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Spatiotemporal Subpixel Mapping Based on Priori
Remote Sensing Image With Variation Differences

Peng Wang , Member, IEEE, Mingxuan Huang, Liguo Wang , Gong Zhang , Member, IEEE,
Henry Leung , Fellow, IEEE, and Chunlei Zhao

Abstract—Subpixel mapping (SPM) could handle the mixed
pixels in coarse original spectral image (COSI) to obtain the fine
land-cover class mapping result. In recent years, with the auxiliary
spatiotemporal information provided by the same region fine prior
spectral image (FPSI), spatiotemporal subpixel mapping (SSPM)
has shown greater potential than the traditional SPM methods.
However, the inaccurate spatiotemporal information of the FPSI
is rarely effective identified due to variation differences in the cur-
rent SSPM methods, affecting the mapping accuracy. To address
the abovementioned issues, SSPM based on priori remote sensing
image with variation differences (CVDBI) is proposed. First, the
coarse abundance images of COSI and the fine thematic images
of FPSI are obtained by unmixing COSI and classifying FPSI.
Second, the degradation observation model (DOM) is established
to use downsampling matrix to correlate the coarse abundance
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images of COSI with the ideal thematic images of COSI, and the
variation difference observation model (VDOM) is established to
use variation difference factor to correlate the fine thematic images
of FPSI with the ideal thematic images of COSI. Third, a separable
convex optimization model is established for DOM and VDOM.
This model optimizes the variation difference factor and the ideal
thematic images of COSI. Finally, we use the alternating direction
method of multipliers to solve the separable convex optimization
problem to produce the final mapping result. Experimental re-
sults on the three spectral images show that the proposed CVDBI
yields the more accurate mapping result than the traditional SPM
methods.

Index Terms—Alternating direction method of multipliers,
separable convex optimization model, spatiotemporal subpixel
mapping, spectral imagery, variation difference.

I. INTRODUCTION

IN THE context of remote sensing big data, multitemporal
and multisource spectral images (multi- and hyperspectral

images) are widely utilized in land-cover classes mapping due to
its abundant spectral information [1], [2]. The land-cover classes
mapping information is important for ecosystem protection and
environmental monitoring [3]. However, due to the complexity
of the distribution of land-cover classes and the limitations of
remote sensing platform hardware, the spectral image some-
times contains lots of mixed pixels, which are the main factors
restricting the spatial resolution of spectral image [4]. Although
classification technique could handle the spectral image at pixel
level to obtain the land-cover classes mapping information [5]
by assigning one land-cover class label to one pixel, one mixed
pixel often contains more than one land-cover class, resulting in
challenge for the classification technique [6], [7], [8].

The flowchart of mixed pixels processing is shown in Fig. 1.
Although the coarse original spectral image (COSI) acquired
at T2 can be handled to produce the coarse abundance images
with the proportion information of mixed pixels belonging to
land-cover classes by spectral unmixing technology, the specific
spatial distribution information of land-cover classes is still
uncertain [9], [10]. To address this issue, subpixel mapping
(SPM) technology is proposed as the follow-up processing step
of spectral unmixing. According to a scale factor S, SPM first
transforms the coarse abundance image for each class to the ideal
thematic image for each class by segmenting each mixed pixel
into S × S subpixels. The final mapping result with the specific
spatial distribution information of land-cover classes is obtained
by assigning the corresponding class label to the ideal thematic
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Fig. 1. Flowchart of mixed pixels processing.

images and then integrating these ideal thematic images [11].
It is worth noting that in recent years, under the background
of remote sensing big data, spatiotemporal subpixel mapping
(SSPM) utilizes the auxiliary spatiotemporal information from
the fine prior spectral image (FPSI) in the same region acquired at
T1 to produce better mapping result and shows greater potential
than the traditional SPM methods [12].

In the past two decades, SPM has been widely applied to
many fields, such as building extraction [13], flood inundation
mapping [14], burned-area mapping [15], forest cover monitor
[16], and change detection [17]. Atkinson [18] first proposed the
concept of SPM, and since then SPM has been developed into a
variety of practical methods. The traditional SPM methods are
usually based on monotemporal image and could be divided into
two main types according to the way of obtaining the mapping
result [19]. One type is the initialization-then-optimization SPM
(ITO-SPM). ITO-SPM randomly assigns land-cover classes
labels to subpixels, and then optimizes the location of each
subpixel to obtain the final mapping result. SPM methods based
on pixel swapping model [20], perimeter minimization [21],
genetic algorithm [22], and particle swarm optimization [23]
all belong to this type. The other type is the soft-then-hard SPM
(STHSPM). STHSPM improves the coarse abundance images to
produce the ideal abundance images with the land-cover classes
proportions corresponding to subpixels by subpixel sharpening,
and then assigns the land-cover classes labels to subpixels ac-
cording to these proportions, deriving the final mapping result.
SPM methods based on backpropagation neural network [24],
[25], spatial attraction model [26], [27], Hopfield neural net-
works [28], [29], interpolation algorithm [30], [31], indicator
cokriging [32], [33], object dependence [34], [35], geographical
objects [36], units of classes [37], and hybrid constraints of pure
and mixed pixels [38] all belong to this type. In addition to the
above two main SPM types, deep learning has been successfully

applied to SPM in recent years [39], [40], [41]. However, SPM
based on deep learning usually needs a lot of fine training data
to achieve the desired performance, in the absence of a large
number of fine training data, the two main SPM types show
better performance.

Because SPM is an ill posed inverse problem [42], the
traditional SPM methods based on monotemporal image
usually lack a priori knowledge of the actual geographical
distribution to constrain the fuzziness and uncertainty of the
results, which will affect the accuracy of SPM result. In order
to solve this problem, the SSPM proposed in recent years uses
the appropriate FPSI as the prior knowledge constraint, which
is widely used to solve the ill posed inverse problem of SPM.
Therefore, SSPM as a novel SPM model shows greater potential
and application prospects. Ling et al. [43] proposed the concept
of SSPM. SSPM is then further developed and applied to the
traditional spatial attraction model, pixel swapping model, and
Hopfield neural network [44], [45], [46]. In recent years, SSPM
based on spatial-temporal dependence method is proposed,
which usually utilizes spatial-temporal dependence to establish
a spatiotemporal objective, and then optimizes the objective to
obtain a reasonable spatial distribution of land-cover classes
at subpixel scale [47], [12]. Subsequently, SSPM based on
spatial-temporal dependence method is further extended to
utilize spatial-temporal-spectral dependence to establish the
spatiotemporal objective [48]. In addition, Wang et al. [49] and
He et al. [50] utilized point spread function effect and MAP
model to improve the performance of SSPM.

