve the spatial information of PAN image and spectral
information of LRMS image. We are finally able to obtain the
pansharpened image by fusing PAN image and LRMS image
with the trained spectral fidelity generator.

B. Spectral Fidelity Generator

1) Network Architecture: The network architecture of the
spectral fidelity generator is shown in Fig. 3. LetMlr ∈ Rw×h×C

denote an LRMS image withw × h pixels andC spectral bands.
Let P ∈ Rrw×rh×1 denote a PAN image, where r is the spatial
resolution ratio of P and Mlr. First, Mlr is upsampled to the
same size as the PAN image to obtain the upsampled MS image
Mup ∈ Rrw×rh×C . Then Mup is concatenated with P along the
spectral dimension to form the input of the network. The network
starts with the SFE, which consists of two 3× 3 convolutional
layers with stride 1 and 2, respectively. The first convolutional
layer is followed by a LeakyReLu activation function. The
shallow feature F0 extracted by the SFE is denoted as

F0 = fSFE([Mup,P]) (1)

where [Mup,P] is the concatenation of Mup and P, and fSFE(·)
represents the convolution operation of the SFE. In order to

obtain more expressive features during the fusion process, F0 is
then fed into the DFM. DFM consists of l blocks, each of which is
formed by embedding cross-region similarity attention module
into residual dense block, called CRSA block. The process can
be expressed as

F1 = fDFM(F0) = fCB,l(fCB,l−1(· · · fCB,1(F0) · · · )) (2)

where fDFM(·) indicates the function of the DFM, fCB,l(·) is
the function of the lth CRSA block, and F1 is the final feature
obtained by the DFM. The output of the DFM then enters the
RIR to obtain the residual MS image. The RIR consists of
one transposed convolutional layer and two 1× 1 convolutional
layers. This process can be expressed as

Mres = fRIR(F1) (3)

where fRIR(·) denotes the function of the RIR and Mres is
the residual MS image after reconstruction by the generator
network. In order to maintain the spectral information of the
original MS image, we connectMup to the output of the network
for addition [18]. Finally, the pansharpened HRMS image Mhr

is obtained, which is expressed as

Mhr = Mres +Mup. (4)

2) Cross-Region Similarity Attention Mechanism: Nonlocal
operation can capture long-range dependencies by using matrix
multiplication which computes the weighted sum of the features
at all positions as the response of one feature [43]. Since matrix
multiplication between feature maps can compute correlations
among different positions, competitive performance has been
achieved in areas, such as video classification and object detec-
tion. Based on the fact that a large number of pixels of the same
substance in MS image have strong similarity in spectral and
spatial features, matrix multiplication can be used to establish the
relationship between them. Therefore, similar to [44], to obtain
a mask through the attention mechanism and other operations,
we introduce matrix multiplication to construct the cross-region
similarity attention module, so as to solve the spectral distortion
problem caused by the interaction of different substances at the
junction.

The structure of cross-region similarity attention module is
depicted in Fig. 4. Let X = [x1,1,x1,2, . . . ,xi,j , . . . ,xH,W]
denote the input tensor with spatial size ofH×W, where xi,j ∈
RC represents the feature vector along the channel dimension at
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Fig. 4. Structure of the CRSA block, which integrates the cross-region similarity attention module into the residual dense block.
⊗

denotes the elementwise
multiplication operation.

the spatial position (i, j). The channel dimension vector of each
pixel in the MS image represents the spectral feature specific to
the substance. So in order to preserve the spectral feature, we use
1× 1 convolution to aggregate the channel dimension features
to obtain a feature map in the spatial dimension, which can be
expressed as

Y = fconv(X) (5)

where Y ∈ RH×W is the resulting feature map. To calculate the
interconnection between the features at each position, we first
reshape Y to obtain a feature matrix S of size HW × 1. Then
we use the matrix multiplication to get the matrix K, as follows:

