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A Generating-Anchor Network for Small Ship
Detection in SAR Images

Tingxuan Yue , Yanmei Zhang , Pengyun Liu, Yanbing Xu , and Chengcheng Yu

Abstract—Synthetic aperture radar (SAR) ship detection es-
pecially for small ships has issues, such as dense distribution of
ships, interference from land and small islands. To address these
issues, many deep learning methods, including anchor-based and
anchor-free methods, have been successfully migrated from optical
scenes to SAR images. However, when the preset scale of anchors
does not match well with the ships, it will seriously reduce the
detection precision. Due to the lack of anchor-based refinement
process, anchor-free methods may generate missing or false alarms
in complex scenarios. In this article, a two-stage ship detection
network which can generate anchors is proposed. First, our method
generates high-quality anchors by network, which is more ben-
eficial for the network to capture small ships. In addition, the
generated anchors are centrally set in the region of ships, which
reduces the number of anchors unrelated to ships. Second, the
receptive field enhancement module is inserted into the feature
pyramid network. It sets different dilation ratios of atrous con-
volution according to the scale of the feature map, which further
enriches the semantic information of the elements in the feature
map. Therefore, the network can use the information of a wider
region effectively to detect ships. Finally, to verify the effectiveness
of our method, extensive experiments are carried out on SAR ship
detection dataset and high-resolution SAR images dataset. The
results show that our method has more strong ability of detecting
small ships, and achieves better detection performance than some
state-of-the-art methods.

Index Terms—Deep learning (DL), ship detection, small-scale
target, synthetic aperture radar (SAR).

I. INTRODUCTION

W ITH the propagation characteristics of electromagnetic
waves, weather conditions have less impact on SAR than

optical remote sensing sensor, and the SAR can work all day. As
a valuable research topic in the field of SAR image processing,
ship detection plays an important role in sea surface monitoring
and fishery management [1]. Unfortunately, detecting ships in
complex environments (such as areas near land and little islands)
is still not a completely resolved task for researchers. What is
more, detection of small ships is also a great challenge [2].

The backscatter signal of ships is typically stronger than
the sea surface, resulting in its area being brighter than the
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surrounding background in SAR images [3]. The constant false
alarm rate (CFAR) is generally introduced into detection [3], [4].
For detecting ships, a bilateral CFAR algorithm combined the
intensity (i.e., brightness) distribution and spatial information
of the SAR image [5]. The two-parameter CFAR detector with
polarimetric whitening filter was derived under the distribution
of clutters including Wishart, K-Wishart, F-Wishart, etc., [3].
However, the complex background can affect the performance
of CFAR detector [5], [6], e.g., radio frequency interference [7]
may cause mismatch of clutter model, and the CFAR detector
may suffer performance degradation in multitarget scenarios [8].
The texture and contour of the SAR images have been extracted
from the gray value as another type of features for ship de-
tection [9]. Gao [10] investigated the effectiveness of multi-
ple features (like spatial boundary features, fractal dimension
feature), and extracted signal-to-noise-ratio (SNR) features for
SAR target detection.

Wang et al. [11] obtained the complete structures of the bright
area via superpixel segmentation and Bayesian framework, then
the morphological features was used to distinguish target from
clutter. The fisher vector (FV) represents more characteristics
of superpixel than its intensity values, and it contains the zero-
order, first-order, and second-order feature for ship detection [8].
Subsequently, the classifier completes the detection of ships in
the feature space [12]. The widely used classifiers, like support
vector machine (SVM), adaptive boosting, and so on, achieve ac-
curate detection performance in the suitable scenarios. Neverthe-
less, due to the influence of speckle noise and small islands, false
alarms often occur in these traditional methods based on image
processing. Whenever an unknown scattering of ships appears
or characteristic of interference changes turbulently, it takes a
relatively long time for scholars to design new features manually.

The vigorous development of deep learning (DL) technology
has promoted computer vision (CV) to a new stage. The pow-
erful learning ability of neural networks eliminates the need
for scholars to design features manually. Influenced by the
significant performance in CV field, the convolutional neural
network (CNN) has been introduced to detect targets in remote
sensing images [13]. The anchor-based CNNs develop along two
paths: 1) the single-stage with high operating speed and 2) the
two-stage with high precision. The representative algorithms of
single-stage methods are You Only Look Once (YOLO) [14],
RetinaNet [15] and Single Shot Detection (SSD) [16]. In order
to make YOLOv4 network [17] more suitable for ship detection
in SAR images, Gao et al. [18] introduced scale-equalizing
pyramid convolution module and convolutional block attention
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module into the network, and modified the head of the YOLOv4.
Represented by faster R-CNN [19], the two-stage method with
the region proposal network (RPN) trades speed for an increase
in detection precision. To alleviate the multiscale problem within
target in the ship detection, Deng et al. [2] proposed a ship
detection network that incorporates a design of multiscale filter
based on the two-stage network structure, and the redesigned
backbone network is compact in order to improve the train-
ing efficiency. The two-stage network can be regarded as the
first stage of rough classification and the second stage of fine
classification, which can further improve the accuracy of ship
detection. Hou et al. [20] used the SSD network as the first
stage, then constructed RefineDNet to improve the confidence of
potential objects from the first stage. Zhang et al. [21] proposed
an SAR ship detector based on the faster R-CNN incorporating
four balanced strategies and verified effectiveness of the detector
for solving scene imbalance and sample imbalance on multiple
public datasets. Besides the above anchor-based CNNs, the
anchor-free CNNs, like CenterNet [22], FCOS [23] have also
been introduced to ship detection. The CenterNet has been used
as a low-computation ship detector in [9]. The detector added
the spatial shuffle-group enhance attention module for capturing
features accurately under the interference of noise. Hu et al. [24]
introduced deformable convolution into FCOS to capture more
effective information for ships, and the nonlocal attention mech-
anism in the network effectively balanced the local information
of the feature map. Gao et al. [27] proposed a novel feature
aggregation scheme to enhance representation ability of the
features, and the feature reuse strategy of the scheme improved
the generalization ability of the model. Fu et al. [26] retained
the overall architecture of the FCOS, and proposed a module for
mitigating interference from objects adjacent to the ships. And
an intersection over union (IoU) prediction branch was inserted
into head of the network for the bounding box regression of
small-scale ships.

