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Deep Semantic Segmentation of Trees Using
Multispectral Images
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Abstract—Forests can be efficiently monitored by automatic
semantic segmentation of trees using satellite and/or aerial images.
Still, several challenges can make the problem difficult, including
the varying spectral signature of different trees, lack of sufficient
labelled data, and geometrical occlusions. In this article, we address
the tree segmentation problem using multispectral imagery. While
we carry out large-scale experiments on several deep learning
architectures using various spectral input combinations, we also
attempt to explore whether hand-crafted spectral vegetation in-
dices can improve the performance of deep learning models in the
segmentation of trees. Our experiments include benchmarking a
variety of multispectral remote sensing image sets, deep semantic
segmentation architectures, and various spectral bands as inputs,
including a number of hand-crafted spectral vegetation indices.
From our large-scale experiments, we draw several useful con-
clusions. One particularly important conclusion is that, with no
additional computation burden, combining different categories of
multispectral vegetation indices, such as NVDI, atmospherically re-
sistant vegetation index, and soil-adjusted vegetation index, within
a single three-channel input, and using the state-of-the-art semantic
segmentation architectures, tree segmentation accuracy can be im-
proved under certain conditions, compared to using high-resolution
visible and/or near-infrared input.

Index Terms—Satellite imagery, semantic segmentation, tree
segmentation, vegetation indices (VIs).

I. INTRODUCTION

FORESTS are one of the principal factors that maintain
Earth’s climate stability [1]. Accurate monitoring of their

state and sustainability is a global concern. Compared to other
more traditional methods, such as aerial surveys or plot-based
analyses, remote sensing has proven to be the most efficient
way to monitor forest cover change processes. Conventionally,
remote monitoring of processes, such as deforestation or forest
degradation has been interpreted manually by expert analysts.
However, with recent developments in the field of artificial
intelligence, deep learning (DL) algorithms using satellite and/or
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aerial imagery are becoming the de facto tool in forest monitor-
ing [2].

Remote sensing imagery can be categorized by the altitude
of the aircraft/spacecraft or the type of the optical system (or,
simply put, the sensor) [3]. These two factors largely determine
the tradeoff between the area covered and the amount of detail
(i.e., the resolution) of the constructed image. Depending on
the type of the sensor, the optical system can sense a part of
the electromagnetic spectrum, sample different spectral bands
separately and simultaneously, and hence, create multi or hy-
perspectral imagery. In addition, various spectral bands are
used to construct the so-called “spectral indices,” which are
mathematical combinations of spectral reflectance of different
wavelengths. These hand-crafted indices are used to detect the
presence of objects or situations, such as vegetation [4], water
[5], fire [6], and landslide [7]. Although these hand-crafted
indices are valuable features for pattern recognition, today’s
trend is moving toward building nontransparent, end-to-end DL
models to detect any feature of interest, usually using supervised
techniques [8].

In this article, we address the problem of segmenting forest
areas (or simply trees) in both satellite and aerial images using
deep semantic segmentation techniques and multispectral im-
agery. We attack the problem in multiple dimensions. To begin
with, we examine the effect of altitude using satellite and aerial
images with various metric and spectral resolutions. Second, we
benchmark different deep semantic segmentation architectures,
including models with pretrained convolutional encoders. We
utilize different spectral bands, such as visible [red-green-blue
(RGB)], near-infrared (NIR), and short-wave infrared (SWIR)
(and their multispectral combinations), as raw inputs to these
models. Moreover, we experiment with hand-crafted spectral
vegetation indices (VIs) as input and analyze their performance
compared to raw spectral input images. Our goal is to deter-
mine how to efficiently utilize DL-based architectures for tree
segmentation, what practical issues arise with limited remote
sensing data, and which methods should be utilized. In order to
accomplish this, we conduct large-scale experiments.

The rest of this article is organized as follows. In the following
section, we refer to the literature on the subject and underline
our contribution. The third section provides the details of our
benchmarking environment with respect to the image sets, the
segmentation models, and the spectral indices we utilize in
our experiment. Section IV presents the experimental results
and covers related analyses and discussions. Finally, Section V
concludes this article.
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II. RELATED LITERATURE

Survey studies on object detection in optical remote sensing
images [9], [10], [11] show that efforts to detect trees in satellite
images date back to the early 90s [12], [13], [14]. Previously, tra-
ditional machine learning methods, such as multinomial logistic
regression [15], random forest (RF) [16], [17], [18], and support
vector machine [19], [20], [21] dominated the area of tree de-
tection and segmentation within remote imaging. These studies
relied not only on hand-crafted feature extractions but also on
feature encoding [22] and feature pooling [23]. Because of the
low-level characteristics of the extracted features, these methods
were not able to capture high-level features that reside in com-
plex high-dimensional (spatial, temporal, and spectral) satellite
or aerial imagery. Recently, DL approaches have emerged to
tackle such limitations by making use of hierarchical learning
processes while extracting high level, complex abstractions from
the data [24], [25], [26], [27], [28], [29]. Convolutional neural
networks (CNNs) [30], with their proven ability to learn these
high-level abstract feature representations with the help of con-
volutional and pooling layers, are the most commonly used DL
models for semantic segmentation.

Following the recent interest in deep semantic segmentation
architectures [31], image context exploitation and fusing fea-
tures from different stages for image segmentation have given
rise to various methods. Pioneered by the fully convolutional
network (FCN) [32] and followed by many improvements [33],
[34], [35], [36], [37], [38], the encoder–decoder (ED) architec-
tures show promising success in solving semantic segmentation
tasks. In fact, the ED-based CNN architectures are utilized for
semantic segmentation of Earth observation data [37], [39],
[40], [41], [42], [43], [44], [45], allowing the fusion of high-
and low-level feature maps while improving spatial accuracy in
semantic segmentation.

It is also worth mentioning that classical tree segmentation
methods commonly utilized 3-D airborne light detection and/or
range (LIDAR) data [46], [47], [48], [49], [50], [51], [52], [53],
[54], [55]. For instance, when using 3-D LIDAR data to perform
tree segmentation, data-specific methods that relied on crafted
features were employed, such as canopy height model [56],
based watershed algorithm [57], or normalized point cloud-
based layer stacking algorithm [58]. Besides, in some studies
both LIDAR and multispectral data were utilized by applying
different algorithms for each data type. While implementing
machine/DL algorithms that are well-suited to multispectral
data, the studies concurrently applied methods native to LIDAR
data [59], [60], [61]. Nevertheless, due to its flexibility in both
spatial and spectral resolution, and its compatibility with differ-
ent remote sensing systems (UAV, satellite, etc.), multispectral
and/or hyperspectral imagery are today’s main standards for not
only tree segmentation, but for several other related problems,
such as crop, water, and field segmentation [3].

The specific problem of detecting trees presents some chal-
lenges, such as geometrical complexity, color variations, and/or
self-occlusion of the tree branches [62], just to name a few. As a
result of these challenges, the problem proves to be considerably
difficult. For example, regarding self-occlusion, even a slight

change in the viewpoint could cause the same structures to
appear significantly different. The tree segmentation problem is
also challenging due to the environmental background, which
may contain other types of green vegetation, such as small
bushes. A closely related problem is differentiating between
the view of a large canopy, hence, the overlap between adja-
cent individual trees. A satellite-retrieved spectral signature is
the combination of different reflectance sources, such as tree
crown, tree crown shadow, soil, and herbaceous vegetation [17].
Another key factor that limits individual tree mapping is that the
spatial resolutions of most satellite/aerial sensors are usually
not capable of capturing objects with sizes less than one square
meter. However, thanks to commercial satellites and UAVs with
multispectral cameras, the improved spatial resolution makes it
possible to map every tree on large scale [63].

Instead of using individual spectral bands, VIs have been
proposed in the literature [64]. VIs are derived from varying
mathematical combinations of two or more spectral reflectance
values to examine the presence of the vegetation within a pixel.
VIs have several drawbacks, notably their inadequacy at in-
terpreting the information content for forest canopy, thereby
insufficiently quantifying the effects among different variables,
and hence, making them less favorable for rapidly changing
biophysical factors, such as chlorophyll content per unit leaf
area, leaf angles, and fractional cover [65]. Performances of VIs
are compared to that of the spectral mixture analysis in terms of
tree canopy cover and are found to be poor [66]. Since there is
a high correlation between many VIs, they can be used together
and complement each other in different aspects by addressing
specific needs that characterize tree canopy.

