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Abstract—Different from conventional decomposition methods,
which utilize several steps to obtain the final result, a self-attention-
based neural network, Attention Full-waveform Decomposition
Network (AFD-Net), is discussed in this article for end-to-end
full-waveform LiDAR signal decomposition. In existing LiDAR
waveform decomposition methods, complicated functional models
are used to fit echo components. Thus, the echo decomposition
problem can be translated into a function approximation task.
Recent studies present great progress in estimating the parameters
of fitting models, hence, in the final decomposition results. However,
the shape of received echo components is always irregular. None of
the parametric functional models can fit the received echo compo-
nents perfectly, which leads to unavoidable errors in the initial step
of echo decomposition. In this article, we propose an end-to-end
network AFD-Net to solve the echo decomposition problem without
assuming any parametric functional models. AFD-Net consists of
two modules: 1) the classification module and 2) the decomposition
module. The former module is used to determine the number of
echo components in a received waveform. Then, the decomposition
module is used to output the echo components. By experiments,
we have a classification accuracy of 96% using the first module.
The average R? coefficient for the decomposed echo components is
0.9799. In addition, there are no public datasets for the waveform
decomposition task available. Thus, another contribution of our
work is to develop a tool to generate synthetic full-waveform LiDAR
signals, which can help researchers to construct their own dataset
for related works.

Index Terms—End-to-end neural network, full-waveform data-
sets, full-waveform LiDAR, self-attention, waveform decompo-
sition.

I. INTRODUCTION

IGHT detection and ranging (LiDAR) is a wildly used
L remote sensing (RS) technique, which could provide ac-
curate measurements between a laser source and reflective tar-
gets [1], [2], [3]. However, most time-of-flight LiDARs only
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provide the coordinates of targets through discrete echo points.
Later full-waveform (FW) LiDAR systems have been developed.
Such a system can record the whole back-scattered signals at
a temporal resolution of nanosecond or subnanosecond. Thus,
much more detail about the reflective targets can be extracted
from a waveform signal [4], [5], [6]. FW LiDAR has great
potential in various applications such as topography [2], [7], [8],
characterizing forest canopy structure [9], [10], [11], estimating
terrain slope [12], and objection classification [13], [14], [15].

To analyze FW signals, usually echo decomposition is re-
quired first. Researchers have proposed different methods to
solve the echo decomposition problem [16], [17]. However,
challenges still remain in increasing decomposition speed and
accuracy, especially for multiple return echoes. In [16], Hofton
et al. decomposed a waveform signal into several Gaussian
components, assuming that each Gaussian component represents
a reflective surface. In this work, the received waveform is first
preprocessed for denoising. Then, the inflection points of the
preprocessed signal are used to estimate the number of the initial
half-widths and the positions of Gaussian components. After that
further parameter estimations are obtained by solving an opti-
mization problem using the Levenburg—Marquardt (LM) [18]
method. This work was a pioneer work for FW LiDAR waveform
decomposition.

Following this work, more decomposition methods have been
developed. Generally, there are the following three basic steps:

1) selecting a fitting model for echo components;

2) preprocessing the received raw FW data for denoising;

3) parameter estimations using optimization methods.

For the first step, existing methods usually assume functions
such as Gaussian, generalized Gaussian, Weibull, and Nakagami
to model the echo components in an FW signal [19]. For the
popular Gaussian fitting model, it has two assumptions: 1) the
emitted FW LiDAR pulse has a Gaussian shape; 2) the returned
FW LiDAR signal is a mixed Gaussian waveform, in which
the mean and the standard deviation of a Gaussian component
are determined by the emitted laser pulse and the reflective
object surface. However, these assumptions are not always
true. First, the Gaussian function cannot describe the emitted
laser pulse perfectly. Moreover, after transmitting over a long
distance, the signal can deviate from Gaussian. For example,
one of the properties of Gaussian waves is symmetry, but a
multipath reflection will yield a Rayleigh channel [20], which
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makes a single-waveform component asymmetric, skewed, and
non-Gaussian [20]. To deal with these issues, other fitting models
are studied [19]. Later researchers found that the components can
be neither Gaussian nor symmetric in measured FW signals, even
when the emitted signal is Gaussian or symmetric. In [20], a
nonparametric mixture model is studied to represent the wave-
form components. The author also applied a cluster analysis for
echo decomposition. However, that method is time-consuming
and requires manual fine-tuning steps.