Due to the small radar cross-section, small ships are little-
scale and weak-intensity in SAR images, which are very easy to
be confused with islands and speckle noise for CNNs. In [27], the
inception module was adopted to increase the receptive field that
can capture small ships more effectively. Cui et al. [28] integrated
spatial and channel attention into the feature pyramid network
(FPN) structure, which strengthened the important information
in the small-scale feature map and improved the detection preci-
sion of small targets. In order to improve the ability of network
to detect small ships, Wang et al. [29] added a nonlocal attention
mechanism as a module on the SSD to enrich the semantic infor-
mation of feature maps. The coordinate attention module was
used to capture horizontal and vertical correlations on feature
maps in [30], then these feature maps are processed by receptive
field boosting to effectively reduce false alarms. For improving
the positioning accuracy of small ships and reduce false alarms
of nonships, Chen et al. [31] derived a shape similarity IoU loss
to instead the original loss function of bounding box regression.
Su et al. [32] used multiscale pooling operation to upgrade
location information of small ships at the high-level features.
Zeng et al. [33] pioneered the utilization of low-level feature to
match the receptive field of small ships, the low-level features

used to contain regional and texture information for capturing
small ships.

In the abovementioned ship detection network, the researchers
extended the DL algorithm based on optical target detection
at close range to the ship detection in SAR images. With the
advantages of high accuracy, the ship detectors based on the
DL algorithm have become a research hotspot in the field of
remote sensing. However, SAR images contain less information
compared with optical images and have interference, such as
clutter, the inherent shortcomings of these methods may be fur-
ther revealed in SAR ship detection. The anchor-based methods
regress the bounding box of target based on the designed anchor,
but the designed anchors are usually placed uniformly over the
entire feature map, resulting in a huge computational cost. Ships
are sparsely distributed in SAR images, which means that the
proportion of images occupied by ships, especially small ships,
is generally small. Sampling of the corresponding ocean region
on the feature map by the anchor will generate a large number of
negative samples unrelated to the ships, which wastes computing
resources. The detection performance of anchor-based methods
are very sensitive to the setting of anchor hyperparameters.
The methods with fixed scale and aspect ratio of anchors,
such as faster R-CNN and RetinaNet, cannot be applied to all
resolutions of ships datasets. Methods that spend the effort to
design anchors manually, such as YOLOv3 [34], may have an
unstable performance for large-scale variation within the class.
If the scale of preset anchors is not small enough, the ability
of the network to detect small ships will be severely affected.
Although the anchor-free method avoids the effort of adjusting
the hyperparameters and reduces the amount of computation
caused by anchors, the anchor-free methods lack further refine-
ment based on anchors, resulting in a lack of ability to handle
complex scenes and cases [35]. When the ships are parked close
to the shore or are distributed densely, the performance of the
anchor-free method to predict the bounding box will decrease.
Furthermore, the SAR images are grayscale images, which lack
color information that helps to directly regress the bounding box
without setting anchors.

To overcome the obstacles of the above anchor-based and
anchor-free methods while obtaining stronger detection capabil-
ity for small ships, we propose an SAR ship detection network
capable of generating anchors. Our method predicts the shape
of the anchor and its location on the feature map. The major
contributions of our work can be summarized as follows.

1) To reduce false candidates unrelated to ships while pre-
serving the design of anchor for high-accuracy detection per-
formance, we propose a generating anchors module (GAM).
The GAM receives the multiscale feature maps from the FPN
and predicts the position and shape of the anchor. The anchor
generated by the network can more effectively handle ships with
various aspect ratios.

2) Feature maps with rich semantic ranges can provide spatial
interaction information in the scene. Therefore, we design a
receptive fields enhancement module (RFEM) for improving
the ability of the network to locate ships. The feature maps with
multisize receptive fields from the RFEM are merged into a new
feature through channel then fed into the FPN.
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Fig. 1. Overall architecture of our proposed ship detector.