Most of the DL architectures that process satellite/aerial im-
agery for the segmentation of objects, including trees, are end-to-
end models that take multi- or hyperspectral bands as input chan-
nels [67]. However, due to both their multimodal, geolocated,
and multitemporal nature and the insufficient amount of labelled
remote-sensing data, applying DL models tends to be a challeng-
ing task [25]. Improvements in the high-performance computing
architectures, such as GPUs lag far behind the growth of high-
dimensional big satellite/aerial data; ergo, recent efforts toward
building large-scale DL models fall short of training big remote-
sensing data, unless a breakthrough is achieved in the acceler-
ation of computing power. One solution to this problem, which
we propose in this article, is to utilize VIs as a priori knowledge
to the DL models. VIs by definition, provide insight into spectral
characteristics of a surface by taking into account the interaction
between electromagnetic radiation and vegetation, and hence,
can be considered physics-based modelled features.

Our study explores the effect of fusing VIs as a physical model
and various ED architectures as DL models in order to perform
tree semantic segmentation tasks effectively and accurately.
For this purpose, we implement various ED-based semantic
segmentation architectures, such as U-Net [34], SegNet [35],
DeepLabv3+ [36], DLinkNet [37], and DFANet [38], as well
as a pre-DL era ensemble learning algorithm, namely RF [68].
We utilize specific VIs so as to integrate physics-based models
as additional input information to the benchmarked models. A
framework is constructed for satellite and aerial images that
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not only provides a comparison between different ED-based
semantic segmentation architectures but also leads to insights
about fusing various VIs or spectral bands for the purpose of
pixel-wise tree segmentation.

III. METHODOLOGY

In this section, we provide a methodological background for
the experiments conducted within our study. We commence by
introducing the multispectral image sets utilized in our exper-
iments. We then provide details on the benchmarked semantic
segmentation architectures of our experiments and the types of
input we provide to these models.

A. Multispectral Image Sets

The previous studies in the literature have proven that high
spectral resolution is a major factor in solving the tree seg-
mentation problem, as is the requirement of high spatial res-
olution [16]. The earlier airborne cameras and satellite-borne
multispectral sensors provided high spatial resolution, while
their spectral bands were limited to blue (0.45–0.51 μm), green
(0.51–0.58 μm), red (0.6–0.69 μm), and NIR 1 (0.77–0.90 μm).
Because several satellite-borne sensors, such as WorldView-2
and WorldView-3 were launched after 2009, numerous other
spectral bands that are strongly related to vegetation properties
have also been included. One is the Coastal band (0.40–0.45
μm), where the associated reflectance is highly bound up with
the chlorophyll content of the vegetation. Another band, the red
edge (0.71–0.75μm), leads to intuitive discrimination of healthy
trees, which is the primary task in precision agriculture. Aside
from the detection of healthy trees, infected trees can also be
exposed if the Yellow band (0.59–0.63 μm) is utilized to extract
the yellowness of their crowns. Apart from the NIR 1 band, the
NIR 2 band (0.86–1.04 μm) can provide additional information
on the vegetation analysis since it is less influenced by atmo-
spheric conditions [69]. The SWIR (SWIR) band (1.19–2.36
μm) is useful to characterize vegetation water content since it is
sensitive to water absorption.

In order to conduct supervised tree segmentation experiments,
multispectral image sets with pixel-label ground truth are re-
quired. Table I shows detailed information about the two image
sets that we use in our conducted experiments. In Table I, ground
sampling distance (GSD) refers to the distance between the
centres of two adjacent pixels corresponding to their represen-
tation in the real world [70]. The improvement of segmentation
performance is significantly related to the spatial resolution, with
GSD being the most important descriptor [71]. Additionally,
ground field-of-view (FOV) refers to the metric area covered by
the sensor at the chosen operational altitude of the sensor during
image collection. The reader may refer to [72], [73], [74], [75]
for a list of available multispectral image sets with pixel labels.
The two image sets used in our experiments are discussed as
follows.

1) DSTL Satellite Imagery Feature Detection Image Set: The
DSTL Satellite Imagery Feature Detection image set is provided
by the Defense Science and Technology Laboratory [76], and
includes 25 very high-resolution training images. Each image

TABLE I
FEATURES OF BENCHMARK MULTISPECTRAL SEMANTIC SEGMENTATION

IMAGE SETS

covers an area of 1 km × 1 km of the Earth’s surface. In
this image set, both 3-band and 16-band formats are provided
with different spatial resolutions. The images are captured by
WorldView-3, which is a commercial satellite. The WorldView-
3 optical system provides very high-resolution satellite imagery
with 31 cm panchromatic resolution, 1.24 m multispectral reso-
lution, and 7.5 m SWIR resolution [77]. WorldView-3 satellite
captures the same area with different types of satellite images,
such as a panchromatic band (high-resolution), an RGB band
(high-resolution), and a multispectral band (M -band) (lower
resolution), and an SWIR band (A-band) (lowest resolution).
The advantageous feature of having 11- and 14-bit as image
color depths enables more information from each pixel to be
used in a DL model. There are a total of 10 labeled object types,
including trees.

2) RIT-18 (The Hamlin State Beach Park) Aerial Image
Set: The RIT-18 aerial image set [73] was acquired in 2017
by mounting the Tetracam MicroMCA6 multispectral sensor
on board the DJI-S1000 octocopter. This unmanned aircraft
system is much cheaper than those based on manned aircraft
and satellite systems. RIT-18 has been collected with a ground
sample distance of 0.047 m and includes six very high-resolution
multispectral bands. Three of them are visible RGB bands, while
the other three are NIR bands, with all having very high spatial
resolution. Due to their high spatial resolution,1 the NIR bands

110 and 20 nm band-pass filters were used for this sensor since wider
bandwidths tend to create oversaturation [73].
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introduced by the RIT-18 are strengthening the discriminative
power of DL architectures, especially for cases where vegetation
exists [73].

B. Semantic Segmentation Architectures

In the past decade, studies on different semantic segmenta-
tion architectures have shown tremendous development [31].
Mostly driven by industry, the majority of these studies were
designed for medical applications or unmanned systems, such
as driverless cars. As mentioned in Section II, we benchmark
different DL-based semantic segmentation architecture and a
pre-DL ensemble learning method called the RF algorithm.
In this part, we provide details on the semantic segmentation
techniques that we utilize in our experiments.

The pioneering DL-based semantic segmentation architecture
is the FCN [32]. This network is considered to be the ancestor
of today’s widely used ED architectures in semantic segmenta-
tion [31]. Although there are many different architectures and
approaches in DL-based semantic segmentation literature, it is
safe to say that the ED architecture is an off-the-shelf solution
to many semantic segmentation problems.

Due to its role in recovering spatial resolution in extracted
feature maps, the decoder is especially important to imple-
menting ED architectures for multispectral imagery so that the
high-resolution details can be recovered effectively. Given this
effect, we considered various ED architectures, while paying
attention to the different aspects of decoders. Upsampling layers
are one of the most crucial parts of decoders, as they increase
the spatial resolution [78]. Therefore, upsampling layers are the
basis for selecting the proper architectures in this article.

Below we explain the five fundamental DL-based semantic
segmentation architectures that we utilize in our experiments:
U-Net[34], SegNet [35], DeepLabv3+ [36], DLinkNet [37], and
DFANet [38]. The first two are considered to be the basic ED
examples, while the latter three are advanced state-of-the-art
models that have been proven to be more successful in today’s
semantic segmentation challenges [79]. Finally, we provide in-
formation about the RF algorithm, which is one of the strongest
pixel-wise tree segmentation methods of the pre-DL era.

1) U-Net [34]: U-Net is the one of the pioneering and most-
used ED approaches in the semantic segmentation literature [see
Fig. 1(a)]. It is notable for its unique architecture, in which
the whole feature map is transported from the encoder to the
corresponding building block in the decoder via skip connec-
tions. Compared to state-of-the-art architectures, the decoder
part of U-Net is computationally inefficient since it reconstructs
the segmentation map, the size of which is equal to that of
the original image through many up-scaling operations between
high-level semantic information and precise local information.
However, U-Net is still considered to be a de facto solution to
any semantic segmentation problem.