In the second step, various filters such as Gaussian, low-pass,
and Wiener filters have been applied to preprocess the received
waveform signals in [16], [21], and [22]. Fine-tuning opera-
tions are needed for filter-based methods. But the denoising
performance is not very convincing. Later, wavelet analysis [17],
[23], [24] and empirical mode decomposition (EMD) [25] are
used for this step. However, it is short of a general principle
to select a wavelet basis function for wavelet analysis methods.
Using EMD-based methods, signals are processed by removing
high-frequency components for de-noising. But the selection of
these noisy components heavily depends on specific operators.

For the optimization step, it is the final part of conventional
decomposition methods. Optimization methods, such as LM
[18], expectation maximization (EM) [26], and reversible jump
Markov Chain Monte Carlo (RIMCMC) [27] are often used.
However, in the initialization of these methods, the number of
echo components in a received waveform signal needs to be
prescribed. Additionally, conventional methods cannot decom-
pose a large number of FW signals simultaneously because of
additional iterative-based optimization steps. Furthermore, these
optimization methods are time consuming and easy to be trapped
into local optimal solutions.

With the rapid development of deep learning technology,
many excellent AI models have been proposed to deal with
different tasks including LiDAR signal processing. But before
discussing the models for LiDAR signal, we review several
SOTA works in RS data classification due to the similarity
between the task and the first part of our method for FW signal
decomposition. In [28], Wu et al. developed a novel convolution
neural network with an advanced cross-channel reconstruction
module, called CCR-Net, which can learn more compact fusion
representations of different RS data. Compared to the SOTA
multimodal RS data classification methods in 2020, CCR-Net
is superior in achieving effective information exchange and
compact fusion. In [29], Hong et al. proposed a general mul-
timodel deep learning framework with a focus on RS image
classification, which shows different fusion strategies as well
as gives suggestions on how to train deep neural networks and
build a neural network architecture. In [30], Hong et al. system-
atically investigate CNNs and GCNss in terms of hyperspectral
image classification. Considering that traditional GCNs always
suffer from a huge computational cost, the authors proposed
miniGCNSs that could be trained in minibatch fashion and allow
for a straightforward inference of large-scale, out-of-samples
datasets. In [31], Wu et al. proposed a multisource active
fine-tuning vehicle detection (Ms-AFt) for vehicle detection of
multisource RS data. Ms-AFt combines the transfer learning,
active classification, and objects segmentation into a unified
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framework. Also, Ms-AFt is a designed active classification net-
work, which helps to get a progressive improvement in vehicle
detection. In [32], Wu et al. provided a comprehensive survey of
deep-learning-based object detection and tracking for unmanned
aerial vehicle, which gives readers the instructive information
about current state-of-the-art models.

Another task that we would discuss briefly is hyperspectral
unmixing. Hyperspectral unmixing is a little similar to the
FW LiDAR echo decomposition. Some hyperspectral unmix-
ing methods assume that spectral variability follows a given
probability distribution while the convention echo decompo-
sition methods assume that the desired echo components fol-
low the Gaussian or Gaussian-like distribution. Then, the echo
decomposition problem can be translated into a function ap-
proximation task for the conventional decomposition methods;
we call it model-driven approach. Hong et al. [33] propose
an augmented linear mixing model (ALMM) for hyperspectral
unmixing, where the scaling factors are modeled by the end-
member dictionary and an addition dictionary. Also, it explores
a data-driven dictionary learning method and gets satisfying
performance compared to the previous state-of-the-art methods.
In [34], Hong et al. proposed an endmember-guided unmixing
network (EGU-Net) and developed a general deep learning
framework to address the issue of nonlinear blind hyperspec-
tral unmixing in a more effective and generalized way, thus
avoided to generate the physically meaningless endmembers in
practice.