3) To verify the effectiveness of our method, we con-
duct extensive experiments on two widely used SAR image
ship datasets: SAR ship detection dataset (SSDD) [36] and
high-resolution SAR images dataset (HRSID) [37]. Our method
attains AP of 64.8 and 66.5, AP50 of 95.7 and 91.1 on SSDD
and HRSID, respectively, as well as achieves better detection
performance for small ships than popular detectors.

The rest of this article is organized as follows: The Section II
presents the details of our method, and Section III analyzes
the effectiveness of our method with experimental data. Finally,
Section IV concludes this article.

II. PROPOSED METHOD

This section describes the proposed method in detail, and
Fig. 1 shows the overall architecture of our proposed ship
detection network. An SAR image is input into the convergent
network that has been trained. It is the first extracted feature
by the backbone network, and the network obtains multiple
feature maps of different scales. The resolution of these feature
maps is gradually reduced, and the semantic content of which
is enriched scale by scale. They are then fed into the RFEM,
and the receptive fields of elements in each scale feature map
are enhanced, facilitating the GAM to generate anchors that are
more similar in shape to ships. These feature maps processed
by the RFEM enter into the GAM after completing multiscale
feature fusion in the FPN. The subnetwork of location prediction
(SNLP) in the GAM filters the location of the center point, where
the anchor is set on the feature map. And the subnetwork of
shape prediction (SNSP) in the GAM generates the height (h)
and width (w) of the anchor corresponding to the location from
the SNLP. Subsequently high-quality anchors and feature maps
output by FPN are fed into RPN and the head of the network
to complete proposal extraction, bounding box refinement, and
target classification in turn.

A. Basic Framework

Compared with the single-stage network, the two-stage net-
work has one more RPN. Although the two-stage network has
the inherent disadvantage of slow inference speed, the authors
in [21] and [28] choose to develop ship detectors based on a
two-stage network framework due to its high detection precision.
With the improvement of computing power, the time-consuming

Fig. 2. Two-stage network framework with the FPN inserted.

gap between the two-stage networks and the single-stage net-
works will be further narrowed. And our method can reduce
the amount of computation caused by invalid candidates, so
our method adapts the two-stage network as the basic frame.
The two-stage network framework with the FPN inserted is
shown in Fig. 2. The feature maps {C2, C3, C4, C5} obtained
from the bottom-up path in the backbone fuse with the feature
maps {A2, A3, A4, A5} generated by top-down paths in the FPN
via lateral connections. The new feature maps {P2, P3, P4, P5}
contain the semantic information in the higher layers and retain
the location information of target in the lower layers

Ai = Upsample(P ′
i+1), i = 2, 3, 4 (1)

P ′
i =

{
Ai ⊕ Conv1×1(C

′
i+1), i = 2, 3, 4

Conv1×1(Ci), i = 5
(2)

Pi =

{
Conv3×3(P

′
i), i = 2, 3, 4, 5

Downsample(Pi-1), i = 6.
(3)

Since the number of channels among Ci is inconsistent, the
FPN first obtain C ′

i with the same number of channels through
1×1 convolution. To detect large ships, we downsample P5 to
obtain P6, so the downsampling factor of {P2, P3, P4, P5, P6}
corresponding to the input sample image I ∈ RC×H×W is si =
{4, 8, 16, 32, 64}. Therefore, the number of anchorsNanchor_i set
on the feature map Pi is as follows:

Nanchor_i = Ceil(H/si)× Ceil(W/si)×Nsize ×Nratio (4)

where Nsize and Nratio are the number of two preset hyperparam-
eters (the size and the aspect ratio of anchor), respectively. The
RPN judges whether the anchors contain targets, and regresses
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the anchors containing targets as proposals. The nonmaximum
suppression (NMS) is used to filter proposals for obtaining
regions of interest (ROIs). Then the network assigns the ROIs
to the feature map Pi according to the scale. The detection head
of the network extracts the features of the corresponding ROIs
to complete the classification of targets and the refinement of
bounding boxes. In the two regression of bounding box in the
two-stage network, the network does not directly predict the
center coordinates (x, y), height and width (w, h) of the box.
When the RPN generates proposals, the network outputs the dif-
ference between the anchor and the ground truth (GT) box, i.e.,
the panning amount and the transformation scale (xt, yt, wt, ht).
The parameters (x, y, w, h) of the proposal can be decoded from
the parameters of the anchor (xa, ya, wa, ha).

x = xtwa + wa, y = ytha + ha (5)

w = wae
wt , h = hae

ha . (6)

The e in (6) is the base of the natural logarithmic function. When
refining the bounding box, the network predicts the difference
between the ROI and the GT box, and the decoding method is
the same as (5) and (6).