The implemented U-Net model is a four-level-depth symmet-
ric ED model. At each depth, two repeated blocks of convolu-
tional layers are followed by a batch normalization operation
during training and a rectified linear unit (ReLU) activation
function in the experiment itself. Attached to these two blocks,

Fig. 1. Different semantic segmentation architectures were utilized in the
experiments. (a) Basic ED architecture: U-Net (features as skip connections)
or SegNet (pooling indices as skip connections). (b) DeepLabv3+ architecture.
(c) DlinkNet architecture. (d) DFANet architecture.

each level is concluded by a 2 × 2 max-pooling layer (stride 2)
and a dropout layer with rate = 0.5, hence halving the spatial
dimension at each depth. For each depth, the feature channels
vary among 64, 128, 256, and 512, which is also symmetrical
in the decoder. In the decoder part of the process, instead of
the max-pooling layer, there are up-convolution layers that help
double the spatial dimensions. For all convolutional layers,
kernel, stride, and padding sizes are set as 3 × 3, 1 × 1, and
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1 × 1, respectively, thus keeping the spatial dimensions fixed
within a block. In order to implement the binary classification of
trees, the final decoder block is followed by a single depth 1 × 1
convolution layer and pixel-wise sigmoid layers, which provides
an input-sized single channel map of the detection measure. Skip
connections between each depth carry feature activation values,
a trademark of the original U-Net architecture.

Among the many different ED architectures, we consider U-
Net a fitting choice for benchmarking, given that it is a basic
example of using transposed convolution as the up-sampling
layer [78].

2) SegNet [35]: SegNet is very similar to U-Net architecture.
The only difference is that, rather than passing the entire feature
map of the encoder to the decoder, SegNet uses a very simple
yet computationally efficient transfer of information. Instead of
unpooled features, maximum pooling indices are passed [see
Fig. 1(a)].

In the implemented SegNet model, the architecture and the
related parameters are the same as in the implemented U-Net
model described earlier. The only difference is, as the trademark
of the SegNet architecture, skip connections carry only the
pooling indices, which is why SegNet is considered to be an
efficient implementation of the U-Net.

Rather than using the transposed convolution as the upsam-
pling layer, such as U-Net, SegNet employs interpolation by
implementing the unpooling operation [80], [81]. Therefore, the
criterion for selecting SegNet is to compare the performance of
this upsampling operation at the decoder.

3) DeepLabv3+ [36]: One of the most advanced, successful,
and efficient semantic segmentation frameworks in the literature
is the DeepLabv3+ [82] [see Fig. 1(b)], which is the final archi-
tecture of the DeepLab family [82], [83], [84]. It is originally
trained with general-purpose image sets, such as PASCAL VOC
2012 [79] and COCO [85]. The main idea of DeepLabv3+
is to consolidate multiscale contextual information by using
atrous spatial pyramid pooling layers. Compared to a default ED
architecture, the decoder part is extremely lightweight, although
with better segmentation accuracy.

As semantic segmentation architectures developed rapidly,
recent studies have focused on utilizing state-of-the-art archi-
tectures, such as ResNet [86], Inception [87], and Xception [88]
in the encoder, referred to as encoder backbone networks. The
goals of this usage are to improve the generalization ability
and increase the prediction accuracy of the model. Like many
other semantic segmentation architectures, DeepLabv3+ can
also function with pretrained encoders. In scenarios, where the
labeled data is limited, different encoder backbone networks
may help the model perform with increased efficacy. In the
implemented DeepLabv3+ model, the first two levels of the
ResNet34 or ResNet101 encoder are transferred for this pur-
pose. However, because we utilized pretrained encoders that
originally accepted three-channel (RGB) input, the experiments
with this architecture are limited to spectral input with 3 or fewer
channels.

We utilize DeepLabv3+ in our experiments because its up-
sampling layer is completely different from that of the other
ED architectures. DeepLabv3+ employs bilinear upsampling +

convolution in its decoder design [78], mainly for computational
efficiency.

D-LinkNet [37]: Another state-of-the-art model in the liter-
ature is DLinkNet. This model is originally trained with RGB
satellite images for pixel-wise road segmentation, which makes
it special in the sense that it is one of the rare models specif-
ically designed and trained using image sets with almost-zero
zenith angles. The model is based on an approach focused on
additional dilated convolution layers in the centre part of an ED
architecture [see Fig. 1(c)]. DLinkNet is an improvement of the
Linknet architecture [89], which is also an ED-based semantic
segmentation model.

Similarly to the implemented DeepLabv3+ model,
DLinkNet’s utilized encoder is transferred and fine-tuned.
The first two levels of the ResNet34 encoder is transferred to the
implemented DLinkNet model in the conducted experiments.
Hence, the experiments with this architecture are also limited
to spectral input with less than or equal to 3 channels (please
refer to Section III-C for model input types).

DLinkNet is also another example of the ED architecture that
relies on transposed convolution in the decoder design [37].
However, it is not considered to be as computationally efficient
as the DeepLab family.

4) DFANet [38]: The majority of recent semantic segmen-
tation studies are targeted at real-time applications like au-
tonomous driving that require fast understanding of the sur-
rounding scenes while achieving high performance [90], [91],
[92], [93]. In our study, we chose the state-of-the-art DFANet as
a benchmark model because it has a sophisticated ED structure
similar to DLinkNet, but is still real-time in performance.

The main contribution of DFANet is the so-called “Cross-
level feature aggregation based ED architecture” [see Fig. 1(d)]
that aims to reduce the number of parameters, while preserving
a certain semantic segmentation performance. DFANet encoder
is constructed by first starting from the Xception model as a
lightweight backbone, and then providing the high-level feature
maps obtained from this backbone as an output to the next
Xception backbone. This process, which is called subnetwork
aggregation, continues for three parallel Xception backbones.
The goal of adding a fully connected attention module to the
tail of each backbone is to acquire the maximum receptive
field. In addition to this subnetwork aggregation, another mod-
ule, namely the substage aggregation, helps us to ensure the
combination of multiscale information. By recovering the lost
spatial information caused by deep architectures, the aim of
the substage aggregation module is quite similar to that of the
skip connections except that skip connections are not able to
keep the large-scale object and edge information in very deep
architectures. The substage aggregation module is based on the
fusion of different stages of the same depth in subnetworks.
In other words, the output of the layer at a certain resolution
from the previous backbone is contributing to the input of the
corresponding layer of the next backbone.

The encoder, which is composed of the aggregation of three
lightweight Xception backbones by means of subnetwork and
substage modules, is followed by a slight decoder designed
particularly to tackle real-time inference concerns. This decoder
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is conceived as an efficient feature upsampling module that is
characterized by the convolution and bilinear upsampling layers.
This simple decoder structure fuses the high-level features and
the low-level features of the three backbones within itself. After
the high-level features are bilinearly upsampled by a factor of 4,
these are added to the low-level features. Finally, this total sum
is upsampled by a factor of 4 and the final prediction is obtained.

5) Random Forest [68]: In order to compare the data-driven
learning power of deep neural networks relative to traditional
machine learning algorithms, the RF method, which relies on
hand-crafted features, is also introduced for segmentation per-
formance evaluation. The RF method includes a set of decision
trees in which each acts as a base classifier and depends on
the independently sampled values of a random vector from the
same distribution. As an ensemble learning algorithm, RF builds
many decision trees at the time of training and relies on the
maximum voting of the decision trees in the forest. Its robustness
to overfitting and good generalization ability are among the
advantages of the RF algorithm in semantic segmentation [94],
[95].

The hand-crafted features that we fed to the RF model are ba-
sic image features, specifically derivatives (up to second order)
in three different scales. The number of decision trees in the RF
ensemble is selected as 20, whereas the minimum number of
observations per tree leaf is set to 60.

C. Model Input

In this study, we are also interested in exploring the correlation
of spectral bands and VIs with tree segmentation performance.
For that purpose, the bench-marked models are trained and tested
with a set of input data with varying channel depth. We catego-
rize the utilized model input into two main categories, three-
channel and multispectral input. The first, the three-channel
input, includes RGB, single VIs (three channels being the same),
the NIR input (including separate three NIR sub-bands) and a
three-channel vegetation index combination, including NDVI,
atmospherically resistant vegetation index (ARVI), and soil-
adjusted vegetation index (SAVI) indices (show below). Since
this input group has a depth of three channels, DL models that
comprise pretrained encoders, such as ResNet or Xception can
be used in experiments.