However, the conventional SSPM methods generally need the
acquisition time of COSI and FPSI to be as close as possible to
ensure that the spatial distribution of the two images is similar,
so that the FPSI can provide accurate auxiliary spatiotemporal
information. Due to the periodicity of remote sensing satellite
operation and the variability of land-cover classes, there will
be some variation differences in land-cover changes between
COSI and FPSI. Especially, there is sometimes only FPSI with
large variation difference provided. Therefore, the conventional
SSPM methods are difficult to effectively identify the inaccurate
spatiotemporal information of the FPSI due to variation differ-
ences, resulting in reducing the accuracy of land-cover classes
mapping. To overcome the abovementioned problems, a SSPM
based on priori remote sensing image with variation differences
(CVDBI) is proposed. Since the fractional images are the results
of spectral unmixing for spectral image, the variation differences
between COSI and FPSI are defined by measuring the differ-
ences between their fractional images in this article. In CVDBI,
the variation difference factor is proposed to construct a separa-
ble convex optimization model to effectively recognize the inac-
curate spatiotemporal information of FPSI, so as to improve the
accuracy of final mapping result. Experimental results show the
superiority of the CVDBI over the state-of-the-art SPM methods.

The contributions of this article are as follows.
1) The inaccurate spatiotemporal information of FPSI is

effectively recognized in CVDBI to improve the perfor-
mance of SSPM and obtain the high accuracy mapping
result.
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Fig. 2. Flowchart of CVDBI.

2) CVDBI could show the ideal performance by using the
FPSI captured at various times in order to relieve the
limitations of the close acquisition time of COSI and FPSI
in the current SSPM methods.

3) Even if there is a large variation difference between
COSI and FPSI, CVDBI also could be used to obtain
the ideal mapping result due to the variation difference
factor. Therefore, CVDBI could be effectively applied to
large variation difference scenes where the time interval
of collecting between COSI and FPSI is long, or the
frequency of disaster change between COSI and FPSI is
high.

The rest of this article is organized as follows. The proposed
method is described in Section II. The experimental results are
presented qualitatively and quantitatively in Section III. Discus-
sion is introduced in Section IV. Finally, Section V concludes
this article.

II. METHODOLOGY

The flowchart of CVDBI is shown in Fig. 2. First, COSI
at T2 is unmixed to produce the coarse abundance images
of COSI, and FPSI at T1 is classified to obtain the classi-
fication result, which provides the fine thematic images of
FPSI. Second, the coarse abundance image of COSI for each
class is correlated with the ideal thematic image of COSI for
each class by downsampling matrix in the degradation obser-
vation model (DOM), and the fine thematic image of FPSI
for each class is correlated with the ideal thematic image of
COSI for each class by variation difference factor in the vari-
ation difference observation model (VDOM). Third, CVDBI
establishes a separable convex optimization model for DOM
and VDOM to optimize the variation difference factor and
the ideal thematic image of COSI. Finally, alternating direc-
tion method of multipliers (ADMM) is utilized to solve the
separable convex optimization problem to derive the mapping
result. This section will introduce the proposed method in
detail.

Fig. 3. Example of DOM. (a) Coarse abundance image of COSI for class k.
(b) Ideal thematic image of COSI for class k.

A. Observation Model Construction

SupposeZCOSI ∈ RB×N is COSI at T2, with B spectral bands
and N pixels, ZFPSI ∈ RB×NS2

is FPSI at T1, with B spectral
bands and NS2 pixels, S is the scale factor of the two images.
ZCOSI is unmixed to obtain the coarse abundance image of COSI
ACOSI

k ∈ RP×N ( k= 1, 2, …,K,K is the number of land-cover
classes) for class k, P is the number of pure substances at the
endmember.ZFPSI is classified to provide the fine thematic image
of FPSI TFPSI

k ∈ RP×NS2
for class k. MCOSI

k ∈ RP×NS2
is the

ideal thematic image of COSI for class k, and the SPM result
can be considered as the result of the integration of the ideal
thematic images of COSI for all land-cover classes [51].

In CVDBI, two different types of observation models (DOM
and VDOM) are established. In the DOM, to consider the spatial
degradation between the coarse abundance image of COSI and
the ideal thematic image of COSI, the coarse abundance image
of COSI ACOSI

k for class k and the ideal thematic image of
COSI MCOSI

k for class k are linked by spatial downsampling
matrix Dk ∈ RNS2×N with the scale factor S [50]. The DOM
is illustrated in Fig. 3 by a simple example. As shown in Fig. 3(a),
the coarse abundance image of COSI ACOSI

k for class k includes
nine mixed pixels marked with the proportions of class k (red
number). Fig. 3(b) shows the ideal thematic image of COSI
MCOSI

k for class k. Here, the downsampling scale S is 4, and the
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downsampling matrixDk is an averaging filter, where all the ele-
ments are equal to1/S2, i.e., 1/16 in this case. For instance, 0.875
in the central pixel in Fig. 3(a) indicates that 16× 0.875 = 14
subpixels within the central pixel belong to class k in Fig. 3(b).
Therefore, in the DOM, we use the downsampling matrix Dk

to correlate the coarse abundance image with the ideal thematic
image as follows:

ACOSI
k =DkM

COSI
k +ND

k (1)

where ND
k ∈ RP×N represents the additive noise in the DOM.

In the VDOM, to consider the variation differences between
COSI and FPSI, the variation factor θk is proposed to establish
the relationship between the fine thematic image of FPSI TFPSI

k

for class k and the ideal thematic image of COSIMCOSI
k for class

k. Therefore, the VDOM can be expressed as

MCOSI
k =θk �TFPSI

k +NV
k (2)

where� is the multiplication of the elements,NV
k ∈ RP×NS2

is
the additive noise in the VDOM.NV

k andND
k are all constructed

as Gaussian white noise, but with different sizes.