With the development of deep learning technology, recently
researchers apply neural networks for processing the FW LiDAR
signals. In [35], Liu and Ke proposed a CNN-based superres-
olution network for FW LiDAR. In [36], Liao et al. proposed a
deep-learning-based fusion framework to combine the comple-
mentary information from hyperspectral and FW LiDAR data for
tree species mapping. In [37], Shinohara et al. tried to develop an
end-to-end neural network model (Point2wave) for translating
3-D point clouds into their missing waveforms of FW LiDAR
data using the SR-GAN. Also, the experimental results showed
that Point2wave is able to translate the 3-D point clouds into
desired waveform signals, and the translated waveform signals
achieved nearly the same classification performance as the real
waveforms. And in [38], Pashaei et al. proposed a DCNN-based
classifier for waveform feature classification. The potential of
raw samples from FW terrestrial laser scanning systems was
explored for point cloud classification in city and countryside
environments. In [14], Zorzi et al. design a neural network that
uses FW signals to classify reflective targets, such as power lines,
trees, buildings, etc. In [39], dense and residual neural networks
are used to preprocess the received FW signals to generate
nice preprocess results as mentioned before. Then, optimization
methods are used for LiDAR signal decomposition. In [40],
ABmann et al. come up with the LIDARNet to do superresolution
detection and fast peak localization using complicated multire-
turn waveform signals measured by the photon detector arrays.
However, this work relies on the echo component assumption of
the Gaussian model. It also ignores other important information
of a waveform component, such as shape, except the center
location.
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Fig. 1. While conventional methods use multiple steps to decompose the
waveform components, AFD-Net is an end-to-end neural network, which could
get the decomposition result directly.

Note that the above works by using deep networks are still
initial for LiDAR signal decomposition. In this article, an end-
to-end echo decomposition network, Attention Full-waveform
Decomposition Network (AFD-Net), is designed. We do not
assume echo components following any parametric models or
functional distributions. A received waveform signal is sent into
the network. The number of echo components is estimated first
and then decomposed echo components are output. As shown
in Fig. 1, no more extra step is needed in AFD-Net. To our best
knowledge, we are the first to design an end-to-end network
for the FW echo decomposition task. Compared to existing
methods, our contributions can be summarized as follows.

1) End-to-end FW echo decomposition based on a self-

attention-based neural network is proposed.

2) No assumption on waveform components such as para-
metric models or symmetric distributions is required in
our decomposition approach.

3) No prior knowledge on the number of echo components
is required in the decomposition methods. The number is
estimated automatically through the classification module
in AFD-Net.

4) We develop a tool, LIDAR-Gen, to generate the synthetic
waveform signals, which can solve the problem of short-
ening datasets for the LiDAR waveform decomposition
task.

The rest of this article is structured as follows. Section Il intro-
duces the principle for FW echo decomposition and the datasets
we designed. The architecture of the AFD-Net is described in
Section III. Section I'V shows the experiment results. Finally, we
draw the conclusions in Section V.

II. DECOMPOSITION PRINCIPLE AND DATASETS
A. Echo Decomposition Principle

For LiDAR, the received laser power P, can be defined as
[16]
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Fig.2. Many real examples show that the waveform components can be neither

Gaussian nor symmetric, even the emitted signal is Gaussian.

where P, is the power of the output laser, p is the reflectivity
of the scattering surface, A; is the reflective area of a target, €2
is the divergence angle of a laser source beam, and L represents
the transmission distance. It is clear that P, is influenced by the
four factors, L, A, p, and Q2. For FW LiDAR, we can get more
detailed information about a reflective target [41]. The power
P,.(t) of the received waveform signals can be written as shown
in
k
Pot) = fit) +&(t) 2)

i=1

where P,(t) is still the power of a received waveform signal,
and ¢ is the sample time. £(t) in (2) represents the noise in a
received waveform signal. If there are k reflective targets in the
transmission path, then k& echo components f;(t) can be found
in P,.(t). The goal of echo decomposition is to get the accurate
fi(t) from a received waveform signal P.(¢).