The second group, multispectral input, includes image sets
with a higher number of channel depths. The characteristics
of the multispectral band input depend on the image set (i.e.,
the sensor) and are explained in detail as follows. As expected,
experiments using this input group were only conducted for the
U-Net and the SegNet DL models, which can accept any number
of input channel depths. On the other hand, RF experiments are
applied to both model input groups.

1) Red-Green-Blue: As the name implies, these images con-
sist of only red, green, and blue channels. The difference between
the reflected radiations in visible (i.e., RGB) and NIR wave-
lengths give more information about vegetation in particular. A
large difference suggests that the pixels are more likely to belong
to dense vegetation, such as forest area, while a small one is likely
to indicate sparse vegetation, such as grassland [96]. On the other

hand, for most commercial satellites (such as world-view-3), the
spatial resolution of RGB channels is exceedingly higher than
the original multispectral output of the sensor due to a resolution
enhancement postprocess applied to visible band output.

2) Vegetation Indices: Vegetation covers exhibit a unique
spectral behaviour, by which they can be differentiated from
other ground elements [64]. Commonly, chlorophyll concentra-
tion is responsible for absorbing the radiation in the red band,
while the leaf cellular structure is responsible for reflecting the
radiation in the shorter NIR bands (700 to 750 nm). A deviation
between the red and NIR is observed in the spectral reflectance
curve, providing deeper insight into the existence of vegetation.
The key idea is to make use of this deviation to differentiate
vegetation from bare soil based on the contrast between the
spectral reflectance behaviours. Another spectral radiance dif-
ference measured between the red and the blue bands acts as
a self-corrector by reducing the atmospheric scattering effects
in the red band, making it possible to define atmospherically
resilient VIs.

Current VIs are commonly categorized in the following
three fundamental families: mean VIs, atmospherically resilient
VIs, and soil-adjusted VIs [97]. For this reason, we utilized
three widely-used indices from each family in our experiments.
The key characteristics of these indices are delineated in the
following:

3) Normalized Difference Vegetation Index (NDVI): is se-
lected to represent the mean vegetation index category, for that
it is one of the most widely used and well-known indices of this
category [98]. NDVI for the DSTL image set is defined by

NDVID =
NIR1− Red
NIR1 + Red

(1)

where the WorldView-3 NIR1 band covers the range 0.77–0.90
μm and the red band covers the range 0.63–0.69 μm.

In the case of the RIT-18 image set, NDVI is calculated as
follows:

NDVIR =
NIR − Red
NIR + Red

(2)

where the RIT-18 NIR band covers the range 0.71–0.91 μm and
the red band covers the range 0.67–0.68 μm.

4) Atmospherically Resistant Vegetation Index: ARVI is par-
ticularly designed to correct atmospheric effects. In order to ob-
tain such an atmospherically resilient VI, blue or green spectral
bands are taken into account along with the red and NIR bands.
There are also some other related VIs that reduce atmospheric
turbidity [99]. ARVI for the DSTL image set is given by

ARVID =
SWIR 1− Red Edge − γ(Red Edge − Coastal)
SWIR 1 + Red Edge − γ(Red Edge − Coastal)

(3)
where the WorldView-3 SWIR 1 band covers the range 1.19–
1.22 μm, red edge band covers 0.71–0.75 μm and the coastal
band covers the range 0.40–0.45 μm, and γ is taken as 1.0.

For the RIT-18 image set, ARVI calculation should be ar-
ranged according to the existing NIR bands due to the absence
of the SWIR wavelengths. The following shows the calculation
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Fig. 2. Example of tree cover in satellite imagery. (a) RGB image. (b) NVDI,
ARVI, and SAVI VIs depicted in three-channel false color. (c) Tree cover ground
truth for semantic segmentation.

of ARVI for the RIT-18 image set

ARVIR =
NIR − Red − γ(Red − Blue)
NIR + Red − γ(Red − Blue)

(4)

where the RIT-18 covers the NIR range 0.71–0.91 μm, the red
range 0.67–0.68 μm, and the blue range 0.48–0.49 μm; γ is
taken as 1.0.

5) Soil-Adjusted Vegetation Index: Besides the two cate-
gories described earlier, there are many other VIs that have
been proposed to reduce the soil background noise on NDVI by
making use of a parameter called L, which incorporates the area
density factor. One of these, SAVI enables the soil brightness
effect to be assessed where the vegetation density is low in the
area of interest [100]. For the DSTL image set, SAVI is given
by

SAVID =
NIR1− Red

NIR1 + Red + L
(1 + L) (5)

where L is taken as 0.5.
Using the NIR range of 0.71–0.91 μm and a red range of

0.67–0.68 μm, SAVI can be formulated for the RIT-18 image
set as follows:

SAVIR =
NIR − Red

NIR + Red + L
(1 + L) (6)

where L is taken as 0.5.
6) Mixed-Vegetation input (NDVIA + ARVI + SAVI): In ad-

dition to utilizing the aforementioned VIs separately as input to
the benchmarked models, we propose a new three-channel input,
called mixed-vegetation input, which uses three different VIs to
test the combined effect of minimized soil brightness influences,
corrected atmospheric scattering effects, and minimized topo-
graphic effects. The VIs selected from each of the categories are
as follows: NDVI from mean VIs, ARVI from atmospherically
resilient VIs, and SAVI from soil-adjusted VIs. The combined
three-channel VI image is fed into the DL architectures just like
an RGB input. A false-color image of this fused input is depicted
in Fig. 2.

7) Near Infrared input (NIRi): Both the DSTL and RIT-18
datasets utilized in our experiments are shot with sensors that
output three NIR channels, details of which are provided in
Table I. It can be seen from this table that, the spectral resolution
of the RIT-18 dataset (TetraCam MicroMCA6) is finer than
DSTL’s sensor (World-View-3). On the other hand, World-View-
3 NIR bands cover a larger spectrum. Hence, we believe that

testing these two 3-channel NIR input types in our experiments
will provide us with an insight into the effect of NIR spectral
resolution on tree segmentation.

8) Visible + Near Infrared input (VNIR): VNIR is one of the
multispectral input groups utilized in our experiments. DSTL
VNIR input includes eight subbands (five visible + three NIR),
whereas RIT-18 includes six subbands (three visible + three
NIR) as a result of their individual sensory output (see Table I).

9) Visible + NIR + SWIR (VNIR + SWIR): VNIR + SWIR is
the second multispectral input group utilized only for the DSTL
image set in our experiments since SWIR bands are out of the
RIT-18 sensor’s spectral range. For this purpose, two separate
groups are constructed, the first being the VNIR + SWIR2 input
that includes 8 DSTL + VNIR subbands and the two shortest
SWIR bands (i.e., SWIR-1 and SWIR-2). The second group is
referred to as the VNIR + SWIR8 and includes all of the original
multispectral bands of the World-View-3 sensor in 16 channels.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

Before presenting the experimental results and the related
discussions, we provide the details of the experimental setup
and our evaluation methodology as follows.

A. Experimental Setup

A CUDA-enabled NVIDIA Quadro RTX 5000 GPU with
16 GB memory is employed in the experiments. Other hard-
ware configurations are: Intel(R) Xeon(R) Gold 6240R CPU @
2.40 GHz and 128 GB RAM. The PyTorch [101] DL framework
is used for training, validation, and testing on a Windows 10
operating system. In both of the image sets, a simple data prepro-
cessing scheme is employed by dividing images into 224-by-224
image patches. The total number of image patches belonging to
each image set can be seen in Table I.

The DSTL image set is split into training, validation, and
test sets in which 20% of the data is reserved as a test set
to perform cross-validation. The remaining 80% of the data is
further partitioned into 72% training and 8% validation sets so
that hyperparameter tuning can also be implemented. Five-fold
cross-validation is applied to obtain a less biased estimate of
the benchmarked methods. In order to improve segmentation
performance, manual hyperparameter tuning is applied. All ED
architectures are trained using the adaptive moment estimation
(Adam) [102] algorithm. For the DSTL image set, the initial
learning rate is chosen as 10−4 for U-Net and DFANet, while
the initial value of 5× 10−5 is used for the rest of the archi-
tectures, SegNet, DLinkNet, and DeepLabv3+. For DLinkNet
architecture, the learning rate is reduced by 9% in every ten
iteration steps, while for the others it is reduced by the same
amount in every five iteration steps. Except for the SegNet,
the mini-batch size is set to 8 and Xavier uniform is chosen
for initialization. A Mini-batch size of 4 is chosen for SegNet.
By observing the learning curves, 70 epochs were found to be
sufficient for convergence.