B. Separable Convex Optimization Model

A separable convex optimization model is established for (1)
and (2) to realize SSPM, as shown in

M̃COSI
k , θ̃k

= argmin
0≤MCOSI

k ≤1,0≤θk≤1

1

2

∥∥MCOSI
k −θk �TFPSI

k

∥∥2
F
+R (θk)

+
1

2

∥∥ACOSI
k −DkM

COSI
k

∥∥2
F
+R

(
MCOSI

k

)
(3)

where R(MCOSI
k ) is the regularization term of the ideal thematic

image of COSI MCOSI
k for class k, R(θk) is the regularization

term of the variation factor θk.
The regularization term R(MCOSI

k ) is based on gradient L2,1

norm to improve sparsity of the gradient across different mate-
rials, as shown in

R
(
MCOSI

k

)
=λM

(∥∥gh(MCOSI
k )

∥∥
2,1

+
∥∥gv(MCOSI

k )
∥∥
2,1

)
(4)

where the linear operators gh(�) and gv(�) calculate the ideal
thematic image of COSI MCOSI

k for class k in the first-order
horizontal and vertical gradients, respectively. λM balances the
contribution of the regularization term R(MCOSI

k ) to (3).
The regularization termR(θk) is realized by gradientL2 norm

and defined as

R (θk)=
λ1

2
‖θk−E‖2F +

λ2

2
‖uθk‖2F , (5)

where the first term controls the variation factor θk by limiting
it to close to 1, E is a matrix with all elements of 1. The second
term enhances the smoothness of the variation factor θk by the
differential operator u. λ1 and λ2 balance the contribution of the
regularization term R(θk) to (3).

C. Obtaining Mapping Result

Separable convex optimization model in (3) is individually
convex for each variable (the ideal thematic image of COSI
MCOSI

k and the variation factor θk). Therefore, we use the
ADMM to solve the separable convex optimization problem
[51], [52]. ADMM implements the distributed optimization
strategy to iteratively minimize the cost function of each variable
to find the local stationary point.

In order to use ADMM, the cost function in (3) need be defined
in the following form:

min
x,y
{f (x) + g (y) |Ax+By = C} (6)

where f : Ra → R+ and g : Rb → R+are closed-convex func-
tions. x ∈ Raand y ∈ Rb are nonempty closed convex sets
including vector variables. A ∈ Rc×a, B ∈ Rc×b , and C ∈ Rc

have full column ranks.
The augmented Lagrange function is defined to use the scaled

formulation of ADMM and is given by

L (x,y, z) = f (x) + g (y) +
β

2
‖Ax+By −C+ z‖2F (7)

where z ∈ Rc is the Lagrange multipliers in a vector form and
β is a penalty parameter.

The ADMM updates the variablesx,y, andz through multiple
iterations. Suppose that x(i), y(i), and z(i) are the variables at
the ith iteration of the algorithm, the iterative scheme of ADMM
is defined as the following procedure:

x(i+1) = argmin
x

L
(
x,y(i), z(i)

)

y(i+1) = argmin
y

L
(
x(i),y, z(i)

)

z(i+1) = z(i) +Ax(i+1) +By(i+1) −C. (8)

It can be found that the variables x and y are updated alter-
nately. It is worth noting that when ADMM optimizes theMCOSI

k

or θk, another variable is known and fixed, so each iteration
is equivalent to solving only one variable. Here, we initialize

θ
(0)
k = E and MCOSI

k
(0) with SPM based on spatial attraction

model for ACOSI
k . This solution is presented in Algorithm 1.

Next, we introduce the optimization process for variables θk

and MCOSI
k .

1) Optimizing θk: Considering MCOSI
k fixed, the optimization

process of θk can be recast from (3) by considering only terms
that depend on θk

θ̃k = argmin
0≤θk≤1

1

2

∥∥MCOSI
k − θk �TFPSI

k

∥∥2
F
+i+ (θk)

+
λ1

2
‖θk−E‖2F +

λ2

2
‖uθk‖2F (9)

where i+(�) is the indicator function of the nonnegative R+

implementing a positive constraint, and is defined as i+(a) ={
0, a ≥ 0
∞, a < 0

.
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In order to be equivalent to the ADMM problem, the (9) is
re-expressed as

θ̃k = argmin
0≤θk≤1

1

2

∥∥MCOSI
k −G

∥∥2
F
+i+ (θk)

+
λ1

2
‖θk−E‖2F +

λ2

2
‖uθk‖2F (10)

where G=θk �TFPSI
k .

To use the augmented Lagrange functionL(x,y, z), we define
the following relationship:

x = vec (θk)y= vec (G)

A = −dia (vec
(
TFPSI

k

))
B = I (11)

where vec(�) is the vectorization version by concatenating its
columns, dia(�) is diagonal matrix with vec(TFPSI

k ) in the main
diagonal, and I is the identity matrix.

The augmented Lagrange function for (10) is written as

L (θk,G, z)=
1

2

∥∥MCOSI
k −G∥∥2

F
+

λ1

2
‖θk−E‖2F+

λ2

2
‖uθk‖2F

+
β

2

∥∥−θk �TFPSI
k +G+ z

∥∥2
F
+i+ (θk) .

(12)

When utilizing L(θk,G, z) to optimize the variable θk, the
indicator function i+(θk) is ignored for simplicity and (12) can
be re-expressed as

θ̃k = argmin
0≤θk≤1

λ1

2
‖θk−E‖2F +

λ2

2
‖uθk‖2F

+
β

2

∥∥−θk �TFPSI
k +G+ z

∥∥2
F
. (13)

We take the derivative θk in (13) and set it equal to 0 to derive
(
λ1 + λ2u

Tu+ β
(
TFPSI

k �TFPSI
k

))
θk

= λ1E+ β
(
TFPSI

k �G+TFPSI
k � z

)
. (14)

Equation (14) is solved efficiently due to the sparsity in the
matrices on the left-hand side. The solution θk by solving (14)
is introduced into (15) to obtain the ideal variation factor θ̃k

θ̃k= max (θk, 0) . (15)

The optimization of L(θk,G, z) with respect to other vari-
ables G and z is described in Appendix A.

2) Optimizing MCOSI
k : According to (3), the optimization

process of MCOSI
k can be defined as (16) for a fixed θk

M̃COSI
k = argmin

0≤MCOSI
k ≤1

1

2

∥∥MCOSI
k − θk �TFPSI

k

∥∥2
F

+
1

2

∥∥ACOSI
k −DkM

COSI
k

∥∥2
F

+λM

(∥∥gh(MCOSI
k )

∥∥
2,1

+
∥∥gv(MCOSI

k )
∥∥
2,1

)

+i+
(
MCOSI

k

)
. (16)

The following variables are defined to represent optimization
problem (16) in the form of (6):

G1 = DkG2 G2=MCOSI
k

G3 = gh(G2)G4=gv(G2)

G5 = MCOSI
k . (17)

Equation (16) is then represented as

M̃COSI
k = argmin

0≤MCOSI
k ≤1

1

2

∥∥MCOSI
k − θk �TFPSI

k

∥∥2
F
+i+ (G5)

+λM

(
‖G3‖2,1+‖G4‖2,1

)
+
1

2

∥∥ACOSI
k −G1

∥∥2
F
.

