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BSSNet: Building Subclass Segmentation From
Satellite Images Using Boundary Guidance and

Contrastive Learning
Haofeng Xie , Xiangyun Hu , Huiwei Jiang , and Jinming Zhang

Abstract—Building subclass segmentation, aimed at predicting
classes of buildings (high-rise zone, low-rise zone, single high-rise,
and single low-rise) from satellite images, is beneficial in numerous
applications, including human geography, urban planning, and
humanitarian aid. However, problems, such as complex scenes
and similar characteristics of different building categories make it
difficult for general models to balance the accuracy of localization
and classification in building subclass segmentation. Therefore, this
article proposes a novel network for building subclass segmentation
called building subclass segmentation network (BSSNet), which
uses two subnetworks to divide and conquer the problem. The first
network guides the building locations through binary building seg-
mentation, called localization network. The spatial gradient fusion
module in the localization network improves the binary segmenta-
tion result by supervising the spatial gradient map of prediction.
The second network is a classification network, which predicts
building subclasses. Intermediate features of the second network
are optimized by contrastive learning loss to improve feature con-
sistency. Finally, predictions of the two networks are combined to
obtain the final result. The experimental results demonstrate that
our BSSNet can perform significant improvements on the Hainan
dataset we produced and the xBD dataset. In particular, the BSSNet
achieves the best performance compared to current methods on the
Hainan dataset.

Index Terms—Building subclass segmentation, contrastive
learning loss, convolutional neural network (CNN), feature fusion,
satellite image, spatial gradient fusion (SGF).

I. INTRODUCTION

BUILDING segmentation is widely studied in the field of
remote sensing. Usually, most studies [1], [2], [3], [4]
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Fig. 1. Examples of the four classes of our building subclass segmentation
task. (a) HZ. (b) LZ. (c) SH. (d) SL.

focus on binary building segmentation (whether the pixel is
a building). Still, users need to know building subclass infor-
mation (what type of building the pixel belongs to) in many
applications. However, as a meaningful extension of building
segmentation, automatic segmentation of building subclasses
has rarely been studied. As shown in Fig. 1, building subclasses
data provide information, such as building location and category,
which can be of great help to many fields, including human
geography [5], urban planning [6], and humanitarian aid [7]. But
most of the building subclass data used in these fields comes from
manual labeling, which is slow, costly, and laborious. Therefore,
accurate and efficient automatic segmentation of building sub-
classes will be convenient for these fields. However, problems,
such as within-class feature variation and between-class feature
similarity make it difficult for general semantic segmentation
networks to maintain localization and classification accuracy
simultaneously.

Nowadays, studies on building subclass segmentation ei-
ther combine images from different angles [8] or incorporate
shadow detection with high-resolution images [9]. Damage as-
sessment [10], [11], [12] is also a branch of building subclass
segmentation, which classifies the damage level of buildings by
using pre and postdisaster images. However, few studies focus
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on using a single image to segment buildings into subclasses.
Motivated by the abovementioned circumstances, we study a
method specifically for building subclass segmentation, which
classifies pixels in five classes, including four classes shown in
Fig. 1 and background. The presentation of our method can fill
the gap of building subclass segmentation and provide a large
amount of accurate data quickly for the fields that need building
subclass information for analysis.

Generally, experts identify the building class by the arrange-
ment, the density, the shape, and the texture of buildings. Nev-
ertheless, in automatic segmentation of building subclasses, the
complexity of the task makes it difficult for a single network to
ensure accurate classification and localization simultaneously.
When the problem is decomposed, one network will focus on
only one problem and learn more effectively. Therefore, we
adopt a divide-and-conquer approach by using two networks
to perform different tasks separately and combining them in
terms of features and predicted results. Specifically, we divide
the task into the following two parts: 1) binary building ex-
traction; 2) building subclass extraction. The purpose of the
division is to disassemble the task so that only the accuracy
of the building localization is concerned in the first task, not
the multiclass extraction accuracy, and vice versa. We add the
feature fusion module (FFM) to reinforce the link between these
two models. The boundary information can make the localiza-
tion more accurate, so we propose the spatial gradient fusion
(SGF) module to improve the boundary by refining the spatial
gradient map. The subtle difference between building classes is
also one of the reasons why segmenting building subclasses is
difficult. Therefore, we introduce the contrastive learning loss to
improve the representation of features in the building subclass
segmentation network (BSSNet). Lastly, predictions of the two
tasks are merged by intersection.