As mentioned before, the popular Gaussian model assumes
that f;(¢) follow the 1-D Gaussian distribution as shown in

—(t—1t;)?

A, is the amplitude, ¢; is the center location, and F; is the FWHM
of the ith Gaussian component. Then, the Gaussian-model-based
methods try to extract accurate A;, t;, and F; to generate echo
components. However, the Gaussian assumption is too ideal to
deal with some real waveform examples, as shown in Fig. 2.
Once again, in our approach, we do not constrain the echo
components f;(¢) with any parametric distributions. Instead, we
get f;(t) through the learning-based neural network AFD-Net,
which is more suitable for the real-world waveform signals.

B. Datasets

Lack of suitable datasets is a big issue for many learning-based
methods. FW echo decomposition faces the same problem since
there is no public available datasets for the task. In this work, we
propose a tool FW-GenTools to generate synthetic FW LiDAR
signals with known peak number and realistic component shape.
By doing so, it can save time for manually labeling received
waveform signals, and avoid manual labeling errors.
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Fig.3. (a) Scanned area in Yellowstone National Park, Wyoming. (b) Typical
received FW signal in the scanned area. (c) Synthetic waveform signal consists
of two symmetric waveform components (Ground-truth components 1 and 2).
(d) Synthetic waveform signal consists of three asymmetric waveform compo-
nents (Ground-truth components 1-3). The unit of the abscissa is nanoseconds,
and the unit of the ordinate is millivolts.

We use the received waveform from NEON (i.e., The National
Ecological Observatory Network, website [42]) as a reference
to generate the synthetic FW signals for network training. To-
tally, 20 000 synthetic waveform signals are in the training
set, in which 20% echo components are symmetric and 80%
components are asymmetric. As shown in Fig. 3, panel (a) is
the scanned area in Yellowstone National Park, Wyoming, and
panel (b) shows a typical received waveform signal with a flat
tail. Panels (c) and (d) show the synthetic signal in our training
set, where (c) contains two symmetric waveform components
and (d) contains three asymmetric waveform components. For
the symmetric components, we use Gaussian and generalized
Gaussian as models, because usually, the laser source pulse
has a Gaussian waveform. For the asymmetric ones, received
FW signals become asymmetric due to the intrinsic noise in
electrical devices and the multiple transmission path effects [20].
The intrinsic noise introduces the flat tail into a waveform
while the multiple transmission path effects lead the waveform
components to be skewed and non-Gaussian. Indeed, the shape
of most received waveform signals from NEON is asymmetric.
We generate the asymmetric waveform signals by enlarge the
width of the component gradually; thus, the flat tail appears in
the synthetic waveform component. As for the number of echo
components, few FW LiDAR signals have five or more echo
components. Thus, in the training set, we set 10% waveform
signals to have one echo component, 35% to have two compo-
nents, 35% to have three components, and 20% to have four
components.

For network training, the synthetic waveform signals and the
corresponding ground-truth components are sent into AFD-Net
to learn waveform features. After training, the received wave-
form signals from the real world are sent into the network to get
the desired waveform components. More details about AFD-Net
are introduced in the next section.
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III. ARCHITECTURE OF AFD-NET

As shown in Fig. 4, the network AFD-Net consists of two
modules, 1) the classification module and 2) the decomposition
module. The classification module defines the number of echo
components in a waveform signal, which helps the decompo-
sition module output the correct number of desired waveform
components.

A. Self-Attention Mechanism in 1-D Waveform Processing

In both the classification and the estimation modules, we
use self-attention layers. Thus, we discuss the self-attention
mechanism in the waveform signal processing first.

Self-attention is an attention mechanism, which calculates
the representation of a sequence by encoding the positions of
elements contained in the sequence. Since the self-attention
based model is proposed by a team in Google in 2017, more
and more models based on attention mechanisms have been
developed recently. It has been used successfully in various tasks
including natural language processing, machine translation, and
image processing [43], [44].