(18)

The following relationship is defined to use augmented La-
grange function L(x,y, z):

x = vec
(
MCOSI

k

)
y = [vec (G1) vec (G2) vec (G3) vec (G4) vec (G5)]

T

A =
[
r(Dk) I 0 0 I

]T

B =

⎡
⎢⎢⎢⎢⎣

−I 0 0 0 0
0 −I 0 0 0
0 Gh −I 0 0
0 Gv 0 −I 0
0 0 0 0 −I

⎤
⎥⎥⎥⎥⎦ (19)

where r(Dk)is defined that r(Dk)vec(MCOSI
k ) = DkM

COSI
k .

Gh and Gv are their matrices of the linear operators gh(�) and
gv(�).

Therefore, the augmented Lagrange function is defined as

L (x,y, z)=
1

2

∥∥x− vec
(
θk �TFPSI

k

)∥∥2
F

+
1

2

∥∥vec
(
ACOSI

k

)− vec (G1)
∥∥2
F

+λM

(
‖G3‖2,1+‖G4‖2,1

)
+i+ (G5)
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Fig. 4. Synthetic data set 1. (a) NLCD 2001. (b) NLCD 2006. (c) NLCD 2011.

Fig. 5. Abundance images of NLCD 2011: from (a)–(d): Wetlands, Urban, Vegetation and Forest (S = 8).

+
β

2
‖r(Dk)x− vec (G1) + z1‖2F

+
β

2
‖x−vec (G2)+z2‖2F+

β

2
‖Ghvec(G2)−vec (G3)+z3‖2F

+
β

2
‖Gvvec (G2)−vec(G4)+z4‖2F

+
β

2
‖x− vec (G5)+z5‖2F . (20)

Since x is the vectorization of MCOSI
k , when minimizing

L(x,y, z) to optimize the MCOSI
k , (20) can be rewritten as

M̃COSI
k = argmin

0≤MCOSI
k ≤1

1

2

∥∥vec
(
MCOSI

k

)− vec
(
θk �TFPSI

k

)∥∥2
F

+
β

2

∥∥r(Dk)vec
(
MCOSI

k

)− vec (G1) + z1
∥∥2
F

+
β

2

∥∥vec
(
MCOSI

k

)− vec (G2) + z2
∥∥2
F

+
β

2

∥∥vec
(
MCOSI

k

)− vec (G5) + z5
∥∥2
F
. (21)

Taking the gradients MCOSI
k and setting it equal to 0 leads to(

(2β+1) I+βr(Dk)
Tr(Dk)

)
vec

(
MCOSI

k

)
=vec

(
θk �TFPSI

k

)

+β
(
r(Dk)

Tvec (G1)+vec (G2)

+vec(G5)−r(Dk)
Tz1−z2−z5

)
. (22)

We solve (22) to obtain the solutionMCOSI
k and then introduce

into (23) to produce the ideal thematic image of COSI M̃COSI
k

for class k

M̃COSI
k = max

(
MCOSI

k , 0
)
. (23)

The optimization of L(x,y, z) with respect to other variables
y and z is described in Appendix B.

According to (8), after several alternate iterations for variables
θk and MCOSI

k , the final ideal thematic image of COSI for class
k is derived. In this way, according to the steps of Algorithm
1, the ideal thematic images of COSI for all land-cover classes
are produced. We assign the corresponding class labels to these
ideal thematic images of COSI and then integrate them to obtain
the final mapping result.

It can be found that using ADMM to control the variation
factor can effectively identify the inaccurate spatiotemporal
information of FPSI, i.e., when the inaccurate spatiotemporal
information is generated in some areas of FPSI due to the large
variation difference, the value of the corresponding variation
factor will be reduced to reduce the inaccurate spatiotemporal
information of this area to be input into the process of optimizing
the ideal abundance images. On the contrary, when the spatial
distribution of some areas of FPSI is very similar to that of COSI,
the value of the corresponding variation factor will increase, so



7562 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 6. Mapping results for NLCD 2011: SPM methods based on monotemporal image from (a)–(d): RBFI, NSAM, HNNP, and PSF. SSPM methods based on
NLCD 2001 from (e)–(h): STD, SPSF, SMAP, and CVDBI. SSPM methods based on NLCD 2006 from (i)–(l): STD, SPSF, SMAP, and CVDBI.

TABLE I
EVALUATION INDICES OF MAPPING RESULTS FOR SYNTHETIC DATA SET 1
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Fig. 7. Salient region from Fig. 6. (a) Reference image. SPM methods based on monotemporal image from (b)–(e): RBFI, NSAM, HNNP, and PSF. SSPM
methods based on NLCD 2001 from (f)–(i): STD, SPSF, SMAP, and CVDBI. SSPM methods based on NLCD 2006 from (j)–(m): STD, SPSF, SMAP, and CVDBI.

Fig. 8. Synthetic data set 2. (a) False color image of Amazon Rainforest in 1985 (bands 3, 2 and 1 for red, green, and blue). (b) False color image of Amazon
Rainforest in 2013 (bands 4, 3, and 2 for red, green, and blue). (c) False color image of Mekong and Tonlé Sap Rivers before flood disaster (bands 5, 4, and 3 for
red, green, and blue). (d) False color image of Mekong and Tonlé Sap Rivers after flood disaster (bands 5, 4, and 3 for red, green, and blue).

that this area can accurately assist the full use of spatiotemporal
information, obtaining the better results.

III. EXPERIMENTS

Two synthetic experimental datasets and one real experimen-
tal dataset are used to qualitatively and quantitatively evaluate
the performance of the proposed CVDBI. According to the

general experimental process of SPM [18], to avoid the errors de-
rived from the registration between images and spectral unmix-
ing process, the input abundance images of COSI are generated
by downsampling the reference classification image by a S × S
linear mean filter, and the synthetic input abundance images
of COSI are restored to the SPM result in the two synthetic
experimental datasets. In contrast, to evaluate the performance
of CVDBI on the uncertainty in a real situation, the real input
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Fig. 9. (a) Reference classification image of Fig. 8(a). (b) Reference classification image of Fig. 8(b). (c) Abundance image of Fig. 8(b). (d) Reference classification
image of Fig. 8(c). (e) Reference classification image of Fig. 8(d). (f) Abundance image of Fig. 8(d).

abundance images of COSI are derived from a real COSI by
spectral unmixing based on least squares support vector machine
(LSSVM) [10] in the real experimental dataset.