Our main contributions can be summarized as follows.
1) We propose a novel BSSNet that has two subnetworks

for building subclass segmentation by combining binary
building segmentation and multiclass building segmenta-
tion.

2) In the BSSNet, an SGF module is proposed to refine
boundaries of binary building segmentation, while the
pixel contrastive learning loss is introduced to enhance
the representation of features in multiclass building seg-
mentation.

3) The Hainan building subclass dataset, we proposed en-
riches the datasets for building subclass segmentation,
which can help the research in subclass object extraction
or fine-grain land cover classification from remote sensing
images. The dataset can be accessed at.1

4) We demonstrate that the BSSNet achieves the SOTA per-
formance on the Hainan dataset. On the xBD building
damage assessment dataset [10], BSSNet is as good as
SOTA methods. Moreover, abundant ablation experiments
of BSSNet’s components prove their effectiveness.

1[Online]. Available: https://github.com/Xxxxiahaofeng/The-Hainan-Build
ing-Subclass-Dataset

II. RELATED WORK

A. Building Segmentation

Building segmentation is one of the most popular research fo-
cuses in remote sensing information extraction. Novel machine
learning and remote sensing technologies have allowed auto-
matic building segmentation, reducing manual work in recent
years. Nevertheless, building segmentation remains a long-term
challenge in remote sensing because of buildings’ complex
appearance in complicated environments.

Traditional building segmentation of aerial and remote sens-
ing imagery always uses manual design features, such as
color [13], texture [14], edge [15], [16], and spectrum [14],
[17]. However, these features may vary significantly due to
the indeterminacy of light, shooting angle, and sensors. With
the development of CNNs, deep-learning-based methods have
been broadly utilized to segment buildings on remote sensing
images [1], [2], [3], [4]. With multilayer convolution, CNN can
obtain multiscale and more robust features than artificially de-
signed features. Yuan et al. [2] integrated features from multiple
scales and combined the building boundaries to improve the per-
formance of building segmentation. Maggiori et al. [3] designed
a new architecture and a two-step training approach to solve the
inaccurate training data problem. To acquire precise building
boundaries, Bischke et al. [4] proposed a multitask network
predicting segmentation and distance masks simultaneously.

B. Building Subclass Segmentation

Although the automatic recognition of building subclass is
meaningful to urban planning [6], humanitarian aid [7], and
other fields [5], few of studies focus on building subclass
segmentation. Peng et al. [8] try to detect built-up areas by
using stereo imagery incorporates height information. Taoufiq
et al. [18] and Huang et al. [19] focus on building subclass clas-
sification. Sirmacek et al. [9] incorporate shadow detection with
high-resolution images. However, no current methods segment
the building subclasses with a single optical remote sensing
image.

xBD [10] presents a task to assess building damage level,
which can be considered an extension of building subclass
segmentation. Various methods have been proposed to evaluate
building damages [11], [12], which uses a two-stream CNN ar-
chitecture for pre and postdisaster images. Nonetheless, building
damage assessment uses sequential images to assess the building
damage level by comparing images before and after a disaster.

We extend building segmentation from binary to subclass, as
shown in Fig. 1. We propose a two-stream end-to-end network.
One segment performs multiclass segmentation, and the other
predicts binary building location to provide localization guid-
ance.

C. Boundary Detection

Boundary detection is fundamental in various areas, such as
semantic segmentation [20], object detection [21], and remote
sensing image processing [22], [23], [24], [25]. Xie et al. [26]
proposed an end-to-end multiscale boundary detection network.

https://github.com/Xxxxiahaofeng/The-Hainan-Building-Subclass-Dataset
https://github.com/Xxxxiahaofeng/The-Hainan-Building-Subclass-Dataset
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CASENet [27] claimed a new task called semantic boundary
detection, desiring at finding category-aware boundaries. Cheng
et al. [21] employed boundary detection as a multitask network
to improve the result of object segmentation. Zhen et al. [20]
combined semantic boundary detection and semantic segmen-
tation using the spatial gradient to improve the boundary pixel
accuracy.