Due to the fact that test image labelling is not provided for
the RIT-18 aerial imagery, it is possible to use the already
partitioned training and validation sets [73], where the validation
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TABLE II
RESULTS FOR THE DSTL IMAGE SET USING THE “THREE-CHANNEL INPUT” GROUP

set is utilized as the test set in our experiments. For comparison,
the same DSTL hyperparameters are also tuned for RIT-18. In
order to handle the “black” (i.e., no data) regions in the image
set (which are formed after image rectification), we did not
utilize patches with more than 50% black region for training
or testing. Thus, the training set is left with 814 image patches,
while the test set contains 964. In the case of the RIT-18 image
set, the same initial learning rate of 10−4 is used for SegNet,
DLinkNet, and DFANet architectures, while 5× 10−5 is utilized
for U-Net and DeepLabv3+. SegNet is the only model with its
learning rate reduced by 9% in every 5 iteration steps, while
other architectures have the same drop rate in every 10 iteration
steps. The mini-batch size takes the value of 4 for SegNet and
the DSTL image sets, while it is 8 for the rest. Xavier uniform is
used as the initialization method and 100 epochs are evaluated
with respect to convergence.

1) Evaluation Metric: Intersection over Union (IoU or Jac-
card Index) considers false alarms and missed values simulta-
neously by counting the total number of mislabeled pixels. The
Jaccard Index is defined as

Jaccard Index =
TP

TP + FP + FN
(7)

where TP denotes the true positive pixels, FP denotes the false
positive pixels, and FN denotes the false-negative pixels. Jaccard
Index is introduced as the evaluation metric since it is becoming
the de-facto standard metric for semantic segmentation evalua-
tion tasks in the literature. Since 2008, The Jaccard Index has
been used in the PASCAL VOC challenge as the fundamental
evaluation standard [103]. The average Jaccard Index (mJI) for
all test images is provided in our results.

B. Results

Table II shows average Jaccard index values that are obtained
from five-fold cross-validation results for the DSTL image set.
As seen from the table, the best performance achieved is 0.571
(with a standard deviation of ±0.211 among all test images)
by applying DLinkNet with the ResNet34 backbone to RGB
images. The U-Net architecture applied to RGB images yields
very close performance to that of DLinkNet, with 0.570 mJI.
The closest performance of a non-RGB input type is again
by the DLinkNet+ResNet34 architecture using the mixed VIs,
which yields an mJI of 0.561. We believe that the strength of
the RGB input type on the DSTL image set is mainly because
of the enhanced spatial resolution of the World-View-3’s RGB

channels. Although obtained from the original (i.e., unenhanced,
lower) spatial resolution of the World-View-3 sensor, the mixed
VIs input type shows a competitive performance. These results
show that for this sensor (i.e., with this spatial resolution and alti-
tude) when fused within a three-channel signal, the hand-crafted
VIs provide valuable low-level features to the DL architectures
and, hence, perform as well as the enhanced RGB input type.
We should note that the resolution enhancement postprocess
of RGB images from the World-View-3 sensor is an additional
computation, which is carried out offline and may not always be
supported for edge systems like satellites or UAVs.

On the other hand, even though the NIR reflectance informa-
tion is quite important for assessing and distinguishing trees, the
NIRi input type shows a low performance for all segmentation
models for the DSTL image set. We believe that this is mainly
due to two reasons: first, the aforementioned lower spatial res-
olution of the original NIR bands in the DSTL image set; and
second, the coarse spectral resolution of the NIR subbands of the
World-View-3 sensor, compared to the RIT-18’s performance
with finer NIR bands as discussed in the following.

The segmentation performance results belonging to the RIT-
18 image set are presented in Table III. There is a clear trend in
NIRi results, with the highest values for most of the architec-
tures. Judging by these superior mJI values, NIR reflectance
shows a promising performance for tree segmentation. The
peak value of 0.921 mJI is observed in the NIR reflectance
band when DLinkNet with Resnet-34 encoder is applied. NIR
wavelengths also work well for the U-Net architecture, with
0.885 mJI, giving evidence of the contribution from both high
spatial (GSD 0.047 m) and high spectral resolution (3 channels
between 485–685 nm).

To this extent, the segmentation performance of DLinkNet
(Resnet-34) in the RIT-18 image set is consistent with those
obtained in the DSTL image set. DLinkNet pretrained with
ResNet-34 reliably outperforms other ED architectures and is
better able to preserve detailed spatial information. The com-
bination of the VIs (NDVI + SAVI + ARVI) does not have a
significant impact on the performance if an image set already has
a very high spatial and spectral resolution for NIR reflectance;
thus, the NIR band alone can be a better choice for aerial remote
sensing.

Another significant difference between the results of the
DSTL and the RIT-18 image set experiments is the performance
of the ARVI input type. Although performing comparatively
well on the DSTL dataset, ARVI shows the lowest mJI values
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TABLE III
RESULTS FOR THE RIT-18 IMAGE SET USING THE “THREE-CHANNEL INPUT” GROUP

TABLE IV
RESULTS FOR BOTH SETS USING THE “MULTISPECTRAL INPUT” GROUP

for the RIT-18 dataset experiments. As explained in the previous
sections, atmospheric correction requires information from the
SWIR band. Hence, the lower performance of ARVI on the
RIT-18 image set is due to the lack of SWIR spectral bands
in the image set’s sensory output. When calculated properly
using the required spectral bands, we observe a clearly improved
performance in the hand-crafted VIs for tree segmentation.

The results of the experiments that utilize multispectral input
types are provided in Table IV. Even though there are a number
of band fusion modules applied by slightly modifying the net-
works [104], [105], the motivation in this study is to implement
only the original architectures so only U-Net, SegNet, and RF are
used. Although tested for a limited number of architectures, the
results are consistent with three-channel input type experiments.
The lowest performance is obtained with the VNIR+SWIR8

input type for the DSTL image set. We see that the effect
of increasing the number of input channels by itself is not
significant to improve the segmentation performance; however,
the optimum combination of these input channels is significant
[106], [107], [108]. The Literature already shows that because
of an insufficient amount of labeled remote-sensing data, DL
models are usually difficult to be trained in an end-to-end fashion
using multispectral input [25]. It is one of our fundamental
research questions in this article to address the need for using VIs
as hand-crafted features, instead of end-to-end training. In [109],
it has already been shown that adding the input of extra-bands
causes an inference to the network parameter learning and this,
in turn, causes a degradation of the network performance. We
believe that even if the input of all band data can increase the
global information, those extra bands may be insufficient to
identify detailed small tree objects in the scene [110].

Another point that cannot be ignored is most of these multiple
spectral bands, such as NIR and SWIR in the DSTL image
set have low spatial resolutions compared to RGB, leading to
a degradation in the overall segmentation performance [106],

[111]. This is another indicator that supports the idea of using VIs
as hand-crafted features when the spatial or spectral resolution
of the visible and/or NIR bands is not sufficiently fine and the
scale of the labelled image set is limited.

As obvious from Table III, the Jaccard index values of the RF
algorithm are almost comparable to those of the ED architectures
for the RIT-18 image set while this is not the case in Table II,
i.e., for the DSTL image set. As already shown in [112], RF can
considerably improve the performance by increasing the number
of spectral bands in high spatial resolution images. Moreover,
the RF algorithm not only offers the significant performance
for dealing with multidimensional complex data [113], [114],
but also requires only slight parameter tuning [115]. Therefore,
RF is more likely to be robust to the performance degradation
when multiple bands are used. This is why the best result of the
multispectral input in Table IV belongs to the RF for the RIT-18
image set, where the spatial resolution is high.

The tree segmentation problem has many similarities to that of
road segmentation in cases where multispectral remote sensing
imagery is utilized. Occlusion is one of them, in which the
object is partially or completely covered [116]. In the case of
remote sensing imagery, the need for large receptive fields is
crucial, since the input images are high resolution. The ben-
efit of preserving detailed spatial information is additionally
important, thus making the segmentation capable of acquiring
complex geometries with highly discriminative feature infor-
mation. We believe that these similarities, related to occlusions,
high-resolution, and geometrical complexity, are the main rea-
sons why a state-of-the-art road segmentation network, such as
DLinkNet is able to provide excellent results for tree segmenta-
tion as well.