For many tasks, the original input data sometimes are massive.
Itis hard for neural networks to encode the complete information
into a single vector for training and learning. Self-attention
matrix is defined to estimate the correlation between one element
and other elements, which can help to encode the data sequence
into a fixed length without using the whole original information.
In the training step, self-attention-based models have the abil-
ity to learn information selectively from the features already
extracted in the previous training epoch. Also, self-attention
architecture can learn features from historical inputs, which help
the models converge faster in training steps.

An FW LiDAR signal usually can be represented as a se-
quence of data points, such as 256 points for an 8-b A/D convert.
Thus, 1-D convolution kernels are well suited for processing an
FW LiDAR signal. Self-attention-based architectures can also
be specially designed.

We define the waveform signal X as shown in

- T256) 4

where [z1, T, ..., 2256 is the intensity of the waveform sig-
nal at the sample time, where the sample ratio is 1 GHz, the
sample interval is 1 ns. Our attention-based model does not
blindly process all elements obtained from the previous layer but
finds out the elements, which are associated with the specified
tasks (classification or decomposition) for further processing.
We place the self-attention layer (see Fig. 5) after the multiple
feature extraction layers in the classification module to get a
more precise classification result. Also, we adopt the attention
blocks (see Fig. 8) to build the encoder—decoder architecture for
decomposing the desired waveform components in the decom-
position module.

X = [1‘1@27--

B. Classification Module

As our final goal is to decompose all the echo components
from the waveform signal, it is of great importance to know
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Fig. 6.  Architecture of the classification module, each blue box represents a

feature map. The numbers above boxes correspond to a number of channels
while numbers at the lower left edge correspond to the number of points in each
channel.

the number of echo components contained in the waveform.
Conventional methods usually estimate the number of the echo
components by using additional complicated steps. But the
estimation results are still limited. Some researchers also set
the echo number manually, which always meets difficulty when
dealing with massive data. In AFD-Net, we propose the CNN-
based classification module to output the correct echo number.
In our simulated experiments, the overall classification accuracy
is 98.26%.

As shown in Fig. 6, the classification module consists of ordi-
nary convolution layers, a self-attention layer, a fully-connected

Self-attention block Decomposed component

layer, and a SoftMax layer. In detail, the input waveform signals
are sent into six convolution layers for feature extraction first.
These convolution layers all have the same kernel size and
padding parameter, where the kernel size is 5 and the padding
stride is 2. Additionally, each convolution layer is followed by
the ReLU activation and max-pooling, which reduce the data
length by a factor of two. The self-attention layer is placed
behind the multiple convolution layers as presented in Fig. 5.
The extracted feature maps obtained from convolution layers
are used to calculate an attention matrix, which helps the model
to learn the correct echo number more efficiently. Finally, a
SoftMax layer is applied for calculating the number of echo
components contained in the waveform signal.

In the training step, we use the synthetic training dataset,
which contains 20 000 waveform signals for training, as men-
tioned in Section II. Each waveform signal in the training set
has the corresponding label that indicates the number of echo
components in the waveform signal. Besides, the length of all the
waveform signals is 256. The maximal intensity of the waveform
signals is normalized before sending to the network. Thus, our
model makes judgment based more on the waveform shape,
rather than the intensity of received waveform signals. We apply
the cross-entropy loss as the loss function in a classification
module. Also, we use the Adam algorithm with a cyclic learning
rate (cosine annealing) for optimization. Additionally, we find
that adding a dropout layer before SoftMax could improve the
final accuracy, when the dropout probability equals 0.5, the
classification module gets the best performance.