K = S · ST (6)

whereST is the transpose matrix ofS. After that, we use softmax
to normalize each row of K to get a feature similarity matrix A
of size HW ×HW. The value at position (i, j) of matrix A is
formulated as

ai,j =
eki,j

∑HW
q=1 e

ki,q

(7)

where ki,j denotes the value at position (i, j) of K, and ai,j
is the similarity value between the feature at position (i, 1)
in S and the feature at position (j, 1) in S. Each value in the
ith row of A represents the similarity between the feature at
position (i, 1) in S and the feature at other position in S. Based
on the fact that the channel dimension of MS image represents
the spectral information, the attention weights are desired to be
added to the 2-D spatial dimension. To aggregate the feature
similarity at the spatial position, we then perform a convolution
operation on each column of A to get a global attention vector
u = [u1, u2, . . . , uHW] of size 1×HW, which is expressed as

u = frconv(A) (8)

where frconv(·) represents the columnwise convolution. Then we
reshape u to v of size H×W × 1, and each element vi,j in v
represents the weighted similarity value between the position
(i, j) and all other positions, which implies the interdependence
between features at different positions. To learn the mask of
cross-region similarity attention module from the similarity, we
use a 7× 7 convolutional layer and a sigmoid function σ(·) to
v, as follows:

Ω = σ(fconv(v)) (9)

where Ω ∈ RH×W is the mask in 2-D spatial dimension, which
is then multiplied with the input feature. Finally, the output

feature Z obtained by the input feature X after the cross-region
similarity attention module is expressed as

Z = X+X ∗Ω (10)

where ∗ denotes the elementwise multiplication.
The proposed cross-region similarity attention mechanism

can establish long-range dependencies and assign attention
weights to features at different positions from a global per-
spective. To take full advantage of the cross-region similarity
attention module, we further incorporate it into the residual
dense block to form the CRSA Block, as shown in Fig. 4.
The CRSA block contains four 3× 3 convolutional layers, with
LeakyReLu activation functions following all but the last layer.
The output of each layer is used as the input of subsequent layers.
According to the attention weights, the convolutional layers of
the CRSA block will pay attention to the relationships between
features at different positions, so that similar features can en-
hance each other. Moreover, the dense connection can make full
use of all features and the residual structure can avoid gradient
disappearance, which is beneficial to the network training.

C. Dual-Discriminator Architecture by Transferring Our
Pretrained Spatial Information Extraction Network

As mentioned earlier, the spatial discriminator is responsible
for distinguishing between the spatial component image of the
pasharpened MS and the PAN image, and the spectral discrim-
inator is responsible for distinguishing between the spectral
component image of the pasharpened MS and the LRMS image.

1) Spatial Discriminator:
a) Pretrained spatial information extraction network: In or-

der to get the spatial component image of the pansharpened
MS image, we pretrain a spatial information extraction
network with QB dataset. We use ground truth as the input
image and PAN image as the reference image. The patch
number and patch size of training and test images used are
consistent with the settings of our training network finally.
The role of the spatial information extraction network is
to mine the potential relationship between the MS image
domain and the PAN image domain. Through learning the
relationship, the network achieves the extraction of the
corresponding spatial component of MS image. Then it
is transferred to our network architecture as an explicit
functional module during network training and testing
process. Compared with the average weighting of each
band, our pretrained spatial information extraction net-
work can fit the spatial component of the MS image more
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Fig. 5. Diagram of the discrimination of spatial information.

Fig. 6. Diagram of the discrimination of spectral information.

accurately by using the nonlinearity of convolution in an
adaptive manner. As shown in Fig. 5, it consists of four
3× 3 convolutional layers. Except for the last layer, the
remaining layers are followed by the LeakyReLu function
for nonlinear activation.

b) Discrimination of spatial information: The spatial compo-
nent image obtained by the pretrained spatial information
extraction network is then fed to the spatial discriminator.
Similar to [33], we use a full convolutional network to
construct our discriminators. The spatial discriminator
consists of four3× 3 convolutional layers, and the number
of convolution kernels in each layer is 32, 64, 128, and 1,
respectively. Since the input of the spatial discriminator is
the PAN image with a large size, we set the stride to 2 for
the first two layers and 1 for the last two layers. All layers
except the last one are followed by the LeakyReLu func-
tion. The last layer uses the sigmoid activation function
to control the output between 0 and 1, thus outputting a
discriminant result to distinguish true or false.

2) Spectral Discriminator: For the discrimination of spec-
tral information, we first obtain the spectral component image
with the same resolution as the LRMS image by blurring and
downsampling the pansharpened image. This follows theWald’s
protocol [45], which processes the raw MS image in this way
to obtain the LRMS image. This process also reflects the fact
that the LRMS image has the spectral information of the raw
MS image. The spectral component image is then fed into the
spectral discriminator for discrimination. As shown in the Fig. 6,
the structure of the spectral discriminator is similar to that of
the spatial discriminator, which also contains four convolutional
layers, but the stride of each layer is set to 1. Since the batch
normalization layer is not suitable for low-level vision tasks [46],
it is removed from our network.