In CVDBI, a small value of λ1 is selected to allow the variation
factor θk to adequately fit the experimental data, and a large
value of λ2 is set to have spectrally smooth variability. There-
fore, the regularization parameters for the proposed CVDBI
are empirically set at λM = 10−3, λ1 = 10−2, and λ2 = 103.
Nevertheless, the CVDBI still shows to be fairly insensitive to
the choice of parameters, the detailed discussion will be given in
Section IV-C. The alternating optimization process in Algorithm
1 is ran for at most 100 iterations or until the relative change of
MCOSI

k and θk is less than 10−3.
The proposed CVDBI is compared with the traditional SPM

methods based on monotemporal image including SPM based
on radial basis function interpolation (RBFI) [30], SPM based
on new spatial attraction model (NSAM) [26], SPM based on
Hopfield neural network with more prior information (HNNP)
[29], and SPM based on reducing point spread function effect
(PSF) [20], as well as the state-of-the-art SSPM methods includ-
ing SSPM based on spatio-temporal dependence (STD) [12],
SSPM based on point spread function effect (SPSF) [49], and
SSPM based on MAP model (SMAP) [50]. The performances
of the eight methods are evaluated based on the classification
accuracy of each land-cover class, the overall accuracy (OA),
and the Kappa coefficient (Kappa). All experiments are tested

TABLE II
EVALUATION INDICES OF MAPPING RESULTS FOR SYNTHETIC DATA SET 2

by MATLAB 2018a software on a Pentium Dual-core Processor
(2.20 GHz).

A. Synthetic Data Set 1

The synthetic data set 1 is used to evaluate the performance
of the proposed CVDBI on FPSI captured at various times. As
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Fig. 10. Mapping results for Amazon Rainforest: SPM methods based on monotemporal image from (a)–(d): RBFI, NSAM, HNNP, and PSF. SSPM methods
based on Landsat 5 in 1985 from (e)–(h): STD, SPSF, SMAP, and CVDBI.

Fig. 11. Salient region from Fig. 10. (a) Reference image. SPM methods based on monotemporal image from (b)–(e): RBFI, NSAM, HNNP, and PSF. SSPM
methods based on Landsat 5 in 1985 from (f)– (i): STD, SPSF, SMAP, and CVDBI.

shown in Fig. 4, the synthetic data set 1 from National Land-
Cover Database (NLCD) includes three maps with 30-m spatial
resolution, 1000× 1000 pixels and 4 land-cover classes (i.e.,
Wetlands, Urban, Vegetation, and Forest), which are collected
over Georgia, U.S. in 2001, 2006, and 2011, respectively. Since
the three maps are obtained by classification based on raster

method [13], they are considered as the reference classification
images. We perform the experiments twice to test the perfor-
mance of CVDBI on FPSI captured at various times, the NLCD
2001 image in Fig. 4(a) and the NLCD 2006 image in Fig. 4(b)
are selected as FPSI, respectively. Because the NLCD 2001
image and NLCD 2006 image have been classified, they could
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Fig. 12. Mapping results for Mekong and Tonlé Sap Rivers: SPM methods based on monotemporal image from (a)–(d): RBFI, NSAM, HNNP, and PSF. SSPM
methods based on Landsat 8 before flood disaster from (e)–(h): STD, SPSF, SMAP, and CVDBI.

Fig. 13. Salient region from Fig. 12. (a) Reference image. SPM methods based on monotemporal image from (b)–(e): RBFI, NSAM, HNNP, and PSF. SSPM
methods based on Landsat 8 before flood disaster from (f)–(i): STD, SPSF, SMAP, and CVDBI.

directly provide the fine thematic images of FPSI. The NLCD
2011 image in Fig. 4(c) considered as COSI is downsampled by
a 8× 8 mean filter to produce the synthetic input abundance
images of COSI with a 240-m spatial resolution, which are
shown in Fig. 5. Although the coarse abundance images of COSI
could provide the proportion information of the mixed pixels
belonging to land-cover classes, the specific spatial distribution
information of land-cover classes is uncertain in these abundance

images. Thus, SPM is proposed to handle the abundance images
to obtain the mapping result with the specific spatial distribution
information of land-cover classes.

The mapping results of the eight SPM methods for NLCD
2011 are shown in Fig. 6. In order to facilitate observation, as
shown in Fig. 7, a salient subregion of the mapping results with
100× 100 pixels marked in Fig. 4(c) with a black frame are
magnified. Comparing with the reference image in Fig. 7(a), the
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Fig. 14. Real dataset. (a) False color image of Landsat 8 in 2014 (bands 5, 2, and 3 for red, green, and blue). (b) False color image of Hyperion in 2002 (bands
150, 10, and 24 for red, green, and blue). (c) Panchromatic image of Landsat 8 in 2014. (d) Reference classification image of Fig. 14(c). (c) Panchromatic image
of Landsat 8 in 2002. (d) Reference classification image of Fig. 14(e).

TABLE III
EVALUATION INDICES OF MAPPING RESULTS FOR REAL DATASET

mapping results of the four traditional SPM methods based on
monotemporal image from Fig. 7(b)–(e) are far away from ideal.
For example, there are many boundaries of protruding burrs in
Forest class and areas of disconnected shapes in Urban class,
which was because these methods lack a priori knowledge of
the actual geographical distribution to constrain the fuzziness

and uncertainty of the mapping results. With the help of the
auxiliary spatiotemporal information provided by NLCD 2001
or NLCD 2006, the abovementioned phenomenon is alleviated
in the mapping results of SSPM in Fig. 7(f)–(i) or (j)–(m).
Since the proposed CVDBI takes into account the variation
difference between COSI and FPSI, when using the same FPSI,



7568 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 15. Mapping results for real dataset: SPM methods based on monotemporal image from (a)–(d): RBFI, NSAM, HNNP, and PSF. SSPM methods based on
Landsat 8 in 2014 (e)–(h): STD, SPSF, SMAP, and CVDBI.

there are smoother boundaries and more continuous areas in
Fig. 7(i) and (m) than those in Fig. 7(f)–(h) or (j)–(l). Thus,
the mapping result of CVDBI is closer to the reference image
than that of the other SSPM methods. This proves that CVDBI
can perform best in the case of using FPSI captured at various
times.

In addition to visual comparison, Table I shows the three
evaluation indices of mapping result including the classification
accuracy of each land-cover class (%), OA (%), and Kappa.
The traditional SPM methods based on monotemporal image
could consider that there is unchanged land cover affect. The
SSPM methods could consider that there is changed land cover
affect. As shown in Table I, we can see that even with the
changed land cover affect, SSPM methods can still obtain the
higher evaluation indicators than traditional SPM methods. In
addition, the proposed CVDBI performs better than the other
seven SPM methods. For instance, when using NLCD 2001
as FPSI, compared with the classification accuracy of each
land-cover class (%) and OA (%) in the SMAP, the accuracy
of Wetlands, Urban, Vegetation, Forest, and OA (%) in CVDBI
increased by about 0.77, 1.54, 2.25, 1.20, and 1.37 percentage,

respectively. According to the definition of OA (%), because
there are 1000× 1000 pixels in the tested imagery, an increase
of 1.37% means that the mapping result of the CVDBI produces
13 700 more correct mapping pixels than that of SMAP, which
represents a significant improvement.