C. Decomposition Module

As shown in Fig. 7, we apply the neural network with a modi-
fied U-Net architecture [44], [45] for decomposing the waveform
components. U-Net-based neural networks have made great
progress in the biomedical image segmentation tasks. Waveform
decomposition is a little similar to image segmentation, which
tries to assign a correct class label to each pixel. However,
when waveform components overlap, each element in received
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Fig. 8. Self-attention block in AFD-Nets estimation module.

waveform signals cannot be assigned with a unique class label.
Traditional segmentation neural networks are not able to handle
such a situation. We modified the architecture of U-Net to solve
the overlapping issue. In our AFD-Net, the last layer does not
output the segmentation map anymore. It is replaced by the
decomposition layer that outputs the desired waveform compo-
nents directly. The number of kernels in the last decomposition
layer is set according to the result of the classification module.
Each kernel outputs a single-waveform component.
Additionally, specially designed self-attention blocks for
waveform processing are applied in the decomposition module,
as shown in Fig. 8. Self-attention blocks calculate the attention
coefficients, which lead the model to be more specific to lo-
cal regions, and then improve the decomposition performance
compared to the experimental results obtained without using
self-attention blocks. Here, we denote the ith input feature map
as %, and the gate information from the previous layer (see
Fig. 7) as g'. The multidimensional attention coefficients o are
formulated as shown in the following equations [44]:

G = 01 (W 2" + W g' +1) 5)
ol = O'Q(q;n(l‘i, gi, @atl)) (6)
where 09 = m is the sigmoid activation function. The

attention block is characterized by a series of parameters O,
which contains the linear transformation matrixes W, and W,
and the bias terms b. The linear transformations in self-attention
blocks are computed by using the channelwise 1 x 1 x 1 con-
volution kernels. Some research works design attention layers
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that apply the SoftMax activation function for normalizing the
attention coefficients. However, using SoftMax sequentially al-
ways leads to a sparse output. To avoid this, we choose sigmoid
as the activation function in self-attention blocks.

We use the synthetic waveform signals with ground-truth
waveform components to train the decomposition module. Ac-
cording to the classification result, the kernel number in the
last layer is set automatically. Then, the waveform signals
pass through the decomposition module, and the decomposed
waveform components are output in the end. To characterize the
decomposition errors, we use the Ly-norm distance between the
decomposed waveform components and corresponding ground-
truth as the loss function. As for optimization, Adam optimizer
is applied in the training step of the decomposition module.

IV. EXPERIMENT RESULT
A. Evaluation Criteria

We evaluate AFD-Net using simulated and measured data. For
the classification module, we define the classification accuracy
as defined in

Acc = N(] /N (7)

where N is the total number of the waveform signals sent for
decomposition, and Ny is the number of waveform signals
classified with correct labels.

For the decomposition module, we use the determination
coefficient R? to evaluate the performance of waveform decom-
position as defined in

N M dec 2
S [Poti) = 0L Comples ()]
R*=1- < — . (8
Dz (Br(ti) = Pr)

where N is the number of samples in the received waveform
signal, P.(t;) is the intensity of the ith sample in the received
FW signal, P, is the mean of the received waveform signal,
Compg-“(ti) is the intensity of the ith sample in the jth de-
composed waveform component, and k is the number of the
waveform components decomposed from the received wave-
form signal.

As shown in (2), noise ¢(¢) exists in received waveform
signals. We are able to get the exact ground-truth waveform
components in the simulation experiment. So we replace P, (t;)
with multiple Compg’T(ti) to calculate the determination coef-
ficient R? as shown in the following equations, which leads to

a more precise evaluation result in the simulation experiments:

k
P.(t;) = Z Comp?T(ti) 9
j=1

2
S |30 CompST (ki) — 325, Compde(t) |

2
S [ CompgTit) — S35, CompST(L)]
(10)

RZ=1-

In general, the closer R? is to one, the decomposed waveform
components are more similar to the ground-truth waveform
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TABLE I
CLASSIFICATION RESULT USING SIMULATED DATA
Class 1 2 3 4 Overall
AFD-Net Acc (%) | 99.40 | 98.51 | 98.23 | 97.30 98.26
FD-Net Acc (%) 98.20 | 97.89 | 97.43 | 96.20 97.40

components, thus the more accurate the decomposition result
is [46].