The similarities of our results can further be generalized to
other road segmentation studies [80], [81], [117] as well. We
observe that the performance of the DeepLabv3+ architecture
employed with any of the state-of-the-art encoder backbones
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Fig. 3. Semantic segmentation results for all implemented models and utilized input types, depicted on a selected 224 × 224 pixels resolution region (approx.
70 m × 70 m) from the DSTL Image Set. The first row consists of different input images; the rest are the semantic segmentation results. On semantic segmentation
results, light green regions are the hits, dark green regions are the misses, and pink regions are the false alarms.
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Fig. 4. Semantic segmentation results for all implemented models and utilized input types, depicted on a selected 224 × 224 pixels resolution region (apprx.
11 m × 11 m) from the RIT-18 image set. The first row consists of different input images; the rest are the semantic segmentation results. On semantic segmentation
results, light green regions are the hits, dark green regions are the misses, and pink regions are the false alarms.
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is falling short of effective occlusion handling. DeepLabv3+
models are highly optimized to the particular problem definition
and so it is unsurprising that they show performance degradation
in diverse remote sensing imagery. Hence, DeepLabv3+ cannot
handle the occlusion problem and may perform below its poten-
tial due to the high demand for training samples [81].

Since our selection criterion in the ED architectures is mainly
related to the decoder design, segmentation performance results
should also be appraised with respect to the types of upsampling
layers. U-Net and DLinkNet are expected to provide broadly
similar results, as they both use the same upsampling layer of
transposed convolution. Segmentation performance results con-
firm that the architectures designed with transposed convolution,
i.e., U-Net and DLinkNet, achieve superior performance over
other ED architectures. This behaviour is persistent regardless
of the image sets and no matter what kind of input is fed to these
networks. DLinkNet achieves a comparable and even better
performance than U-Net by exploiting dilated convolution to
expand the receptive field and by using pretrained ResNet-34 as
its encoder. The reason why SegNet fails to achieve the supe-
rior performance is that the recovery of high-resolution spatial
details using “index-based” skip connections is not sufficiently
effective [81]. In DeepLabv3+, the implementation of bilinear
interpolation upsampling may lead to a smooth segmentation
so that the decoder is unable to recover pixel-wise tree pre-
dictions accurately [118], [119]. This is mainly due to the fact
that the decoder in Deeplabv3+ is not suitable for processing
high-resolution remote sensing imagery, where the tree pixels
are small compared to the overall image [120].

The performance of the DFANet architecture should be fur-
ther examined against that of the other architectures, since it is
specifically tailored for real-time semantic segmentation. Just
like the Deeplabv3+, DFANet also employs bilinear upsam-
pling operation in the decoder part such that both have similar
segmentation performances. However, as shown in Table II,
DFANet Jaccard index values are even lower than those of the
Deeplabv3+ due to the low spatial resolution of the DSTL image
set. As a result of its lack of network depth and reduced num-
ber of parameters, DFANet cannot capture high-dimensional
features like U-Net [121]. The DFANet experimental results
are notable for their relatively high Jaccard index values for
NDVI+SAVI+ARVI combination, which is consistent with our
results obtained from other DL architectures. Moreover, the
experimental results in Table III show that the segmentation
performance of DFANet architecture is almost close to that of
U-Net architecture, since the RIT-18 image set has high spatial
resolution. We believe that, for the DFANet to be able to exhibit
better semantic segmentation performance in high-resolution
remote sensing imagery input, some improvements on the
DFANet architecture should be done which allow the model
to better fit to this kind of data [122]. Obviously, such improve-
ments will also affect its real-time nature.

Although it is highly preferable to draw conclusions from
averaged results, such as those from Tables II–IV, it is worth
noting that the single image results introduced in Figs. 3 and 4
depict explicit behavior in which ARVI introduces significant
false alarms. The pixels marked with pink are the false alarms,

which can be seen to be quite dense in ARVI compared to other
VIs. ARVI becomes sensitive to all kinds of green vegetation
other than trees while reducing atmospheric scattering effects
and, hence, presents false alarms by brightening the pixels
belonging to other types of green vegetation, including small
bushes and grasslands.

Tables II–IV show that the RF algorithm achieves comparable
segmentation performances, even though the results are not as
good as those from DL-based ED architectures. Even the best
of the RF algorithm results (RGB, with 0.371 mJI), shown in
Table II for the DSTL image set, is still lower than all the
DL-based results. On the other hand, the achieved results shown
in Table III for the RIT-18 are quite high, with the highest
being 0.866 mJI for NIR reflectance, indicating how well the
RF algorithm can perform when spatial resolution is sufficiently
high.

For all input types and utilized methods, results exhibit high
standard deviations of Jaccard index values. This leads us to a
conclusion that individual maximum or minimum performances
of all input types and/or methods are statistically close to each
other. We believe that the reason behind this fact is due to the
tested images being significantly diverse in nature. In RIT-18
image set, some images cover only a car park, whereas some
images only cover vegetation. In DSTL, some images cover only
buildings, whereas some others cover only traffic and roads. Due
to this extreme diversity, we believe that the high deviation in
the individual results are justifiable. However, the deviation in
Jaccard values is calculated based on the results that are obtained
from thousands of images. The average Jaccard values (mJIs)
obtained from this dataset are considerably different (reaching
0.3 mJI of difference between some input types and methods).
We believe that, although there is a deviation of success related to
the diverse nature of individual images, the mJI values obtained
from thousands of samples are a true indicator of the capabilities
of different input types and/or segmentation methods.

V. CONCLUSION

In this article, we study different semantic segmentation mod-
els and different multispectral input combinations for the pixel-
wise tree segmentation problem on remote sensing imagery. For
this purpose, we utilize a set of comparative experiments where
we benchmark the selected models and the given input types.
The essence of the comparison for the segmentation models
lies in the selection of ED architectures for tree segmentation.
We specifically analyze the descriptive power of these mod-
els to overcome issues, such as tree occlusion and geometric
complexity. Different decoder designs, which make use of high-
resolution information of remote sensing imagery and enable
ED architectures to handle these problems, are explored. The
comparative results procure significant conclusions, the most
important of which are summarized as follows.

1) The spatial resolution of the remote sensing imagery is
the most important factor and has a greater influence on
segmentation performance than spectral resolution and
applied architectures. It is necessary to utilize a very
high-resolution remote sensing image set: otherwise, it
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is not possible to reach considerable segmentation accu-
racy, even when a powerful, DL-based ED architecture
is implemented. Therefore, an aerial image set is a better
choice than satellite imagery, which is not only insufficient
in terms of spatial resolution but also expensive.

2) The second most important factor is the spectral resolu-
tion of the NIR reflectance, for increasing the spectral
discrimination between trees and other green vegetation.
Although it is known that NIR reflectance information is
significantly valuable for discriminating trees, the exper-
iments demonstrate that if the spectral resolution of the
NIR band is not sufficiently fine, sufficiently accurate tree
segmentation cannot be obtained.

3) DLinkNet architecture consistently outperforms the com-
pared semantic segmentation models, mainly for the cases
including tree occlusion and grassland. Thanks to the
decoder design with transposed convolution layers, further
improved with dilated convolution and pretrained ResNet-
34, the large receptive field of the DLinkNet is best suited
to high-resolution remote sensing images.

4) It can be advantageous to use a combination of VIs in
cases where the spatial resolution of the remote sensing
image set is insufficient, such as the case we observe in our
experiments with the DSTL image set. In Table II, we see
that RGB and mixed-Veg input types perform similarly
because the spatial resolution is not sufficiently high. This
is not the case in Table III. Thus, we conclude that the
following three factors should be taken into account when
VIs are to be used for semantic segmentation of trees:
a) the input signal should include a combination of VIs

of diverse characters;
b) the spatial resolution is relatively lower as in the case

of satellite imagery;
c) a DL-based model architecture with sufficiently de-

scriptive strength should be utilized.
5) To assess trees in the presence of the most common types

of aerosols, such as smoke or sulfates, it is especially
essential to utilize the SWIR band while calculating VIs
that reduce atmospheric effects, such as ARVI. Due to the
sensitivity of the SWIR band to the liquid water content
of the tree leaves, ARVI calculated with the SWIR band
shows a better segmentation performance than the one that
does not utilise SWIR reflectance.