D. Loss Functions

1) Loss Function of Spectral Fidelity Generator: Due to the
dual-discriminator architecture, the loss function of the spectral
fidelity generator includes a content-based loss and adversarial

losses between itself and two discriminators, which is defined as

LG(θG) = αLc + βLadv1 + γLadv2 (11)

where Lc, Ladv1, Ladv2 represent the content-based loss, the ad-
versarial loss with the spatial discriminator, and the adversarial
loss with the spectral discriminator, respectively. α, β, and γ
are the weight coefficients of each loss term, respectively.

For the content-based loss Lc, we adopt L1 loss between the
pansharpened image and ground truth, which is expressed as
follows:

Lc =
1

N

N∑

n=1

‖Mref −G(Mlr,P; θG)‖1 (12)

where N is the number of training samples in a minibatch, ‖‖F
is the Frobenius norm, Mref ∈ Rrw×rh×C indicates the ground
truth, G(Mlr,P; θG) = Mhr is the pansharpened image and θG
is the parameter of generator.

The adversarial loss Ladv1 is represented as

Ladv1 =
1

N

N∑

n=1

log(1−D1(S(G(Mlr,P; θG); θS); θD1
))

(13)
where θD1

is the parameter of the spatial discriminator D1, S(·)
represents the function of spatial information extraction network
and its parameter is θS , and S(G(Mlr,P; θG); θS) is the spatial
component of the pansharpened image.

The adversarial loss Ladv2 is represented as

Ladv2 =
1

N

N∑

n=1

log(1−D2(B ·R ·G(Mlr,P; θG); θD2
))

(14)
where θD2

is the parameter of the spectral discriminator D2, B
denotes blurring by Gaussian filter, R denotes downsampling,
and B ·R ·G(Mlr,P; θG) is the spectral component of the
pansharpened image.

2) Loss Functions of Dual Discriminators: Until the spatial
discriminator cannot distinguish the input spatial component
image and the PAN image, and the spectral discriminator cannot
distinguish the input spectral component image and the LRMS
image, it can be considered that the discriminators achieve the
training purpose. The corresponding loss function of the spatial
discriminator D1 is as follows:

LD1
(θD1

) =
1

N

N∑

n=1

[− log(D1(P; θD1
))

− log(1−D1(S(G(Mlr,P; θG); θS); θD1
))]
(15)

where D1(P; θD1
) and D1(S(G(Mlr,P; θG); θS); θD1

) denote
the classification probabilities of the PAN image and the spatial
component image, respectively.

The loss function of the spectral discriminator D2 is as
follows:

LD2
(θD2

) =
1

N

N∑

n=1

[− log(D2(Mlr; θD2
))

− log(1−D2(B ·R ·G(Mlr,P; θG); θD2
))]
(16)
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where D2(Mlr; θD2
) and D2(B ·R ·G(Mlr,P; θG); θD2

) are
the classification probabilities of the LRMS image and the
spectral component image, respectively.

IV. EXPERIMENTAL RESULTS AND ANALYSES

A. Datasets

There are four datasets used in our experiments, from
QuikBird (QB), GaoFen-2 (GF-2), WorldView-2 (WV-2), and
WorldView-3 (WV-3) satellite sensors. The spatial resolutions
of the raw PAN images in the three datasets are 0.6, 0.8, 0.5,
and 0.31 m, and the spatial resolutions of the corresponding MS
images are 2.4, 3.2, 2.0, and 1.24 m, respectively. The ratio of
spatial resolution is 4. The MS images contain four bands of
red, green, blue, and near-infrared. Each dataset contains nine
pairs of large-scale PAN and MS images, of which eight pairs
for training and one pair for testing.