In the field of remote sensing, edge detection is also widely
used to improve the effect of building detection. Jung et al. [22]
adopted HED [26] and combined the boundary and segmentation
mask to obtain an enhanced segmentation result. To improve
building extraction, He et al. [24] embedded the boundary
detection task into their framework by using spatial variation
fusion to couple these two tasks.

Our methods follow the idea of combining boundary and
segmentation in a multitask way to enhance the accuracy of
building location. Instead of concatenating features or using
postprocess, we concatenate the spatial gradient of segmentation
and boundary to improve the mask boundary in an efficient way.

D. Contrastive Learning

Contrastive learning is one category of self-supervised learn-
ing [28], whose core goal is to discover discriminative represen-
tations. Another category of self-supervised learning is genera-
tive learning [29], [30], [31], [32], whose primary purpose is to
generate feature vectors that can retain essential parts of the orig-
inal data and reconstruct the original data. Contrastive learning
considers representation learning from a different aspect: learn
to compare [28]. In this way, contrastive learning avoids pixel-
level learning and is more stable. Through noise contrastive
estimation [33], contrastive methods learn meaningful repre-
sentations by attracting positive pairs and repulsing negative
pairs. Recently, many methods focus on constructing positive
and negative sets [34], [35], [36], [37]. Hadsell et al. [35] first re-
garded contrastive learning as a dictionary lookup. He et al. [34]
developed this method by building a dynamic dictionary with
a queue and a moving-averaged encoder. Khosla et al. [38]
extended the self-supervised batch contrastive approach to a
fully supervised learning task, allowing the effective leverage of
label information. Normalized embeddings from the same class
are drawn tighter than those from other classes. Latest works
address contrastive learning in dense image prediction [39], [40],
[41]. Wang et al. al. [39] implemented supervised contrastive
learning at the pixel level for semantic segmentation.

There are also some methods that use contrastive learning
in remote sensing area tasks [42], [43], [44]. For instance, con-
trastive learning has been used, for example, in the hyperspectral
image (HSI) classification to solve the small-sample problem of
HSIs. Meanwhile, it has been adopted in synthetic aperture radar
image classification to overcome insufficient labeled data [45],
[46]. However, few methods apply contrastive learning to remote
sensing image segmentation.

Given the complexity of remote sensing image scenes, even
objects in the same class may differ vastly in their embeddings,
making the application of semantic segmentation in remote
sensing images difficult. Hence, we employ contrastive learning

to gather clusters of pixel embeddings belonging to the same
category while pushing apart different categories’ embeddings.

III. PROPOSED METHOD

A. Network Architecture

1) Architecture Overview: Fig. 2 gives an overview of the
procedure of BSSNet, which consists of te following two parts:
the classification network (i.e., the upper one) and the local-
ization network (i.e., the lower one). We exploit HRNet [47]
as the backbone for the localization and classification network,
respectively. HRNet can be divided into four stages according to
the number of branches and resolutions. The stage n includes n
branches corresponding to n resolutions. For ease of presenta-
tion, we simplify each stage to its number without showing the
details of each stage in Fig. 2.

The localization network predicts the binary mask of building
objects from images, in which building objects can be predicted
intactly and shapely. The localization network first concatenates
feature maps from the HRNet backbone. It feeds them into the
predictor, which uses the 3×3 convolution (3×3 Conv), followed
by a batch normalization (BN) layer and ReLU to reduce the
feature dimension to 256, and then a 1×1 convolution is used
to acquire mask predictions. Although the predicted masks can
provide relatively accurate location of buildings, the predictions
can still be rough and fuzzy due to ignoring of boundary infor-
mation.

The before-mentioned issue could be primely alleviated by
providing improved localization and guidance while employing
building boundaries. Therefore, to utilize boundary information,
we propose a boundary-predicting head. It realizes boundary
prediction using the same predictor as the binary building mask
predictor and boundary of binary ground truth as ground truth.
However, simply adding a boundary-predicting head cannot
potently pass boundary information to mask predictions. Thus,
the SGF module is proposed, which combine the spatial gradient
of mask predictions and predictions of the boundary-predicting
head to obtain the final boundary predictions. It will be explained
in detail later.