B. GAM

In the anchor-based network, the anchors are densely set on
the image, most of the anchors in the SAR ship detection are set
in the ocean area, which causes the RPN to waste a lot of time for
judging whether the anchor contains ships. The ships are long
strips and sail at any direction in the ocean, so the aspect ratio of
the GT boxes is usually quite different. The preset and clustered
from dataset anchors are not robust enough for ship detection.
Inspired by [35], we propose the GAM with supervision of
aspect ratio to generate anchors. The location(x, y) and (w, h) of
the ship’s bounding box on an SAR image I follow a conditional
probability density distribution

p(x, y, w, h|I) = p(x, y|I)p(w, h|x, y, I). (7)

The p(x, y|I) means that the ships appear in a specific location
on the image, i.e., the probability of placing an anchor on each
point of the feature map is different. And the p(w, h|x, y, I)
means that the shape of the ships bounding box is related to the
location of the ship on the image, that is, the (w, h) of anchor
on each location has a relationship between the location on
the feature map. Based on (7), the GAM structure is shown in
the Fig. 3. This module contains two branches: the SNLP and
the SNSP. In the SNLP, each position (x, y) in the feature map
Pi corresponds to the coordinate ((x+ 1

2 )si, (y + 1
2 )si) on the

input image I . The p(x, y|Pi) indicates the probability that the
ship exists in this location. The 1×1 convolution is applied to Pi

for obtaining the score map of ships existence. The score map is
processed by the sigmoid layer to generate the probability map

p(x, y|Pi) = Sigmoid(Conv1×1(Pi)). (8)

We take the location on the p(x, y|Pi) where the value is higher
than the predefined threshold ε as the (xa, ya) to place the
anchors.

Fig. 3. Structure of the GAM.

The first term of the product in (7) is obtained by the SNLP,
and the SNSP predicts the (wa, ha) of the anchor at (xa, ya).
According to [15] and [19], the (6) can be used to obtain a
more stable shape of anchor, therefore the SNSP predicts the
transformation scale (wt, ht) and the (wa, ha) of anchor is as
follows:

wa = σsie
wt , ha = σsie

ht (9)

where σ is the scale factor, and the wt and ht come from a
two-channel map generated by applying a 1×1 convolution on
Pi. The (wa, ha) combines the location of anchor center (xa, ya)
from the SNLP to obtain the anchor (xa, ya, wa, ha) that can
better capture ships. It is worth noting that only one anchor is
associated with each location, so the Nanchor_i on Pi changes
from (4) to

Nanchor_i = Count(p(x, y|Pi) > ε). (10)

Compared to (4), the number of anchors drops significantly after
applying the GAM. The number of positive and negative samples
becomes more balanced.

C. RFEM

To improve the receptive field of elements in the feature
map, pooling operation [38] or atrous convolution [39] can be
performed. Although the pooling operation does not increase
the number of parameters, it is easy to cause the feature map
to be disturbed by noise, especially the strong interference of
speckle in the SAR image. And the pooling operation reduces
the resolution of the feature map. Therefore, atrous convolution
is used in our method to enhance the receptive field while
preserving the spatial information of the feature maps. For a
2-D feature map P , the Q obtained after atrous convolution can
be expressed as

Q(i, j) =

K−1∑
m=0

K−1∑
n=0

P (i+ rm, j + rn)W (m,n) (11)

where (i, j) are coordinates on the feature map, and W and r are
a convolution filter of size K ∗K and dilated rate, respectively.
When the dilation ratio is 1, the atrous convolution degenerates
into an ordinary convolution.
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Fig. 4. Structure of the RFEM.

In the ASPP structure, the input feature map is responsible for
predicting targets with size within a range, so the dilation rate
of atrous convolution chosen to improve the receptive field are
{6, 12, 18}. However, the FPN assigns targets to feature maps of
different resolutions according to scale, and the proportion of im-
ages taken up by ships is relatively low in ship detection. There-
fore, it is easy to introduce redundant information irrelevant to
the ships by using the atrous convolution operation with large
dilation rates on the high-level feature map. In the structure of our
designed RFEM, the number of atrous convolutions is gradually
reduced as the resolution of the feature map decreases. TheP5 of
lowest resolution requires only one atrous convolution operation
with the minimum dilated rate. The structure of RFEM is shown
in Fig. 4, the RFEM is embedded after the channel reduction
operation of 1×1 convolution in FPN. The C ′

2 ∈ R256×H
4 ×W

4

with the highest resolution uses atrous convolution with dilated
rates {1, α, 2α, 3α, 4α} in parallel, and the α is the step size of
the dilated rate. In order to ensure that the multiple output feature
maps can be concatenated, these feature maps are made as the
same shape likeC ′

2 by zero-padding operation before processing
by atrous convolution. The feature map with 256 × 5 channels
obtained by concatenatting is subjected to 1×1 convolution for
the interaction between feature maps of different receptive fields,
so the obtained C ′′

2 ∈ R256×H
4 ×W

4 has stronger representation
ability. The operation for C ′

3 is similar to that for C ′
2, except

that the dilated rates of atrous convolution is {1, α, 2α, 3α}, by
analogy, the dilated rates of the atrous convolution used for C ′

5
is {1, α}. The FPN and the RFEM are connected by cascade, so
the C ′

i in Fig. 2 is replaced by the output of RFEM C ′′
i in our

method. The feature maps extracted from the backbone enhance
the receptive field via the RFEM, then they complete the fusion
of multiresolution features through a top-down path. The new
feature maps output by FPN not only enable the network head
to achieve better detection performance, but also promote GAM
to generate higher quality anchors.