Since there are no available HRMS images as ground truth,
we need to process the raw images according to the Wald’s
protocol [45]. We blur the raw PAN and MS images through
a Gaussian filter, and downsample them by a factor of 4 to
obtain the input low-resolution PAN and MS images required for
the experiments. The raw MS images are then used as ground
truth for comparison with the pansharpened images. In order
to obtain sufficient training data, we crop the processed PAN
and MS images into image patch pairs of size 128× 128 and
32× 32 by partially overlapping cropping, respectively. For the
QB, GF-2, and WV-2 sensors, we obtained 19297, 24610, and
46208 training image patch pairs, respectively.

B. Evaluation Criteria

The performance evaluation is conducted both at reduced
and full resolutions. In the reduced resolution experiments, we
quantitatively evaluate the experimental performance with four
widely used metrics: spectral angle map (SAM) [47], spatial
correlation coefficient (SCC) [48], relative dimensionless global
error in synthesis (ERGAS) [49], and universal image quality
index Q for four-band images (Q4) [50]. These four metrics
evaluate the similarity between the pansharpened image and
ground truth. Specifically, SAM measures the spectral distortion
by calculating the angle between the corresponding spectral
vectors of the pansharpened image and the ground truth. A
smaller SAM value indicates less spectral distortion. The ideal
value of SAM is 0. SCC is used to measure the correlation of
spatial information between the pansharpened image and the
ground truth, and its ideal value is 1. The closer the SCC is to
1, the smaller the spatial distortion of the pansharpened image.
ERGAS is a global quality evaluation metric, which evaluates
the pansharpening quality globally through the root mean square
error between two images in each band. The ideal value is 0. Q4
is the indicator that specifically measures four-band images, and
its ideal value is 1.

Furthermore, to evaluate the performance of each method
in full resolution experiments, we employ three widely used
nonreference metrics, namely, Dλ, Ds, and QNR [51]. Dλ is
a measure of spectral distortion based on the Q index between

TABLE I
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON THE QB DATASET

the pansharpened image bands. Ds is a metric to measure the
spatial distortion based on the Q index between each band of the
pansharpened image and PAN image. The ideal values ofDλ and
Ds are 0. QNR is the abbreviation of quality with no reference,
which is a global metric to measure the quality of pansharpened
images without ground truth. It is a combination of the above
two metrics and its ideal value is 1.

C. Experimental Setup

Our method is implemented in Python3.6 with the Tensor-
flow1.3 framework and our experimental environment is based
on the Ubuntu 18.04 operating system with the GPU NVIDIA-
RTX 2080Ti. The spatial information extraction network is
pretrained using the Adam optimizer with a learning rate of
0.0001. In both the generator and discriminators, the Adam op-
timizer is employed, and the initial learning rate is set to 0.0002.
The minibatch and epoch are set to 16 and 50, respectively. In
addition, the parameters of generator loss terms are set as:α = 1,
β = 1× 10−4, γ = 1× 10−4.

D. Reduced Resolution Experiments

To evaluate the performance of our method, we compared it
with some state-of-the-art methods, including three CS methods:
GS [7], BDSD [52] and PRACS [53], and four MRA methods:
AWLP [54], SFIM [55], MTF-GLP-HPM [56], and MTF-GLP-
CBD [57], and three deep learning-based methods: PanNet [18],
FusionNet [24], and FU-PSGAN [33]. Three different network
structures are proposed in [33], among which FU-PSGAN has
the best average performance on each dataset. Therefore, we
choose FU-PSGAN as a comparison.

1) QB Dataset: First, we conduct a quantitative comparison
of these methods on the QB dataset, as shown in Table I. We also
compare the method named RED-cGAN [32] on this dataset.
As can be seen from the table, our method can achieve the best
results in all metrics among the compared methods, which can
illustrate that our method has better fusion performance. This is
because our spectral fidelity generator can effectively reduce
the spectral distortion and our spatial information extraction
network can help to recover more accurate spatial information.
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Fig. 7. Visual results obtained by different methods on the QB dataset. (a) Ground Truth. (b) GS. (c) BDSD. (d) PRACS. (e) AWLP. (f) SFIM. (g) MTF-GLP-HPM.
(h) MTF-GLP-CBD. (i) PanNet. (j) FusionNet. (k) FU-PSGAN. (l) Ours.

TABLE II
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON THE QB DATASET (SIZE

OF THE PAN IMAGE: 256X256)

Further from the results of the traditional methods and the deep
learning-based methods, we can see that the latter performs
far better than the former, which indicates the great advantage
of deep learning. We also give experimental results on larger
sized images, with PAN image size 256×256. The performance
compared to other deep learning-based methods is shown in
Table II. It can be seen that our method also works well on
larger sized images.