B. Experiments With Simulated Data

1) Ablation: We do some ablation experiments based on the
simulation data to prove that self-attention layer in the classi-
fication module and self-attention block in the decomposition
module help our model work more efficiently. We define the
neural network FD-Net (FW decomposition neural network) by
removing the attention layers and blocks from AFD-Net. Then
we train both FD-Net and AFD-Net using the same training
dataset. The figure of the loss value versus epoch during the
training process is shown in Fig. 9, where CLS means the clas-
sification module, and DEC means the decomposition module.

Obviously, the loss of AFD-Net drops faster than FD-Net,
both in the classification module and decomposition module.
Besides, AFD-Net takes less epochs to reach the state of con-
vergence compared to FD-Net, which means the attention matrix
calculated by attention layers and blocks help the model to com-
plete the classification and decomposition tasks more efficiently.
Ablation results and analysis of the designed attention modules
are shown in the following sections.

For the number of parameters, totally AFD-Net has about 4.5
million parameters, where the classification module has about
0.5 million parameters and the decomposition module has 4
million. As for training details, it takes about 14 h for the training
step using a single RTX-3090 GPU card.

2) Classification: In the simulation experiment, 5000 wave-
form signals with known component numbers are used for
testing the classification accuracy of AFD-Net and FD-Net.
As shown in Table I, the overall accuracy of AFD-Net in the
simulation experiments is 98.26%. As the number of waveform
components increases, the classification accuracy drops a little.
But AFD-Nets classification accuracy is always higher than
FD-Net. From Fig. 10, we can find that when the waveform
signals contain one echo component, the classification accuracy
of AFD-Net reaches the highest. Only very few signals are
incorrectly classified with label 2. For the waveform signals
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Fig. 10.  Confusion matrix of AFD-Nets classification result using simulated
data.
TABLE II
DECOMPOSITION RESULT USING SIMULATED DATA

Class 1 2 3 4 Overall
AFD-Net (p2) | 0.9962 | 0.9941 | 0.9934 | 0.9881 | 0.9948
AFD-Net (op2) | 04716 | 0.8743 | 0.9316 | 1.3276 | 0.9447
FD-Net (1 p2) 0.9957 | 0.9935 | 0.9927 | 0.9873 | 0.9922
FD-Net (0 p2) 0.5373 | 09134 | 1.1067 | 1.2897 | 1.0187

containing two echo components, false outputs are more likely
to assign the waveform signals with label 3. For the waveform
signals containing three echo components, the wrong decisions
always regard the signals containing two or four echo compo-
nents. When it comes to class 4 or waveform signals containing
four components, the task is more difficult. Thus, AFD-Net
presents the lowest accuracy 97.30%, compared to other classes.
However, 97.30% is a very good result for the classification
task. As shown in Figs. 11 and 12, because we do not make
any constrain to the shape of waveform components, for both
symmetric and asymmetric components, AFD-net presents ex-
cellent classification performance. In addition, AFD-Net is able
to output precise classification results when there are overlapped
components in waveform signals, which is a hard occasion for
convention decomposition methods to deal with.

3) Decomposition: To evaluate the decomposition perfor-
mance of AFD-Net and FD-Net, 5000 synthetic waveform sig-
nals with known ground-truth components are used. We use the
determination coefficient R? to compare the difference between
the decomposed waveform components and the ground-truth
components. The more closer R2 is to 1, the better the decom-
position result is. The mean 2 and the standard deviation o g2
of R? are summarized in Table II. The distribution of R? is
shown in Fig. 13. We can find that AFD-Net performs better
than FD-Net all the time. Also, as shown in Figs. 11(a) and
12(a), when the waveform signal contains one echo component,
the decomposition module in AFD-Net is able to extract the
waveform component from noise efficiently. When it comes
to the more complex occasions as shown in Figs. 11(b)—(d)
and 12(b)-(d), AFD-Net decomposes the components from the
waveform signals successfully even though, there are overlap-
ping or the waveform components are not ideally symmetric.
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TABLE III
CLASSIFICATION RESULT USING MEASURED DATA

Distribution of R? intervals for AFD-Net using simulated data.