TABLE I
THREE TYPES OF SAMPLE LABELS ON THE FEATURE MAP

D. Loss

Our proposed ship detection network follows optimization
approach of end-to-end via multitask loss. The multitask loss
function Loss contains loss function of SNLP LSNLP and loss
function of SNSP LSNSP from the GAM, loss function of classi-
fication Lcls and loss function of regression Lreg from the base
framework. In the training of the network, the Lcls and Lreg are
cross entropy loss and smooth L1 loss, respectively,

Loss = λ1LSNLP + λ2LSNSP + Lcls + Lreg. (12)

The training of SNLP requires the region of ships occupation
as label to calculate the LSNLP, the label can be obtained directly
from the GT box of ships. Since the higher initial IoU value
appear when the center of anchor and GT box are closer, the
locations in the center region of the GT boxes on the feature map
are regarded as positive samples. In addition, we wish to set as
few anchors as possible on the region far from the center of the
GT boxes. First the GT box (xg, yg, wg, hg) must be mapped
to the scale of the feature map Pi to get (x′

g, y
′
g, w

′
g, h

′
g). The

rectangular region is defined as R(x, y, w, h) like the bounding
box, the three types of sample labels on the feature map are
defined, as Table I. The CR usually occupies a smaller portion
on the feature map, so we use focal loss [15] as LSNLP. Since the
GAM is cascaded after the FPN, the assignment scheme of GT
boxes in the FPN is still used when generating the binary label
map.

In training, the basic framework assigns anchors for GT box
to calculate the loss according to the maximum IoU value. But
it is no longer applicable to the case where w and h are variables
in the GAM. This problem is solved by approximating IoU with
the variable IoU (vIoU) in the GAM

vIoU(awh, gt) = max
awh∈asample

IoU(awh, gt) (13)

where IoU(awh, gt) is the IoU between a anchor with (w, h) and
GT box gt, and asample is the set of anchors with common (w, h)
obtained by sampling. The nine pairs of sampling anchors in our
experiments are the same as [15], i.e., the aspect ratio of anchors
on the Pi are ratio = {0.5,1,2}, and the base scale of anchors
base_scale = 2m/3,m = 0, 1, 2. Compared with optical photos
and optical remote sensing images, SAR images lack rich color
boundary information to help the GAM predict the shape of
anchors. Due to the interference, such as sea clutter, predicting
the shape of anchor alone may lead to an error between the aspect
ratio of anchor and ideal situation. Additionally the shape of the
ships has higher requirements on the aspect ratio of the anchors.
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As a result, the bounding box and GT box are not matched
accurately enough, it is difficult to meet the requirements of the
scene with a high IoU value between the bounding box and GT
box. Therefore, we design the aspect ratio loss as the supervision
for generating the anchor, and the LSNSP is as follows:

LSNSP = L1

(
1−min

(
w

wg
,
wg

w

))
+ L1

(
1−min

(
h

hg
,
hg

h

))

+ MSE

(
hg

wg
,
h

w

)
(14)

where L1 is the smooth L1 loss, and MSE is the mean square
error loss.

III. EXPERIMENTS

All of our experimental results are run by a computer with
NVIDIA RTX 3090 GPU. The operating system is ubuntu
20.04, and the installed DL framework is Pytorch. Furthermore,
our method is implemented based on the MMDetection Tool-
box [40].

A. Datasets and Settings

To verify the effectiveness of our proposed module and test the
performance of our ship detection network, we conduct hyper-
parameter experiments, ablation experiments, and comparison
experiments with other popular networks on the SSDD. The
SSDD has multiple data sources (RadarSat-2, TerraSAR-X, and
Sentinel-1), and its resolution covers the range of 1–15 m. The
SSDD includes 1160 samples ranging in side lengths between
500 pixels and 600 pixels, with a total of 2456 ships in these
samples. Furthermore, to demonstrate the generalization of our
method, we also conduct comparative experiments with other
popular networks on the HRSID. The resolutions of samples in
the HRSID are 0.5, 1, and 3 m, and the resolution of most samples
is 3 m. The sample size of the HRSID is 800×800 pixels, and
these samples come from TanDEM, TerraSAR-X and Sentinel-
1. The HRSID has a total of 5604 samples and 16 951 ship labels,
with an average of three ships on each sample. The two datasets
also provide labels for inshore and offshore samples, which can
test the performance of our method in complex environments.
For the SSDD, we divide the training set and the testing set
according to [36]. The raw images whose the last digits of the
file number is 1 and 9 are used as the testing set, and the rest are
used as the training set, i.e., 232 samples are used for testing
and 928 samples are used for training. In order to facilitate
the input of network, the samples in the SSDD are resized to
512×512 pixels. For keeping the aspect ratio of the samples,
the zero-padding operation is used when resizing samples. The
sample division plan of HRSID is in accordance with the [37],
that is about 65% (3642 images) are the training set, and 35%
(1962 images) are the testing set. According to the [21], we
directly input the HRSID samples into network without resizing
and padding.