Likewise, the classification network employ the same pre-
dictor with different class numbers to generate the building
subclass segmentation prediction. After the backbone network,
we add up the projection head. The projection head outputs
256-dimensional features, and these features will be used in the
contrastive learning loss. The role of contrastive learning loss is
clustering features from the same class and scattering features
from different classes.

In addition, we fuse two features of each HRNet in the same
resolution with a simple FFM. The FFM consists of concatena-
tion and two convolution blocks (3×3 Conv+BN+ReLU). It is
a simple yet effective module to exchange information between
the localization network and the classification network.

Finally, the binary building prediction and the building sub-
class prediction are combined to get the final prediction. We
simply combine the intersection of nonbackground parts of
the two predictions, and take the predicted values of building
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Fig. 2. Overview of our proposed method. There are four stages in our network. (a) Classification network for building subclass segmentation. (b) Localization
network predicting binary mask and boundary of buildings. The FFM module is used to interact between the two networks. The spatial gradient ∇M derived from
the building mask is concatenated with boundary prediction to get the final boundary prediction.

subclasses corresponding to these nonbackground pixels as the
final prediction result.

2) SGF Module: An accurate boundary is essential to ensure
the building binary segmentation result, which can make neigh-
boring buildings effectively separated. Recently, most methods
using boundary information to improve the segmentation ef-
fect have added boundary-predicting branches. However, these
methods do not use boundary ground truth to supervise building
binary segmentation, which makes the use of the boundary
information ineffective. Therefore, we propose to combine the
results of the boundary prediction branch with the spatial gradi-
ent of binary segmentation results to obtain the final boundary
prediction results to learn the boundary information simply and
directly.

From the boundary-predicting head and the mask-predicting
head of the localization network, we can generate the boundary
probability map B ∈ RH×W×1, and the mask probability map
M ∈ RH×W×1, respectively. Then, we can obtain the mask
boundary easily by spatial gradient deriving. Here, we use
adaptive pooling to derive spatial gradient ∇M , which is

∇M(i, j) = |M(i, j)− poolk(M(i, j))| (1)

where i and j are the coordinates of the mask probability pre-
diction and | · | denotes the norm function. poolk is an adaptive
average pooling operation with kernel size k. k can control the
width of generated boundary ground truth. The default setting
of k is 3.

To supervise the mask boundary directly and efficiently,
we concatenate the boundary probability map B and derived
boundary map ∇M . The concatenated map is assigned into
a convolution layer to get the final boundary map, which will
calculate loss with ground truth in the boundary loss function.
This process can be formulated as

b = conv(B ⊕M) (2)

Fig. 3. FFM links the localization and classification networks. Conv denotes
that a convolution block (3×3 Conv + BN+ReLU) does not change feature
dimensions.

where ⊕ is the concatenation operation, and conv is a simple
convolution layer. The final boundary prediction map is b. In
this way, we can simultaneously supervise the boundary accu-
racy of mask prediction and boundary prediction. Moreover,
few impurities exist in the building outline, which can also be
continuous.

3) FFM: As shown in Fig. 3, FFM uses concatenation and
two convolution blocks (3×3 Conv+BN+ReLU). The output
features can be formulated as

X̃s
loc = fs

loc(X
s
cls ⊕Xs

loc) (3)

X̃s
cls = fs

cls(X
s
cls ⊕Xs

loc) (4)

where X̃s
loc and X̃s

cls are the localization feature and the classi-
fication feature after FFM in stage s. Xs

loc and Xs
cls remark the

localization feature and the classification feature before FFM in
stage s. fs

loc and fs
cls denote two convolution blocks of FFM in

stage s. ⊕ means the concatenation operation.
FFM links two subnetworks to build bilateral information

exchanges. This module makes the classification network focus
more on areas predicted as buildings and lets the localization
network be more robust to various constructions.
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Fig. 4. Main idea of pixel contrastive loss is to extract embeddings of different
classes with randomly selected pixels. Then pixel contrastive loss repels the
embeddings of different classes while attracting the embeddings of the same
class.