Class 1 2 3 4 Overall
AFD-Net Acc (%) | 100.00 | 95.71 | 95.71 95.30 98.26
FD-Net Acc (%) 95.00 92.86 | 91.42 | 92.5.0 92.50

C. Experiments With Measured Data

The waveform signals discussed in this section are obtained
using an Optech Gemini sensor as listed in NEON. The scanned
area is in Yellowstone National Park in Wyoming. The LiDAR
data are provided in a binary format defined by NEON. After
changing the data format, the slant-range waveform is relative
signal intensity versus nsec time bins.

1) Classification: To evaluate AFD-Nets classification per-
formance on measured data, we manually annotated the com-
ponents number of the 200 received waveform signals. The
classification result is shown in Fig. 14 and Table III. For
the waveform signals that contain one echo component, our
AFD-Net makes all the correct classification predictions. As the

Fig. 14.
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Distribution of R? intervals for AFD-Net using measured data.

Confusion matrix of AFD-Nets classification result using measured

number of waveform components increases, although AFD-Net
classification accuracy drops a little, it still has the overall
accuracy of 96% for the measured waveform signals, which
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TABLE IV
DECOMPOSITION RESULT USING MEASURED DATA
Class 1 2 3 4 Overall
AFD-Net (up2) | 0.9865 | 0.9847 | 0.9774 | 0.9726 | 0.9799
AFD-Net (op2) | 0.7516 | 0.9213 | 1.1031 1.1676 1.0179
FD-Net (1 p2) 0.9841 | 0.9827 | 0.9746 | 0.9703 | 0.9775
FD-Net (0 r2) 0.8614 | 1.0424 | 1.2174 | 1.4018 1.1574

is a very good classification result and can ensure the subse-
quent decomposition module to decompose waveform signals
successfully.

2) Decomposition: Considering noise £(t) exists in the re-
ceived waveform signals, it is predictable that the value of R?
will drop as 8 is used to calculate the determination coefficient
R?. Table IV shows jip> and o> of the decomposition results
using AFD-Net and FD-Net with measured data. We find that
the decomposition result of AFD-Net is also better than FD-Net.
Self-attention blocks help the decomposition module to get
better performance. Fig. 15 shows the distribution of R?. It is
obvious that the interval of 0.9—1 accounts for most of the cases.
Fig. 16 shows the decomposition results of AFD-Net for the
measured waveform signals. For some complicated occasions in
which echo components overlap, AFD-Net is able to decompose
the components from the received waveform signals.

V. CONCLUSION

In this article, we propose a self-attention-based neural net-
work named AFD-Net for decomposing the waveform compo-
nents from received FW LiDAR signals. Compared to conven-
tional decomposition methods, our approach has the following
advantages. AFD-Net is an end-to-end decomposition method
while conventional methods need multiple steps to decompose
the components from waveform signals. Additionally, we do not
make any constrain to the distribution of the waveform. Thus,
our decomposition method is more suitable for the real-world
measured waveforms compared to the methods using func-
tional fitting models. As for the decomposition efficiency, our
deep-learning-based method can decompose serials of received
waveform signals at the same time after the training step, it is
much more efficient than iterative-based conventional methods.
Besides, the specially designed self-attention architecture also
speeds up the training process. Because there are no publicly

available datasets for the waveform decomposition task, we
develop a tool named LiDAR-Gen to generate the synthetic
waveform signals, which can help researchers to build their own
datasets based on their specific scanning area.

For future directions, besides the network AFD-Net discussed
in this article, graph convolutional networks (GCN) and trans-
formers are theoretically feasible for the echo decomposition
task. We wish that researchers would explore the potential of
GCNs and transformers for the task in the future. Also, inspired
by works such as in [34], we will explore new architectures of de-
composition modules rather than current autoencoder-like ones.
In addition, tasks such as canopy structure analysis, terrain slope
estimation, shallow river bathymetry, etc., need high-accurate
echo decomposition methods. AFD-Net has the potential to
be used with practical application scenarios and then to get
a better final result than conventional methods. Thus, another
future direction is to design networks for specific application
tasks.
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