In our experiments, the samples do not undergo any aug-
mentation operations to fully demonstrate the performance of
network. The backbone network of all networks except the

TABLE II
CONFIGURATION OF OPTIMIZER

HR-SDNet [41] is the ResNet-50 network [42] loaded with
pretrained weights of the ImageNet from the torchvision. All net-
works are trained on GPU with batchsize of 1 for 12 epochs, and
the configuration of the optimizer is in Table II. For promoting
the network to converge, we also adopt a linear warm-up strategy
of the learning rate. The number of warm-up iterations and the
warm-up rate of this strategy are 500 and 0.001, respectively.
The NMS is applied to filter redundant bounding boxes from
the outputs of network, and the IoU threshold of NMS is set
to 0.5. We set λ1 = 1.0 and λ2 = 0.8 to balance the loss terms
in our method. The rest of hyperparameters follow the default
settings of the MMDetection Toolbox.

B. Evaluation Metrics

To objectively evaluate the performance of the method, we
adopt some quantitative metrics in this section, such as the most
widely used recall (r) and precision (p). The precision-recall
curve (PRC) can show precision and recall, and can describe
their relationship specifically. Therefore, we introduce average
precision (AP ), AP50, and AP75 from the evaluation metrics
of COCO [43] to quantify the PRC for a more comprehensive
evaluation instead of single precision. In addition, small ships
have always been a nodus for SAR ship detection, so we adopted
theAPs andAP50s to evaluate the detection performance of small
ships. The APs and AP50s are the AP and AP50 of small ships,
respectively. The recall and precision are defined by

Recall =
NTP

NTP +NFN
(15)

Precision =
NTP

NTP +NFP
(16)

where NTP, NFN, and NFP are number of true positives (TP),
false positives (FP), and false negatives (FN), respectively. In
SAR ship detection, the TP is the correctly detected ship and the
IoU between the bounding box and GT box is higher than 0.5.
The FP is a false alarm or the IoU between the bounding box
predicted for the ship and GT box is lower than 0.5, and the FN
stands for missed ships

AP =

∫ 1

0

Precision(r) dr. (17)

The AP represents the area under the PRC. In addition, calcu-
lating theAP needs to set the IoU threshold between the GT box
and the bounding box predicted for the ship to determine the TP.
The AP50 is the area under the PRC curve with an IoU threshold
of 0.5, and AP75 has an IoU threshold of 0.75 like AP50. It is
worth noting that the AP in the following content is the average
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TABLE III
EXPERIMENTAL RESULTS OF HYPERPARAMETERS FOR ε IN THE GAM(%)

TABLE IV
EXPERIMENTAL RESULTS OF HYPERPARAMETERS FOR σ1 AND σ2

IN THE GAM(%)

APεIoU value of the IoU threshold εIoU ∈ [0.5:0.05:0.95]. Our
definition of small ships follows the COCO, i.e., the ships whose
GT box is area < 322 pixels are considered as small ships.

C. Hyperparameter Experiment

To maximize the effectiveness of the designed modules in
our method, we conduct hyperparameter experiments for ε in
GAM and step size of dilated rate (α) in RFEM. Except for the
different values of the hyperparameters studied in each group of
experiments, the rest of the network parameters, training settings
and datasets used are the same, and the performance evaluation
indicators are AP , AP50, and AP75.

1) ε in the GAM: We take ε ∈ [0:0.005:0.02] to carry out
comparative experiments. The ε of 0 means that all locations
of the feature map are not filtered and set anchors. As shown
in Table III, the highest AP and AP75 are obtained by setting
ε as 0, and AP and AP75 are at least 0.8% and 0.3% higher
than other ε, but AP50 is 0.5% lower than the highest value. The
highest AP50 was obtained at ε of 0.01, which is at least 0.2%
higher than other ε, but AP and AP75 are 0.8% and 0.3% lower
than the highest values, respectively. In the target detection task,
when the IoU of the bounding box and the GT box is higher
than 0.5, the prediction of the bounding box is considered as
correct. The AP50 commonly used in the evaluation of Pascal
VOC is also calculated when the IoU threshold is 0.5. Although
the highest AP and AP75 are obtained when ε of 0, the lower
AP50 indicates that fewer ships are detected. In addition, ε of 0
will generate a large number of redundant negative samples and
increase the computational cost, so we choose 0.01 as ε in the
GAM.

2) σ1 and σ2 in the GAM: Since the docking direction of
ships is arbitrary, the proportion of ships in the manually an-
notated horizontal bounding box is random. To obtain the hard
negative samples, we set σ2 to 0.5 or 0.6 for hyperparameter
experiments [35], [44]. We set σ1 ∈ [0.1:0.1:σ2-0.1], and the
experimental results are shown in the Table IV. The highestAP50

TABLE V
EXPERIMENTAL RESULTS OF HYPERPARAMETERS FOR α IN THE RFEM(%)

TABLE VI
PERFORMANCE OF ASPECT RATIO LOSS OF ε = 0.01 IN THE GAM(%)

and AP75 are obtained by setting σ1 = 0.2 and σ2 = 0.5, and
the AP50 and AP75 are at least 0.1% and 0.4% higher than other
combinations of σ1 and σ2, but the AP is 0.4% lower than the
highest value. The highest AP and AP50 of 95.1% are obtained
when σ1 = 0.3 and σ2 = 0.6. The AP50 is 0.6% lower than the
highest value, which means that fewer ships are detected than
σ1 = 0.2 and σ2 = 0.5. Therefore, the σ1 and σ2 in our method
are set as 0.2 and 0.5, respectively.