B. Loss Function

1) Pixel Cross-Entropy Loss: We can obtain the logit pre-
diction y ∈ RHW×C , i.e., the unnormalized prediction vector
from the last layer of the network. In the classical semantic
segmentation cross-entropy loss function, y is normalized using
softmax. Then, it is multiplied with the one-hot vector of ground
truth ŷ ∈ RHW×C

LCE(y, ŷ) = −ŷT log(softmax(y)). (5)

However, it computes loss pixel by pixel, so it does not
consider the relationship between pixels. This may result in
different classes of pixels with very similar characteristics that
are difficult to distinguish. Thus, we propose pixel contrastive
loss to cluster pixels in the same class and push away pixels in
different classes, as shown in Fig. 4.

2) Pixel Contrastive Loss: First, we introduce InfoNCE Loss
in unsupervised representation learning. Unsupervised repre-
sentation learning aims to train an encoder, which generates
effective image embedding (feature vectors) vI of image I .
Contrastive learning is the current mainstream way to achieve
this goal.

In contrastive learning, vI should be similar to the positive
embedding v+

I (feature vectors of the same augmented image
I) and dissimilar to embedding v− in negative embedding set
NI (feature vectors of other images). Driven by this motiva-
tion, InfoNCE is the commonly used contrastive learning loss
function

LI
NCE=−log

exp(vI · v+/τ)

exp(vI · v+/τ)+
∑

v−∈NI
exp(vI · v−/τ)

(6)

where v− is the negative embedding in NI , · is the inner product
operation, and τ is the temperature hyperparameter.

Now, we extend the InfoNCE loss to the pixel level. Thus,
positive embeddings imply pixel embeddings in the same class,
while negative embeddings are pixel embeddings of different
classes. Our goal is to attract these positive embeddings and
repulse negative embeddings.

We assume the embedding of pixel i as vi ∈ RD, where D
means the dimension of the embedding. Pi and Ni are pixel
embedding sets of the positive and negative samples for pixel
i, respectively; i.e., Pi is the embedding set that the class of

samples is the same as pixel i, and vice versa. Accordingly, our
pixel contrastive loss is defined as

LNCE=
∑

i∈I

∑

v+∈Pi

−log
exp(vi ·v+/τ)

exp(vi ·v+/τ)+
∑

v−∈Ni
exp(vi ·v−/τ)

.

(7)
Note that the positive and negative samples come from an

identical batch of pixel i. Furthermore, all embeddings are
normalized before sending into the pixel contrastive loss.

Finally, we generate the overall loss function of the classifi-
cation network by adding LCE and LNCE

Lcls = LCE + λNCELNCE (8)

where λNCE is the weight to control the importance of LNCE.
3) Boundary Loss: We view boundary prediction as a bi-

nary semantic segmentation problem, similar to the practice
of joint boundary detection. We concatenate the prediction of
the boundary-predicting head and the spatial gradient of mask
prediction to acquire the final boundary prediction. We can
obtain complete results if we simply supervise it by using
binary cross-entropy loss. However, because the proportion of
boundary pixels in each image is changing, even if the positive
sample weight is carefully set, the response degree of boundary
prediction is still not high. Dice loss [48] avoids the difficulty
of setting positive sample weight by directly optimizing the F1
score, but due to its instability, its trained boundary is often
incomplete. Therefore, we combine these two types of loss
and use their complementary to improve the effect of boundary
prediction.

To generate soft boundaries from the ground truth of the
binary mask, we utilize the Laplacian operator. The Laplacian
operator is a second-order gradient operator for generating
boundaries. The generated soft boundary maps are converted
to binary maps by a threshold value of 0.

We utilize binary cross-entropy loss and dice loss to improve
the learning of boundaries. Dice loss calculates the ratio of over-
laps between prediction and ground truth, independent of the
number of foreground/background pixels. We define boundary
loss LB as follows:

Lboundary(b, b̂) = LBCE(b, b̂) + λDiceLDice(b, b̂) (9)

where λDice is the weight to control the importance of LDice.
b, b̂ ∈ RH×W are the prediction and ground truth of boundary,
respectively. Dice loss λDice is given as follows.