For visual comparison, we further show the corresponding
pansharpened images in RGB format in Fig. 7. Among them,
Fig. 7(a) is the ground truth, and others are the visual results ob-
tained by different pansharpening methods. It can be clearly ob-
served that the results obtained by the AWLP and PRACS meth-
ods have obvious spectral distortion compared to the ground
truth. The PRACS method blurs the whole image due to the
lack of injected details, while some traditional methods seem to
return images which look even sharper than the ground truth,
with many more high-frequency details. Therefore, it seems to
provide an enhanced version of the ground truth. However, it
may be debatable whether this is desirable for pansharpening
methods. Among the deep learning-based methods, FU-PSGAN
also suffers from some spectral distortion, while others can
preserve the color distribution well in the visual sense. As can
be seen from the magnified region in the red box, our method is
able to preserve more details, while others’ details are missed,
and thus, can only acquire poor quality. PanNet and FusionNet

TABLE III
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON THE GF-2 DATASET

methods mainly focus on high-frequency information, ignoring
the significance of low-frequency spatial information, which
results in the loss of spatial details. However, our proposed
spatial information extraction network can help to obtain a right
amount of spatial information during the pansharpening process.
Fig. 8 shows the absolute error maps (AEMs) obtained by taking
a difference between the ground truth and the pansharpened
results. The closer the color of the image is to black, the better
the result. We can see that our result is closer to black in color.
This is because our method can better preserve the spectral
and spatial information through the spectral fidelity generator
and dual discriminators, so the overall pansharpening quality is
better than others.

2) GF-2 Dataset: The quantitative results of the different
methods on the GF-2 dataset are shown in the Table III. From the
results, we can see that our method obtains maximum values on
both SCC and Q4 metrics compared to other methods. The SAM
and ERGAS metrics are greatly reduced, which indicates that our
cross-region similarity attention mechanism can take advantage
of the complementary relationship between similar features to
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Fig. 8. AEMs of Fig. 7. (a) Ground Truth. (b) GS. (c) BDSD. (d) PRACS. (e) AWLP. (f) SFIM. (g) MTF-GLP-HPM. (h) MTF-GLP-CBD. (i) PanNet.
(j) FusionNet. (k) FU-PSGAN. (l) Ours.

Fig. 9. Visual results obtained by different methods on the GF-2 dataset. (a) Ground Truth. (b) GS. (c) BDSD. (d) PRACS. (e) AWLP. (f) SFIM. (g) MTF-GLP-HPM.
(h) MTF-GLP-CBD. (i) PanNet. (j) FusionNet. (k) FU-PSGAN. (l) Ours.

effectively avoid spectral distortion and further improve the
overall quality of the image.

In terms of visual comparison, the pansharpened results in
Fig. 9 show that the CS and MRA methods have severe spatial
distortion not only in most regions on the land, but also on the
green plants on the lake, with a lot of noise that seriously affects
the pansharpening quality. In addition, the result obtained by the
BDSD method has obvious color changes on the lake surface.
From the magnified region in the red box, it can be seen that the
results of all methods except the deep learning-based methods
have a large color difference with the ground truth, which
illustrates the disadvantage of these methods in terms of spectral
preservation. The results obtained by the GS, PRACS, and MTF-
GLP-CBD methods are significantly brighter in color. Further
observation of the spatial details from the local magnified region,
it can be concluded that our method can better preserve the
edges of the object and is slightly better than FU-PSGAN in

reducing artifacts. This is because our method can obtain more
accurate spatial information of pansharpened image through the
spatial information extraction network, which makes it better
in detail preservation than other methods. Also, it can be seen
from the AEMs in Fig. 10 that different methods show different
distortions on the land. Our method yields the smallest image
error with the least distortion, which further demonstrate the
effectiveness of our network.

3) WV-2 Dataset: As shown in Table IV, we show the quan-
titative results of each method on the WV-2 dataset. Similar
conclusion can be drawn that the best performance is still
reached by our method. Our method has a large improvement
about the SAM metric, which can demonstrate the role of our
proposed attention in spectral fidelity.