3)α in the RFEM: In the SAR ship detection, small ships make
up a very small proportion of the SAR image, so we choose α ∈
[2, 3, 4, 5] to carry out comparative experiments. In the Table V,
we can observe that the highest AP and AP75 are obtained at
α of 2, while AP50 is only 0.1% lower than that at α of 3. The
network gets the highest AP50 when α is set to 3, however, its
AP and AP75 are 0.4% and 0.3% lower compared with α of 2,
respectively. From the Table V, with the increase of α, AP and
AP75 show a decreasing trend. To sum up, setting α as 2 can get
more accurate bounding boxes, and can also detect more ships,
so we set the α in the RFEM as 2.

D. Ablation Experiment

In order to fairly verify the effectiveness of the two compo-
nents in our method, we conduct ablation experiments under the
same experimental setup and data configuration. The baseline is
faster R-CNN, and five indicators are used in this experiment.
The AP , AP50, and AP75 are used to evaluate the improvement
of the component on the overall dataset. The APs and AP50s can
verify the improvement of the component’s detection ability for
small ships.

1) Effect of GAM: We first investigate the effect of adding the
aspect ratio loss in loss function of the GAM. The results are
shown in Table VI. After adding the aspect ratio loss, the AP
and AP75 gain 1.5% and 1.6% improvement, respectively, and
the AP50 decreases by 0.1%. These indicate that the network
benefited from the aspect ratio loss predicts more accurate
bounding box. This means that the aspect ratio loss supervises
the GAM to generate higher quality anchors. We then evaluate
the performance of adding GAM to the baseline. The Fig. 5
shows the distribution of proposals predicted on the input SAR
image by the RPN of baseline with or without the GAM,
respectively. We can observe that after inserting the GAM,
the overall number of proposals is greatly reduced compared
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Fig. 5. Visualization results of proposals from the RPN.

TABLE VII
INFLUENCE OF EACH COMPONENT IN THE PROPOSED METHOD(%)

to the baseline, and most proposals are concentrated on the
ships. The distribution of proposals in marine area is sparse,
and the shape of proposals on the ships is closer to GT boxes.
If without GAM, too many redundant proposals will be fed
into the head of network resulting in extra computation. The
results in Table VII show that the GAM increases AP , AP50,
and AP75 by 3.0%, 3.2% and 1.9%, respectively. This means
that the high-quality anchors generated by the GAM can adapt
to longer or wider ships, allowing the network head to regress
more refined bounding boxes. The GAM improvesAPs by 2.6%
andAP50s by 2.9% on the baseline, because the GAM can predict
anchors more matching than the preset anchors on position and
shape for small ships, as shown in the top row of Fig. 5.

2) Effect of RFEM: We explore the impact of the RFEM
by adding it to the baseline. From the Table VII, the RFEM
achieves improvement of AP , AP50, and AP75 by 1.4%, 0.9%,
and 0.9%, respectively. The RFEM expands the receptive field of
each element in the feature map, so the information around the
ships is collected and assists the network to detect the ships.
The top row of Fig. 7 is a near-shore scenario, the baseline
produces false positives in the area close to the shore. The RFEM
uses information from the ocean and coastal areas around the
ships to eliminate false positives and facilitates the network to
predict more accurate bounding boxes. The RFEM increases
APs by 0.8% and AP50s by 1% on the baseline, which shows
that the RFEM improves the sensitivity of the network to small
ships. The bottom row of Fig. 7 is a scene that small ships park
densely. After the RFEM is inserted into baseline, the semantic
information of the feature map becomes more abundant, which
reduces the number of missed ships of the baseline by three, so
the RFEM can further reduce the missing rate for small ships.

The above content verifies and analyzes the effectiveness of
the two components, the GAM and the RFEM, respectively.
As shown in Table VII, all metrics used in combination with
the two components are further improved compared to using
the components alone. Compared with the baseline, our method

Fig. 6. PRC of different improvements.

Fig. 7. Visualization results of the RFEM. The rectangles are the detection
results. The triangles and circles represent the missing ships and the false alarm,
respectively.

gains improvement of AP , AP50, and AP75 by 3.5%, 4.2%, and
3.4%, respectively. The corresponding PRC in Fig. 6 displays
more comprehensive results. These mean our method can detect
more ships and predict more accurate bounding box of ships. In
addition, the APs and AP50s increasing by 3.3% and 4.1% are
obtained, which means that our components greatly improves
the detection ability of small ships.

E. Comparison and Discussion

In this experiment, we fairly compare the performance of
our method with some CNN-based methods, and the experi-
mental settings and data configuration of the comparison ex-
periments are exactly the same. The CNN-based methods we
compare are divided into anchor-based methods and anchor-free
methods. The anchor-based methods are RetinaNet [15], faster
R-CNN [19], cascade R-CNN [45], Libra R-CNN [46], GA
R-CNN [35], and HR-SDNet [41], the last five are developed
based on the two-stage network framework like our method. The
anchor-free methods selects FCOS [23], CP-FCOS [44], Au-
toassign [47], and ATSS [48]. The last two anchor-free methods
optimize the strategy of sample assignment. The HR-SDNet and
CP-FCOS are specifically designed for ship detection in SAR
images.