Regarding the future directions for this study, our first plan is
to focus on improving the backbone architecture. The pretrained
models, such as the ResNet are trained on RGB data, and they
can potentially downgrade the performance when fine-tuning
on small remote sensing datasets due to the large domain gap.
Because, as we saw in our preliminary experiments, it is not
possible to obtain convergence for training, when we train some
deep architectures (such as DeepLabv3+ or DLinkNet) from
scratch with a limited scale of data. Hence, the only ideal option
can be to use encoders pretrained with satellite or aerial imagery
with the same sensors, or in other words, the same multispec-
tral bands trained with the same architectures. Such pretrained
encoders, to the best of our knowledge, do not publicly exist.
However, there are efforts to implement domain adaptation to

multispectral images obtained from different sensors, so that
larger-scale experiments can be carried out [123]. Following
this direction, a domain (i.e., sensor) independent multispectral
backbone can be obtained.

As an alternative, converting the RGB backbones to a com-
patible model that can process multispectral data is also a viable
direction. Additive group normalization method discussed in
[104] is a recent example of this approach. By analyzing which
bands contribute more to segmentation, they attempt to obtain
DL-based VI designs that will be compatible with three-channel
backbones, such as the ResNet. Following this path, we may
be able to utilize multispectral band input to advanced archi-
tectures, such as DLinkNet or DeepLabv3+, and achieve better
performance.

Another promising direction, not only for this particular prob-
lem at hand but in DL is utilizing vision transformers (ViT)
instead of convolution-based architectures. Following the very
recent ViT design [124], computer vision problems are being
attacked with transformer-based architectures. As of the time
this article is prepared, many transformed-based multispectral
applications including segmentation [125], and many others
[126], [127], are proposed, and will likely increase in near future.

REFERENCES

[1] T. M. Lenton et al., “Tipping elements in the earth’s climate system,”
Proc. Nat. Acad. Sci. USA, vol. 105, no. 6, pp. 1786–1793, 2008. [Online].
Available: https://www.pnas.org/content/105/6/1786

[2] L. Zhang, Z. Shao, J. Liu, and Q. Cheng, “Deep learning based retrieval of
forest aboveground biomass from combined LiDAR and landsat 8 data,”
Remote Sens., vol. 11, no. 12, 2019, Art. no. 1459.

[3] D. J. Mulla, “Twenty five years of remote sensing in precision agriculture:
Key advances and remaining knowledge gaps,” Biosyst. Eng., vol. 114,
no. 4, pp. 358–371, 2013.

[4] S. Barati, B. Rayegani, M. Saati, A. Sharifi, and M. Nasri, “Comparison
the accuracies of different spectral indices for estimation of vegetation
cover fraction in sparse vegetated areas,” Egyptian J. Remote Sens. Space
Sci., vol. 14, no. 1, pp. 49–56, 2011. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1110982311000147

[5] K. Herndon, R. Muench, E. Cherrington, and R. Griffin, “An assessment
of surface water detection methods for water resource management in
the Nigerien Sahel,” Sensors, vol. 20, no. 2, 2020, Art. no. 431. [Online].
Available: https://www.mdpi.com/1424-8220/20/2/431

[6] A. A. A. Alkhatib, “A review on forest fire detection techniques,” Int.
J. Distrib. Sensor Netw., vol. 10, no. 3, 2014, Art. no. 597368. [Online].
Available: https://doi.org/10.1155/2014/597368

[7] O. Ghorbanzadeh, K. Gholamnia, and P. Ghamisi, “The application of
ResU-net and OBIA for landslide detection from multi-temporal sentinel-
2 images,” Big Earth Data, vol. 6, pp. 1–26, 2022.

[8] X. Yuan, J. Shi, and L. Gu, “A review of deep learning methods for seman-
tic segmentation of remote sensing imagery,” Expert Syst. Appl., vol. 169,
2021, Art. no. 114417. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0957417420310836

[9] G. Cheng and J. Han, “A survey on object detection in optical remote
sensing images,” ISPRS J. Photogrammetry Remote Sens., vol. 117,
pp. 11–28, 2016. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0924271616300144

[10] H. Mayer, “Automatic object extraction from aerial imagery—A survey
focusing on buildings,” Comput. Vis. Image Understanding, vol. 74, no. 2,
pp. 138–149, 1999. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1077314299907506

[11] J. Mena, “State of the art on automatic road extraction for GIS up-
date: A novel classification,” Pattern Recognit. Lett., vol. 24, no. 16,
pp. 3037–3058, 2003. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0167865503001648

[12] F. A. Gougeon, “A crown-following approach to the automatic delin-
eation of individual tree crowns in high spatial resolution aerial images,”
Can. J. Remote Sens., vol. 21, no. 3, pp. 274–284, 1995.

https://www.pnas.org/content/105/6/1786
https://www.sciencedirect.com/science/article/pii/S1110982311000147
https://www.sciencedirect.com/science/article/pii/S1110982311000147
https://www.mdpi.com/1424-8220/20/2/431
https://doi.org/10.1155/2014/597368
https://www.sciencedirect.com/science/article/pii/S0957417420310836
https://www.sciencedirect.com/science/article/pii/S0957417420310836
https://www.sciencedirect.com/science/article/pii/S0924271616300144
https://www.sciencedirect.com/science/article/pii/S0924271616300144
https://www.sciencedirect.com/science/article/pii/S1077314299907506
https://www.sciencedirect.com/science/article/pii/S1077314299907506
https://www.sciencedirect.com/science/article/pii/S0167865503001648
https://www.sciencedirect.com/science/article/pii/S0167865503001648


7602 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

[13] T. Brandtberg and F. Walter, “Automated delineation of individual tree
crowns in high spatial resolution aerial images by multiple-scale analy-
sis,” Mach. Vis. Appl., vol. 11, no. 2, pp. 64–73, 1998.

[14] P. Meyera, K. Staenzb, and K. Ittena, “Semi-automated procedures for
tree species identification in high spatial resolution data from digitized
colour infrared-aerial photography,” ISPRS J. Photogrammetry Remote
Sens., vol. 51, no. 1, pp. 5–16, 1996.

[15] J. Wu, W. Yao, and P. Polewski, “Mapping individual tree species and
vitality along urban road corridors with LiDAR and imaging sensors:
Point density versus view perspective,” Remote Sens., vol. 10, no. 9,
2018, Art. no. 1403.

[16] M. Immitzer, C. Atzberger, and T. Koukal, “Tree species classification
with random forest using very high spatial resolution 8-band worldview-2
satellite data,” Remote Sens., vol. 4, no. 9, pp. 2661–2693, 2012.

[17] V. Plakman, T. Janssen, N. Brouwer, and S. Veraverbeke, “Mapping
species at an individual-tree scale in a temperate forest, using sentinel-2
images, airborne laser scanning data, and random forest classification,”
Remote Sens., vol. 12, no. 22, 2020, Art. no. 3710.

[18] L. Soleimannejad, S. Ullah, R. Abedi, M. Dees, and B. Koch, “Evaluating
the potential of sentinel-2, landsat-8, and IRS satellite images in tree
species classification of hyrcanian forest of Iran using random forest,” J.
Sustain. Forestry, vol. 38, no. 7, pp. 615–628, 2019.

[19] C. Sothe et al., “Comparative performance of convolutional neural net-
work, weighted and conventional support vector machine and random
forest for classifying tree species using hyperspectral and photogram-
metric data,” GIScience Remote Sens., vol. 57, no. 3, pp. 369–394, 2020.

[20] R. Al-Ruzouq et al., “Image segmentation parameter selection and ant
colony optimization for date palm tree detection and mapping from
very-high-spatial-resolution aerial imagery,” Remote Sens., vol. 10, no. 9,
2018, Art. no. 1413.

[21] M. S. Colgan, C. A. Baldeck, J.-B. Féret, and G. P. Asner, “Mapping
savanna tree species at ecosystem scales using support vector machine
classification and BRDF correction on airborne hyperspectral and LiDAR
data,” Remote Sens., vol. 4, no. 11, pp. 3462–3480, 2012.

[22] K. Liyanage and B. M. Whitaker, “Satellite image classification using
LC-KSVD sparse coding,” in Proc. Intermountain Eng. Technol. Com-
put., 2020, pp. 1–6.

[23] L. Jin, S. Gao, Z. Li, and J. Tang, “Hand-crafted features or machine
learnt features? Together they improve RGB-D object recognition,” in
Proc. IEEE Int. Symp. Multimedia, 2014, pp. 311–319.