LDice(b, b̂) = 1−
∑HW

i bi · b̂i + ε
∑HW

i b2i +
∑HW

i b̂2i + ε
(10)

where bi and b̂i are the ith pixel in boundary prediction and
ground truth, respectively. · is the inner product operation. ε is
added in numerator and denominator to ensure no zero division
(default ε = 1). This formula is similar to the F1 score at the
pixel level.

4) Multitask Learning Loss: Our network accomplishes
three tasks, namely binary building segmentation, building sub-
class segmentation, and building boundary detection. To train the
network efficiently, we choose to train in a multitask learning
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TABLE I
DISTRIBUTION OF BUILDING SUBCLASSES IN THE HAINAN DATASET

way. The definition of the overall multitask learning loss is

L = Lcls + Lloc + Lboundary. (11)

Note that Lloc is the binary cross-entropy loss used in the binary
building segmentation task.

IV. EXPERIMENTS

A. Dataset and Evaluation Metric

1) Hainan Building Subclass Dataset: As far as we know,
few public datasets specifically for remote sensing building
subclass segmentation are available. Thus, to facilitate the train-
ing of our proposed method, we construct a subclass dataset
for buildings in Hainan Province, China. The Hainan dataset
we presented compensates for the absence of building subclass
segmentation datasets. We will continue to expand this dataset
as the research progresses. Four building subclasses exist in this
dataset: high-rise zone (HZ), low-rise zone (LZ), single high-rise
(SH), single low-rise (SL), which are identified by experts from
the Shanxi provincial mapping agency.

The dataset contains 42 images with resolutions ranging from
0.8 to 2 m per pixel, and sizes ranging from 2000×2000 to
5000×6000. We crop the images to size 512×512 patches. This
gives a total of 1348 image patches, divided into 70% for training
and 30% for test. That is, we got a training set with 944 cropped
images and a test set with 404 cropped images. The proportion
of each category (ignoring background) is shown in Table I. The
data are imbalanced, and the proportion of SL in the dataset
is deficient. The reason is that the geographic distribution of
images is concentrated in urban areas, where most low-rise
buildings are clustered. To solve this imbalance problem, we set
the class weight of CELoss [see (5)] of classification network to
[1.0, 1.0, 1.0, 1.0, 10.0].

2) xBD Dataset: Since it is challenging to obtain datasets for
building subclass segmentation, a building damage assessment
dataset xBD [10] is employed to evaluate our proposed method.
This dataset is a publicly available, large-scale satellite image
dataset for building damage level assessment, which is similar
to the task we are working on. While the difference is that
the xBD dataset contains images before and after disasters, so
the changes brought by disasters also should be concerned in the
network.

Although change information should be concerned in the xBD
dataset, building damage level is primarily evaluated using im-
ages after disasters, whereas images before disasters are inclined
to locate buildings. In addition, building damage level can be
viewed as a variation of building subclass. These characters are

TABLE II
NUMBER AND DISTRIBUTION OF BUILDING DAMAGE ANNOTATION IN THE

XBD DATASET

consistent with our proposed work, so we select the xBD dataset
to evaluate the effectiveness of our work.

This dataset selects 19 diverse disasters in different loca-
tions (such as forest fires, earthquakes, floods, and hurricanes).
The dataset contains pre and postdisaster image pairs with
1024×1024. Each image is in the visible spectral band (red,
green, and blue) with a spatial resolution of 0.8 m. Four building
damage levels exist: no damage, minor damage, major damage,
and destroyed. Table II shows the number and distribution in the
dataset.

3) Evaluation Metric: To evaluate the performance of our
method, we perform qualitative and quantitative analyses in
our experiments. We use the F1 score (F1b) to evaluate the
experiment results of binary building segmentation. And the
harmonic mean of the F1 score (F1c) of each building class
is employed to evaluate the effectiveness of building subclass
segmentation. The metrics are defined as follows:

F1b =
2TP

2TP + FP + FN
(12)

F1ci =
2TPi

2TPi + FPi + FNi
(13)

F1c =
n

∑i=1
n 1/F1ci

(14)

where TP, FP, and FN are the numbers of true-positive, false-
positive, and false-negative pixels in segmentation results, re-
spectively. n is the number of classes, and F1ci is the F1 score
of class i.