The visual comparison in Fig. 11 further corroborates the
quantitative results. The AWLP, SFIM, MTF-GLP-HPM, and
MTF-GLP-CBD methods intuitively suffer from severe color
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Fig. 10. AEMs of Fig. 9. (a) Ground Truth. (b) GS. (c) BDSD. (d) PRACS. (e) AWLP. (f) SFIM. (g) MTF-GLP-HPM. (h) MTF-GLP-CBD. (i) PanNet.
(j) FusionNet. (k) FU-PSGAN. (l) Ours.

Fig. 11. Visual results obtained by different methods on the WV-2 dataset. (a) Ground Truth. (b) GS. (c) BDSD. (d) PRACS. (e) AWLP. (f) SFIM.
(g) MTF-GLP-HPM. (h) MTF-GLP-CBD. (i) PanNet. (j) FusionNet. (k) FU-PSGAN. (l) Ours.

TABLE IV
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON THE WV-2 DATASET

distortion. The methods in the first row increase the saturation
of the image and cannot maintain the spectral information of
the image. Except for the PRACS method, the texture of the
images obtained by the other methods in the first row is too
sharp due to the excessive injection of detail information. Due
to the independence from ground truth, poor results are obtained
by these methods. The visual results of several deep learning-
based methods are very close to the ground truth, and it is not
easy to distinguish the specific visual differences among them.
However, from the houses in the magnified region, it can be
noticed that the results of PanNet, FusionNet, and FU-PSGAN
have some color changes compared to the ground truth. Our
method not only maintains the color distribution as much as
possible, but also can effectively distinguish the boundaries of
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Fig. 12. AEMs of Fig. 11. (a) Ground Truth. (b) GS. (c) BDSD. (d) PRACS. (e) AWLP. (f) SFIM. (g) MTF-GLP-HPM. (h) MTF-GLP-CBD. (i) PanNet.
(j) FusionNet. (k) FU-PSGAN. (l) Ours.

TABLE V
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON THE WV-3 DATASET

different colors without mixing. This fully demonstrates that our
cross-region similarity attention mechanism can pay attention
to the dependencies between similar substances, allowing them
to promote each other, while attenuating the spectral distor-
tions caused by neighboring different substances. Furthermore,
consistent conclusions can also be drawn from the AEMs in
Fig. 12 that our method brings about minimal spatial and spectral
distortions.

4) WV-3 Dataset: The number of training and test images of
WV-3 dataset is 9714 and 20, respectively. Since the competitive
performance of FusionNet and FU-PSGAN, we choose these
two methods as our compared ones in WV-3 dataset with eight
spectral bands. A new method named by CDIF [15] was also se-
lected to conduct experiments over WV-3 dataset. Performance
indicators, such as SAM, SCC, ERGAS, and Q8 are employed
to validate the efficiency of our proposed method.

From Table V, it can be seen that compared with the other three
methods, our method can obtain competitive results. Only SCC
which reflects the spatial quality, is slightly lower than that of
FU-PSGAN method. For other three indicators, our method can
achieve some improvement. The results show that our method
can also be applied to datasets with different spectral and spa-
tial resolutions. We can also see that CDIF performs poorly
compared with other methods. This is because this method is
a traditional one, which has an inherent gap compared with
other deep learning methods. Another reason is that the method
focuses on the relationship between PAN and HRMS images
in the gradient domain and may ignore other key information

TABLE VI
FULL RESOLUTION EXPERIMENTAL RESULTS OF DIFFERENT METHODS ON THE

QB DATASET

needed for pansharpening, such as spectral information. And
from Fig. 13, we can see that our method works well on WV-3
dataset and shows less image residuals compared with the other
methods.

E. Full Resolution Experiments

To further validate the cross-scale generalization ability of
our method, we also conduct experiments on full-scale images.
We use the original MS and PAN images directly as input to the
network optimized in the reduced resolution experiment, and
evaluate the pansharpened images based on three nonreference
metrics without ground truth. The quantitative experimental
results are shown in Table VI. It can be seen that PanNet method
is superior to other methods in bothDs and QNR. This is because
PanNet method performs training in high-frequency domain,
which makes it more flexible to be extended to full-scale images.
We can observe that our method can obtain close performance
to PanNet in global quality metric QNR, which proves the
robustness of our method. We also present the qualitative results
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Fig. 13. Fusion results obtained by different methods on the WV-3 dataset. Visual results of (a) CDIF, (b) FusionNet, (c) FU-PSGAN, (d) Ours, and (e) Ground
Truth, respectively. AEMs of (f) CDIF, (g) FusionNet, (h) FU-PSGAN, (i) Ours, and (j) Ground Truth, respectively.