In order to compare the performance of each method more
comprehensively, we add AP , AP50, and AP75 of inshore ships
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TABLE VIII
COMPARISON WITH THE TYPICAL DETECTION METHODS ON SSDD(%)

TABLE IX
COMPARISON WITH THE TYPICAL DETECTION METHODS ON HRSID(%)

TABLE X
COMPARISON WITH THE TYPICAL DETECTION METHODS ON MODEL SIZE AND

RUNNING TIME

and offshore ships on the basis of the five indicators in ablation
experiment. In addition, to verify the generalization ability of
our method, comparative experiments are carried out on SSDD
and HRSID datasets, respectively. The experimental results are
shown in Table VIII–X. Our method achieves certain advantages
on AP50 of the entire, inshore, and offshore ships on both
datasets. The recall and AP50s of our method are the highest
on both datasets compared with the other methods. These mean
that our method can detect more ships in complex scenes and
is more capable of detecting small ships than these CNN-based
methods. Although both RetinaNet and our method can solve the
problem of imbalance between positive and negative samples,
the RetinaNet is inferior to our method on all metrics due to the
lack of high-quality anchors. Compared with these anchor-based
and anchor-free networks, our method also has advantages on

AP and AP75, indicating that the receptive field improvement
by the RFEM and high-quality anchors generated by the GAM in
our method can help the network regress more accurate bounding
box of ships. It is worth noting that some AP and AP75 of our
method on SSDD are slightly lower than cascade R-CNN. That is
due to the lack of multilevel refinement of bounding boxes in our
method, compared to the cascade R-CNN with more parameters
and longer inferential time. The cascade R-CNN can obtain more
accurate bounding boxes of easily detectable ships, however, our
method is much higher than cascade R-CNN on AP50 of both
two datasets. And our method obtains better performance ofAP
and AP75 on entire and inshore samples in HRSID with larger
number of samples, so our method is more practical for ship
detection in SAR images.

As shown in Figs. 8 and 9, we visualize the detection results
of some methods in four types of complex scene. We selected
four representative methods to more highlight the strengths and
weaknesses of our method. The selected methods are ATSS,
faster R-CNN, and cascade R-CNN. The ATSS with the highest
AP among the anchor-free methods in Tables VIII and IX.
Comparing with the baseline network (faster R-CNN) of our
method can fully show the improvement effect of our designed
GAM and REFM on ship detection. The multistage detection
network cascade R-CNN has more parameters and it uses the
faster R-CNN as the baseline network like our method. Com-
paring with it can show that our method improves detection
performance without increasing the number of parameters too
much. We can observe the small ships with dense distribution, as
shown in the first row of Fig. 8. The ATSS detects all targets but
gives false alarms. Both faster R-CNN and cascade R-CNN have
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Fig. 8. Visualization results of four different methods in complex scenarios of the SSDD. The rectangles are the detection results. The triangles and circles
represent the missing ships and the false alarm, respectively.

Fig. 9. Visualization results of four different methods in complex scenarios of the HRSID. The rectangles are the detection results, and the number next to the
rectangle is the confidence of the corresponding predicted ship. The triangles and circles represent the missing ships and the false alarm, respectively.
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missing ships, and our method detects all small ships without
false alarms simultaneously. In the same scenario in the first row
of Fig. 9, our method detects all small ships, while the other three
methods produce missing ships. This means that our method has
stronger detection ability for small targets, which is consistent
with the results in Tables VIII and IX. In the scene where ships
are parked adjacently (the second row in Figs. 8 and 9), both
ATSS and baseline have missing ships and false alarms on the
SSDD. And on the HRSID, our method detects adjacent ships
targets with confidence close to one and no false alarms. In the
scene where the ships appears near the island (the third row in
Figs. 8 and 9), our method overcomes the interference caused by
the island and detects all ships accurately. The ATSS and faster
R-CNN regard the small island as a ship on the SSDD. And on
the HRSID, the ATSS misses small ships near the small islands,
while faster R-CNN and cascade R-CNN mispredict the island as
a ship. The detection of inshore ships is very prone to false alarms
and missing alarms. The fourth row of Figs. 8 and 9 display that
our method detects all ships and predicts the bounding box of
ships most accurately without false alarm compared to the other
three CNN-based methods. In general, our method can achieve
better detection effects for small targets. In complex scenes, our
method can detect more ships and can predict more accurate
bounding boxes of ships without adding stages of refinement
boxes.

IV. CONCLUSION

In this article, we propose a two-stage network that can
generate anchors by the network for detecting small ships in SAR
image. We introduce the GAM and purposely add aspect ratio
loss to its loss function for capturing ships. The redesigned GAM
can generate higher quality anchors, which is more conducive to
regress bounding box of ships. In addition, we propose a RFEM
and embed it into FPN. The RFEM sets atrous convolutions with
different dilation rates for feature maps of different resolutions,
which expands the receptive field of elements in the feature map
and enriches their semantic information. The information about
the region around the ships is collected to help the network
improve the accuracy of the ship’s location. The experimental
results show the effectiveness of our designed components. And
compared with some CNN-based methods, our method can
detect more ships, and the detection ability for small ships of
our method is stronger than the state-of-the-art networks, which
show the superiority of our method.
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