In addition, this experiment is also be utilized to analyze the
performance of the proposed method for the different change
rates. As shown in Table I, for each SSPM method, it is worth
noting that the value of the evaluation indices by using NLCD
2001 as FPSI is lower than that by using NLCD 2006 as FPSI.
This is because NLCD 2001 is farther away from the collection
time of NLCD 2011 than NLCD 2006, the land cover change
rate between NLCD 2001 and NLCD 2011 is more obvious. This
experimental result also proves that the land cover change rate
between COSI and FPSI does affect the performance of SSPM
methods, and the greater land cover change rate results in the
more serious influence. Therefore, the lower rates of changed
land cover affect for SSPM methods could produce the better
mapping results. The CVDBI obtains the higher OA (%) of
84.82%, and Kappa of 0.7027 by using NLCD 2006 as FPSI
than that by using NLCD 2001 as FPSI. When using the same
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FPSI captured at various times, the proposed CVDBI always
has the highest OA (%) and Kappa. This proves that CVDBI
could show the ideal performance by using the FPSI captured at
various times to relieve the limitations of the close acquisition
time of COSI and FPSI in the current SSPM methods.

B. Synthetic Data Set 2

We test the synthetic data set 2 including two sets of four
multispectral images. It turns out that CVDBI could be effec-
tively applied to some large variation difference scenes where
the time interval of collecting between COSI and FPSI is long,
or the frequency of disaster change between COSI and FPSI
is high. As shown in Fig. 8(a) and (b), the first set of two
multispectral images with 30-m spatial resolution, 800× 800
pixels and 2 land-cover classes (i.e., Forest and Background)
are collected over Amazon Rainforest in Brazil. The study area
is mainly covered by forest in Fig. 8(a) collected by Landsat 5
imager in 1985. Due to the long-term human destruction, forest
has been seriously reduced in Fig. 8(b) collected by Landsat 8
imager in 2013. Therefore, there is a large variation difference
between Fig. 8(a) and (b) due to a long-time interval of collect-
ing. Fig. 8(a) and (b) is selected as FPSI and COSI, respectively,
to test the performance of CVDBI on the scene where the time
interval of collecting between COSI and FPSI is very long.

As shown in Fig. 8(c) and (d), the second set of two multispec-
tral images with 30-m spatial resolution, 800× 800 pixels and
2 land-cover classes (i.e., Water and Background) are acquired
along the Mekong and Tonlé Sap Rivers in Cambodia. Fig. 8(c)
is acquired by Landsat 8 before flood disaster on May 17, 2013.
However, in October, the heavy seasonal rains cause the flood
along the Mekong and Tonlé Sap Rivers, a Landsat 8 image
shown in Fig. 8(d) is acquired after flood disaster on 24 October
2013. Thus, there is a large variation difference between Fig. 8(c)
and (d) due to a high frequency of disaster change. Fig. 8(c)
and (d) is selected as FPSI and COSI, respectively, to test the
performance of CVDBI on the scene where the frequency of
disaster change between COSI and FPSI is high.

For Amazon Rainforest data, as shown in Fig. 9(a) and (b), we
use the classification method based on support vector machine
(SVM) by ENVI software to classify Fig. 8(a) and (b) to obtain
their reference classification images. Fig. 9(a) provides the fine
thematic image of FPSI for Forest class. Fig. 9(b) provides the
reference image of the mapping results and then is downsampled
by a 8× 8 mean filter to produce the synthetic input abundance
image of COSI with a 240-m spatial resolution [as shown in
Fig. 9(c)]. For Mekong and Tonlé Sap Rivers data, we utilize
the same classification method to obtain Fig. 9(d) as the fine
thematic image of FPSI for Water class, and Fig. 9(e) as the
reference image of the mapping results. We also apply the same
8× 8mean filter to Fig. 9(e) to produce Fig. 9(f) as the synthetic
input abundance image of COSI.

For the experiment of Amazon Rainforest, Fig. 10(a)–(d)
shows the mapping results of four SPM methods based on
monotemporal image and Fig. 10(e)–(h) shows the mapping
results of four SSPM methods based on Landsat 5 in 1985.
It is noted that Fig. 10(e)–(h) is closer to the reference image

in Fig. 9(b) than Fig. 10(a)–(d) due to the prior auxiliary spa-
tiotemporal information from Landsat 5. As shown in Fig. 11, a
salient subregion of the mapping results with 200× 200 pixels
marked in Fig. 9(b) with a white frame is magnified to facilitate
observation. Comparing with the reference image in Fig. 11(a),
we could find that the Forest class is not continuous, and some
small areas are hardly mapped by using the three existing SSPM
methods (i.e., STD, SPSF, and SMAP) in Fig. 10(f)–(h). This is
because the existing SSPM methods do not effectively identify
the inaccurate spatiotemporal information of the FPSI. Espe-
cially, when there is a large variation difference between COSI
and FPSI due to the difference of nearly 30 years of capture time,
FPSI may provide wrong auxiliary information, resulting in the
unsatisfactory mapping result. In contrary, the proposed CVDBI
effectively identifies the inaccurate spatiotemporal information
of the FPSI, these phenomena are alleviated in Fig. 11(i).

For the experiment of Mekong and Tonlé Sap Rivers, the
mapping results of eight SPM methods are shown in Fig. 12. And
a salient subregion of the mapping results with 200× 200 pixels
marked in Fig. 9(e) with a white frame is magnified to show in
Fig. 13. Similar to the experimental results of Amazon Forest,
when there is a large variation difference between COSI and
FPSI due to the high frequency of disaster change, the mapping
result of the CVDBI is the closest to the reference image among
all the obtained mapping results.

For the binary classification problem, we use producer accu-
racy (PA) (%), OA (%), and Kappa as the evaluation indices.
The definition of PA (%) is that the ratio of the number of pixels
correctly classified as Class A in mapping result to the number of
pixels of Class A in the real case in reference image. PA (%), OA
(%), and Kappa of the eight methods for the two experimental
data are given in Table II, where it can be seen that the proposed
CVDBI had the highest PA (%) of 97.05%, OA (%) of 96.68%,
and Kappa of 0.9326 for Amazon Rainforest, and the highest
PA (%) of 93.41%, OA (%) of 93.16%, and Kappa of 0.8630
for Mekong and Tonlé Sap Rivers. Therefore, when there is a
large variation difference between COSI and FPSI, the proposed
CVDBI performs better than other methods.