[24] L. Zhang, L. Zhang, and B. Du, “Deep learning for remote sensing data:
A technical tutorial on the state of the art,” IEEE Geosci. Remote Sens.
Mag., vol. 4, no. 2, pp. 22–40, Jun. 2016.

[25] X. X. Zhu et al., “Deep learning in remote sensing: A comprehensive
review and list of resources,” IEEE Geosci. Remote Sens. Mag., vol. 5,
no. 4, pp. 8–36, Dec. 2017.

[26] M. Wu, C. Zhang, J. Liu, L. Zhou, and X. Li, “Towards accurate high
resolution satellite image semantic segmentation,” IEEE Access, vol. 7,
pp. 55609–55619, 2019.

[27] T. Hoeser and C. Kuenzer, “Object detection and image segmentation
with deep learning on earth observation data: A review-Part I: Evolution
and recent trends,” Remote Sens., vol. 12, no. 10, 2020, Art. no. 1667.

[28] T. Hoeser, F. Bachofer, and C. Kuenzer, “Object detection and image
segmentation with deep learning on earth observation data: A review–Part
II: Applications,” Remote Sens., vol. 12, no. 18, 2020, Art. no. 3053.

[29] T. Kattenborn, J. Leitloff, F. Schiefer, and S. Hinz, “Review on convo-
lutional neural networks (CNN) in vegetation remote sensing,” ISPRS J.
Photogrammetry Remote Sens., vol. 173, pp. 24–49, 2021.

[30] Y. LeCun et al., “Backpropagation applied to handwritten zip code
recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, 1989.

[31] I. Ülkü and E. Akagündüz, “A survey on deep learning-based archi-
tectures for semantic segmentation on 2D images,” Appl. Artif. Intell.,
vol. 36, no. 1, pp. 1–45, 2022.

[32] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2015, pp. 3431–3440.

[33] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for
semantic segmentation,” in Proc. IEEE Int. Conf. Comput. Vis., 2015,
pp. 1520–1528.

[34] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Interv., 2015, pp. 234–241.

[35] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep con-
volutional encoder-decoder architecture for image segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495,
Dec. 2017.

[36] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 801–818.

[37] L. Zhou, C. Zhang, and M. Wu, “D-LinkNet: LinkNet with pretrained
encoder and dilated convolution for high resolution satellite imagery
road extraction,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
Workshops, 2018, pp. 192–1924.

[38] H. Li, P. Xiong, H. Fan, and J. Sun, “DFANet: Deep feature aggregation
for real-time semantic segmentation,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2019, pp. 9514–9523.

[39] I. Ulku, P. Barmpoutis, T. Stathaki, and E. Akagunduz, “Comparison of
single channel indices for U-Net based segmentation of vegetation in
satellite images,” in Proc. 12th Int. Conf. Mach. Vis., 2020, pp. 338–345.
[Online]. Available: https://doi.org/10.1117/12.2556374

[40] B. Baheti, S. Innani, S. Gajre, and S. Talbar, “Semantic scene segmen-
tation in unstructured environment with modified DeepLabv3,” Pattern
Recognit. Lett., vol. 138, pp. 223–229, 2020.

[41] Y. Wang, B. Liang, M. Ding, and J. Li, “Dense semantic labeling with
atrous spatial pyramid pooling and decoder for high-resolution remote
sensing imagery,” Remote Sens., vol. 11, no. 1, 2019, Art. no. 20.

[42] S. Du, S. Du, B. Liu, and X. Zhang, “Incorporating DeepLabv3 and
object-based image analysis for semantic segmentation of very high res-
olution remote sensing images,” Int. J. Digit. Earth, vol. 14, pp. 357–378,
2021.

[43] S. Hartling, V. Sagan, P. Sidike, M. Maimaitijiang, and J. Carron,
“Urban tree species classification using a WorldView-2/3 and LiDAR
data fusion approach and deep learning,” Sensors, vol. 19, no. 6, 2019,
Art. no. 1284.

[44] K. A. Korznikov, D. E. Kislov, J. Altman, J. Doležal, A. S. Vozmishcheva,
and P. V. Krestov, “Using U-net-like deep convolutional neural networks
for precise tree recognition in very high resolution RGB (red, green, blue)
satellite images,” Forests, vol. 12, no. 1, 2021, Art. no. 66.

[45] L. Ding, H. Tang, and L. Bruzzone, “LANet: Local attention embedding
to improve the semantic segmentation of remote sensing images,” IEEE
Trans. Geosci. Remote Sens., vol. 59, no. 1, pp. 426–435, Jan. 2021.

[46] S. Solberg, E. Naesset, and O. M. Bollandsas, “Single tree segmenta-
tion using airborne laser scanner data in a structurally heterogeneous
spruce forest,” Photogrammetric Eng. Remote Sens., vol. 72, no. 12,
pp. 1369–1378, 2006.

[47] Q. Li, P. Yuan, X. Liu, and H. Zhou, “Street tree segmentation from mobile
laser scanning data,” Int. J. Remote Sens., vol. 41, no. 18, pp. 7145–7162,
2020.

[48] W. Yan, H. Guan, L. Cao, Y. Yu, C. Li, and J. Lu, “A self-adaptive mean
shift tree-segmentation method using UAV LiDAR data,” Remote Sens.,
vol. 12, no. 3, 2020, Art. no. 515.

[49] J. Yang, Z. Kang, S. Cheng, Z. Yang, and P. H. Akwensi, “An in-
dividual tree segmentation method based on watershed algorithm and
three-dimensional spatial distribution analysis from airborne LiDAR
point clouds,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 13, pp. 1055–1067, 2020.

[50] C. Zhang, Y. Zhou, and F. Qiu, “Individual tree segmentation from LiDAR
point clouds for urban forest inventory,” Remote Sens., vol. 7, no. 6,
pp. 7892–7913, 2015.

[51] H. Hamraz, M. A. Contreras, and J. Zhang, “A robust approach for tree
segmentation in deciduous forests using small-footprint airborne LiDAR
data,” Int. J. Appl. Earth Observ. Geoinformation, vol. 52, pp. 532–541,
2016.

[52] F. Pirotti, M. Kobal, and J. Roussel, “A comparison of tree segmentation
methods using very high density airborne laser scanner data,” Int. Arch.
Photogrammetry Remote Sens. Spatial Inf. Sci., vol. 42, pp. 285–290,
2017.

[53] S. Dersch, M. Heurich, N. Krueger, and P. Krzystek, “Combining graph-
cut clustering with object-based stem detection for tree segmentation in
highly dense airborne LiDAR point clouds,” ISPRS J. Photogrammetry
Remote Sens., vol. 172, pp. 207–222, 2021.

[54] L. Comesaña-Cebral, J. Martínez-Sánchez, H. Lorenzo, and P. Arias,
“Individual tree segmentation method based on mobile backpack LiDAR
point clouds,” Sensors, vol. 21, no. 18, 2021, Art. no. 6007.

[55] K. Itakura, S. Miyatani, and F. Hosoi, “Estimating tree structural parame-
ters via automatic tree segmentation from LiDAR point cloud data,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15, pp. 555–564,
2022.

[56] J. Hyyppa, O. Kelle, M. Lehikoinen, and M. Inkinen, “A segmentation-
based method to retrieve stem volume estimates from 3-D tree height
models produced by laser scanners,” IEEE Trans. Geosci. Remote Sens.,
vol. 39, no. 5, pp. 969–975, May 2001.

https://doi.org/10.1117/12.2556374


ULKU et al.: DEEP SEMANTIC SEGMENTATION OF TREES USING MULTISPECTRAL IMAGES 7603

[57] J. B. Roerdink and A. Meijster, “The watershed transform: Definitions,
algorithms and parallelization strategies,” Fundamenta Informaticae,
vol. 41, no. 12, pp. 187–228, 2000.

[58] E. Ayrey et al., “Layer stacking: A novel algorithm for individual forest
tree segmentation from LiDAR point clouds,” Can. J. Remote Sens.,
vol. 43, no. 1, pp. 16–27, 2017.

[59] C. Dechesne, C. Mallet, A. L. Bris, and V. Gouet-Brunet, “Semantic
segmentation of forest stands of pure species combining airborne Li-
DAR data and very high resolution multispectral imagery,” ISPRS J.
Photogrammetry Remote Sens., vol. 126, pp. 129–145, 2017.

[60] P. Krzystek, A. Serebryanyk, C. Schnörr, J. Červenka, and M. Heurich,
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