Fig. 14. Full-resolution results obtained by different methods on the QB dataset. (a) LRMS. (b) PAN. (c) GS. (d) BDSD. (e) PRACS. (f) AWLP. (g) SFIM.
(h) MTF-GLP-HPM. (i) PanNet. (j) FusionNet. (k) FU-PSGAN. (l) Ours.

of each method in Fig. 14. It can be found that deep learning-
based methods show better visual results and our method is
most advantageous in spectral fidelity. This experimental result
verifies the satisfactory performance of our method in terms of
quantitative metrics and visual appearance.

F. Ablation Studies

1) Effect of the Number of CRSA Blocks: We first compare
the performance of the network with different numbers of CRSA
Blocks. As shown in Table VII, we set the number of blocks
from 1 to 4, and obtain the following quantitative results. As
can be seen from the table, the network performs better when
the number of blocks increases from 1 to 2. However, as the

TABLE VII
COMPARISON WITH DIFFERENT NUMBERS OF CRSA BLOCKS

number of blocks continues to increase, the performance gradu-
ally become worse. This is because the CRSA block contains the
cross-region similarity attention module, which allows for not
only the detailed features needed for low-level vision tasks but
also contextually similar semantic features, compared to using
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TABLE VIII
COMPARISON OF DIFFERENT MODULE CONFIGURATIONS

only convolutional layers. When the number of blocks is too
small, there are not enough similar dependencies to guide pan-
sharpening for better performance. However, when the number
of blocks is too large, the semantic features are too concentrated
and important details may be lost. In addition, the depth of the
network directly depends on the number of blocks. Increasing
the number of blocks continuously may lead to overfitting of the
model. Therefore, we adopt two CRSA blocks in the network
eventually based on the experimental results.

2) Effect of Each Module: In order to verify the role of
each module in the final network structure, the experimental
performance of different module configurations is compared.
Two discriminators and cross-region similarity attention module
are removed from our network structure, and the generator-only
structure is used as the baseline. Then, the spectral discriminator,
spatial discriminator and attention module are added to the
baseline in sequence. We conduct ablation experiments on the
QB dataset and the results are shown in the Table VIII. As can
be seen from the results, after adding the spectral discriminator
to the baseline, both the SAM and ERGAS values are slightly
reduced. Then after adding the spatial discriminator, it can be
found that the SCC is improved. This is because the spatial
extraction network can more accurately extract the spatial infor-
mation to feed into the spatial discriminator, which is important
for preserving the spatial information of the PAN images. At
the same time, the values of other metrics are good, which
indicates that the spatial and spectral discriminators combined
with the generator to form adversarial learning can further
improve the overall quality of pansharpened images. Finally,
we add the cross-region similarity attention module. We can see
that SAM is significantly reduced at this time. This is because
the proposed attention mechanism can establish relationships
between similar features, which is extremely helpful to avoid
spectral distortion. Satisfactory results can be obtained in the
final network structure, so the effectiveness of the modules used
in combination can be illustrated.

V. CONCLUSION

In this article, a cross-domain association mining-based GAN
is considered for pansharpening. To strengthen the inherent
relationships between image pixels, our designed cross-region
similarity attention extracts the dependencies between similar
features by using matrix multiplication to effectively avoid
spectral distortion. Then, we further constrain the spatial and
spectral components of the pansharpened MS image through a
spatial discriminator and a spectral discriminator. The pretrained

spatial information extraction network is proposed to ensure that
the spatial information of the input PAN image is preserved by
exploiting the relationship between MS images and PAN images.
Thereby, the pansharpening quality is improved. Experiments
on three datasets show that our method can achieve excellent
performance compared with several existing CS methods, MRA
methods and deep learning-based methods, and can obtain the
pansharpened image much closer to the ground truth.

Our method is the supervised pansharpening method, which
requires manual training data and takes the original MS image
as ground truth. As we all know, unsupervised pansharpening
method is more suitable for real pansharpening scenes. There-
fore, for real implementation, our future work will focus on
unsupervised pansharpening method, which just uses original
PAN and MS images as the input.
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