C. Real Dataset

In a practice situation, the real input abundance images are
derived from the spectral unmixing of COSI, and some uncer-
tainty, such as the registration error between COSI and FPSI, the
spectral unmixing error of abundance images and the classifica-
tion error of reference image, exists in the experimental process.
To further evaluate the effectiveness of the proposed CVDBI, a
real dataset are tested in experiment 3.

Fig. 14(a) and (b) have 308× 164 pixels and 4 land-cover
classes (i.e., vegetation, soil, built-up, and water), which cover
an area in Rome, Italy. As shown in Fig. 14(a), a multispectral
image selected as FPSI with 8 spectral bands of 30-m spatial
resolution and 1 panchromatic band of 15-m spatial resolution
is obtained by Landsat 8 imager in 2014. As shown in Fig. 14(b),
a hyperspectral image selected as COSI with 198 spectral bands
of 30-m spatial resolution is obtained by Hyperion imaging
spectrometer from Earth Observing-1 in 2002.
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Fig. 16. Salient region from Fig. 15. (a) Reference image. SPM methods based on monotemporal image from (b)–(e): RBFI, NSAM, HNNP, and PSF. SSPM
methods based on Landsat 8 before flood disaster from (f)–(i): STD, SPSF, SMAP, and CVDBI.

Fig. 17. OA (%) of the eight SPM methods in relation to different scale factors S (a) in experiment 1 and (b) in experiment 2.

The panchromatic band of 15-m spatial resolution from
Fig. 14(a) selected as FPSI is shown in Fig. 14(c). As shown in
Fig. 14(d), we still use the classification method based on SVM
to classify Fig. 14(c) to yield the reference classification image as
the fine thematic images of FPSI. The input abundance images of
COSI are obtained by unmixing the Fig. 14(b) with 30-m spatial
resolution. Thus, the scale factor S between PFSI and COSI
was 2. In addition, to obtain the reference image of the mapping
results with 15-m spatial resolution, another panchromatic band
of 15-m spatial resolution from Landsat 8 in 2002 having the
same capture time and area as Fig. 14(b) is utilized and shown
in Fig. 14(e). Fig. 14(e) is also classified to produce the reference
image shown in Fig. 14(f) by the classification method based on
SVM.

Fig. 15 shows the mapping results of the eight methods for
real dataset. Similarly, for visual comparison purposes, a salient
sub-region of the mapping results with 50× 50 pixels marked in
Fig. 14(f) with a black frame is magnified in Fig. 16. Comparing
with the reference image, similar to Experiments 1 and 2, the
proposed CVDBI achieves the more continuous and smoother

Fig. 18. OA (%) of the eight SPM methods in relation to two spectral unmixing
methods in Experiment 3.

mapping result than the other seven methods. Table III lists
the three evaluation indices of the eight SPM methods, where
it can also be seen that the proposed CVDBI outperforms the
other seven methods, and obtains the highest values of the three
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Fig. 19. OA (%) of the CVDBI in relation to parameters sensitivity (a) in experiment 1, (b) in experiment 2, and (c) in experiment 3.

Fig. 20. Processing time of the eight SPM methods in the three experiments.

evaluation indices. Therefore, in practice, the proposed CVDBI
could achieve good performance due to effectively identifying
the inaccurate spatiotemporal information of the FPSI.

IV. DISCUSSION

A. Scale Factor

In experiments 1 and 2, the synthetic input abundance images
of COSI are obtained by downsampling the reference classifica-
tion image by a scale factor S × S mean filter. Different values
of S mean that the abundance images of COSI with different
resolution are produced. Thus, the performance of the proposed
CVDBI under the influences of different values of the scale
factor S is discussed here. The eight SPM methods are tested by
repeating Experiments 1 (NLCD 2006 as FPSI) and 2 (Mekong
and Tonlé Sap Rivers) for three values of the scale factor S (i.e.,
8, 15, and 25).

Fig. 17 shows the OA (%) values of the eight SPM methods at
different scale factors S in experiments 1 and 2. Since the higher
value of S indicates the coarser input abundance images, the OA
(%) of the eight methods all decreases with S, but the proposed
CVDBI still obtained the highest OA (%) value among all the
methods in all the three scale factors. Therefore, the proposed
CVDBI has good performance and certain stability under the
influences of different values of the scale factor S.

B. Spectral Unmixing

In experiment 3, the real input abundance images of COSI
are obtained by spectral unmixing based on LSSVM. However,
the error caused by spectral unmixing will affect the mapping
result. Therefore, it is necessary to discuss the performance of
the proposed CVDBI under the influences of different spectral
unmixing. Spectral unmixing based on linear spectral mixture
model (LSMM) [53] is selected to replace LSSVM in Experi-
ment 3 to obtain the input abundance images.

The OA (%) values of the eight SPM methods in relation to
two spectral unmixing methods in Experiment 3 are shown in
Fig. 18. Since LSMM is not more effective than LSSVM [10],
the OA (%) of the eight SPM methods decreases when using
LSMM. Thus, a more effective spectral unmixing method will
produce less spectral unmixing error, resulting in the higher OA
(%). However, no matter which spectral unmixing method is
used, the proposed CVDBI always achieves the highest OA (%).
The experimental results show that the CVDBI is more robust
to the choice of spectral unmixing than other SPM methods

C. Parameter Sensitivity

The sensitivity of the proposed CVDBI for λM, λ1, and λ2 is
explored in Experiments 1 (NLCD 2006 as FPSI), 2 (Mekong
and Tonlé Sap Rivers), and 3. For the experimental setup, each
parameter is varied in the range of [10−4, 104] at an interval of
10 times, while keeping the remaining ones fixed at the values
described in Section III. In other words, each experiment only
changes the value of one parameter, and the values of the other
two parameters remain unchanged.

As shown in Fig. 19, we compute the OA (%) by the CVDBI,
and the experimental results clearly show that even if the pa-
rameter value changes in different orders of magnitude, it will
only have a relatively small impact on the resulting OA (%).
Therefore, the performance of the proposed method is not overly
sensitive to the choice of parameters.

D. Running Time

The running time is also an important index to evaluate
the performance of the SPM. The running time of eight SPM
methods in Experiments 1 (NLCD 2006 as FPSI), 2 (Mekong and
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Tonlé Sap Rivers), and 3 is recorded in Fig. 20. Observing from
the results, when comparing with the other three SSPM methods
(i.e., STD, SPSF, and SMAP), the proposed CVDBI requires the
more time to obtain the final mapping result. The main reason
is that the CVDBI utilizes ADMM to update the variables θk

and MCOSI
k by alternate iterations. Thus, the proposed CVDBI

is to obtain the ideal mapping result at the cost of longer running
time.

V. CONCLUSION

With the help of spatiotemporal information from PFSI,
SSPM performers better than the traditional SPM based on
monotemporal image. However, the current SSPM methods
rarely identify the inaccurate spatiotemporal information of the
FPSI, affecting the accuracy of the mapping result. In this article,
a SSPM based on variation difference between images (CVDBI)
is proposed to solve the abovementioned problem. CVDBI first
obtains the coarse abundance images of COSI by unmixing
COSI and the fine thematic images of FPSI by classifying
FPSI. DOM and variation difference observation mode are then
established. Next, a separable convex optimization model is pro-
posed by integrating DOM and VDOM to optimize the variation
difference factor and the ideal thematic image of COSI. Finally,
we use the ADMM to solve the separable convex optimization
problem to derive the mapping result. Experiments on three
datasets are performed to validate the proposed CVDBI. The
proposed method is compared to the traditional SPM methods,
as well as the SSPM methods. The conclusions are as follows.

1) The proposed CVDBI provides an effective solution by
identifying the inaccurate spatiotemporal information of
the FPSI. From both visual comparison and index eval-
uation, the CVDBI can produce more accurate mapping
result than the current SSPM methods.

2) The proposed CVDBI could relieve the limitations of the
close acquisition time of COSI and FPSI in the current
SSPM methods. From the results in Experiment 1, CVDBI
show a better performance than the other SSPM methods
in the case of using FPSI captured at various times.

3) The proposed CVDBI is applicable to a large variation
difference between COSI and FPSI. From the results in
Experiment 2, the CVDBI always obtain the best result
when there is a long-time interval of collecting between
COSI and FPSI, or a high frequency of disaster change
between COSI and FPSI.

4) The proposed CVDBI can achieve good performance in
the real situation. From the results in Experiment 3, when
there are some uncertainties in the situation, the proposed
CVDBI also performs better than other SSPM methods.

With the rapid development of remote sensing technology,
it is not very difficult to obtain FPSI at other times. As long
as there is FPSI, we can get the ideal thematic images through
classification method. Of course, when there is no ideal thematic
image, the proposed CVDBI will be affected. This is a limiting
condition for CVDBI. We will improve the CVDBI in the future
so that it can obtain better results without using ideal thematic
images.

APPENDIX A

In this section, the optimization of the scaled augmented
Lagrange L(θk,G, z) in (12) with respect to the other variables
G and z is described.

A. Optimizing G

We write the optimization problem for G as

G=argmin
0≤G≤1

1

2

∥∥MCOSI
k −G∥∥2

F
+
β

2

∥∥−θk �TFPSI
k +G+z

∥∥2
F
.

(24)
We take the derivative with respect to G and set it equal to

zero as (
1− 1

β

)
G=θk �TFPSI

k − z− 1

β
MCOSI

k . (25)

Equation (22) could be solved to obtain the solution of G.

B. Optimizing z

The alternate update is defined as

z← z+G− θk �TFPSI
k . (26)

APPENDIX B

In this section, we introduce the optimization of the scaled
augmented Lagrange L(x,y, z) in (20) with respect to the other
variables y and z.

A. Optimizing G1

The subproblem for G1 can be written as

G1 = argmin
0≤G1≤1

1

2

∥∥vec
(
ACOSI

k

)− vec (G1)
∥∥2
F

+
β

2

∥∥r(Dk)vec
(
MCOSI

k

)− vec (G1) + z1
∥∥2
F
. (27)

Taking the derivative of G1 and setting it equal to zero, we
obtain (28). We solve (28) to derive G1

(1+β) vec (G1)=vec
(
ACOSI

k

)
+βr(Dk)vec

(
MCOSI

k

)
+βz1.

(28)

B. Optimizing G2

The subproblem for G2 can be written as

G2 = argmin
0≤G2≤1

β

2

∥∥vec
(
MCOSI

k

)− vec (G2) + z2
∥∥2
F

+
β

2
‖Ghvec (G2)− vec (G3) + z3‖2F

+
β

2
‖Gvvec (G2)− vec (G4) + z4‖2F . (29)

We also take the derivative of G2 and set it equal to zero as(
I+GT

hGh +GT
v Gv

)
vec (G2) = vec

(
MCOSI

k

)
+GT

h vec (G3) +GT
v vec (G4) −GT

hz3 −GT
v z4. (30)

Equation (30) is solved to produce G2.
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C. Optimizing G3

The equivalent optimization for G3 is defined as

G3= argmin
0≤G3≤1

λM‖G3‖2,1

+
β

2
‖Ghvec (G2)−vec (G3)+z3‖2F . (31)

According to [52], the solution of (31) is equivalent to the
proximal operator of the L2 norm. Thus, we use a block soft
thresholding softa(b) to obtain the solution of (31). softx(y)
is defined as

softx (y) = max

(
1− x

‖y‖ , 0
)
y (32)

where softx(0) = 0.
The solution of (31) is given by

G3 = softλM/β (Ghvec (G2) + z3) . (33)

D. Optimizing G4

The optimization problem of G4can be given by

G4 = argmin
0≤G4≤1

λM‖G4‖2,1

+
β

2
‖Gvvec (G2)− vec (G4) + z4‖2F . (34)

Similar to the solution of G3, the solution of G4 is defined as

G4 = softλM/β (Gvvec (G2) + z4) . (35)

E. Optimizing G5

The optimization problem of G5is written as

G5=argmin
0≤G5≤1

i+ (G5)+
β

2

∥∥vec
(
MCOSI

k

)−vec (G5) + z5
∥∥2
F
.

(36)
The solution of G5 is referred to [52], and is defined as

G5 = max
(
MCOSI

k + vec−1 (z5) , 0
)
. (37)

F. Optimizing z

The alternate update is written as

z(i+1) ← z(i) +Ax(i+1) +By(i+1) −C. (38)

Furthermore, the variable z1, z2, z3, z4, and z5 are defined as

z1 ← z1 + r(Dk)x− vec (G1)

z2 ← z2 + x− vec (G2)

z3 ← z3 +Ghvec (G2)− vec (G3)

z4 ← z4 +Gvvec (G2)− vec (G4)

z5 ← z5 + x− vec (G5) . (39)
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