4) Experimental Settings: All the experiments are run on
four GeForce GTX 2080Ti GPUs with PyTorch implementation.
In training, we crop images to 512×512 patches. We use HRNet-
32 as the backbone for our networks with pretrained weights
downloaded from the PyTorch library. For pixel contrastive loss,
we randomly select 1024 pixels in the same batch as positive
and negative embedding sets in all experiments, and loss weight
λNCE = 0.1. For boundary loss, we set the kernel size of the
Laplacian operator to 3, and loss weight λDice = 1.0. The model
is trained using Adam optimizer with an initial learning rate
of 0.0001. The batch size is 4 for 60 000 iterations on the
Hainan dataset. The batch size is 8 for 100 000 iterations in xBD
dataset. We reduce the learning rate by using the “poly” learning
rate policy, in which the initial learning rate is multiplied by
(1− iter

maxiter
)power and power = 0.9. Random crops and horizontal

flip are also applied.



7706 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

TABLE III
COMPARISON WITH DIFFERENT METHODS ON THE HAINAN BUILDING SUBCLASS DATASET

B. Main Results

1) Hainan Dataset: To demonstrate the effectiveness of our
proposed BSSNet, we first compared our method with several
SOTA segmentation methods on the Hainan building subclass
dataset.

1) Some popular semantic segmentation networks, including
FPN [50] and DeepLabv3 [49], are employed for comparison.

2) OCR [51] uses HRNet48 as the backbone network. Features
in different levels are concatenated, and the feature before using
the OCR module is also used to generate auxiliary prediction.

3) MANet [52] and MCFINet [53] use ResNet101 as the
backbone network. The last layer of features is directly used
to predict segmentation results.

In addition to our full framework, the two subnetworks clean
baseline without FFM, SGF module, and pixel contrastive loss,
called the vanilla network, is also compared. A single network
with two heads is also compared. The functions of the two heads
are similar to those of the two subnetworks, which locate and
classify, respectively, and SGF and pixel contrastive loss are also
added. According to Table III, the proposed framework using the
vanilla network alone can be competitive to existing methods in
terms of all metrics. Bold entities emphasize that the current
method achieves the best results on the corresponding metrics.

We also evaluate our method with popular and SOTA methods
in the natural image and remote sensing image segmentation
area. As shown in Table III, our proposed method outperforms
these methods by an impressive F1 score. On the overall F1
metric, BSSNet produces a 4.0% improvement over the previous
best results. Our vanilla network is only 0.2% below FPN on
the overall F1 metric because our two-subnetwork framework
divides and conquers the task and gives a better localization
result. We also observe a 1.4% increase in overall F1 score
when splitting the single network into two subnetworks frame-
work, which again proves that our two-subnetwork framework is
effective. Furthermore, with the help of other modules, including
FFM, SGF, and contrastive loss, the performance of our method
is significantly improved over the vanilla network. The SH F1
score of our BSSNet is 2.8% higher than that of FPN, which is
due to the contrastive loss making features more robust, and the
difference between features of the LZ and that of SL is more
distinct.

Fig. 5 shows a visual comparison of the building subclass
segmentation results of different networks. The predicted masks

TABLE IV
COMPARISON WITH DIFFERENT METHODS ON THE XBD DATASET

of our proposed method are more precise and highly coincident
with their boundaries. Our method also better predicts small,
isolated objects, such as SL buildings in rural areas. Addition-
ally, in comparison with FPN and MCFINet, our method can
better separate buildings close to each other.

2) xBD Dataset: Moreover, we present quantitative and qual-
itative comparisons of building disaster damage assessment
on the xBD dataset. We compare our method with the xBD
baseline [10], BDANet [56], RescueNet [54] and the method
of Weber et al. [55], which are popular and typical methods in
building disaster damage assessment. All results indicate that
our method can be competitive in building disaster damage
assessment.

In Fig. 6, we give qualitative results on a small but diverse
sample of the dataset. From these results, our method appears
to be remarkably better than the baseline model. The baseline
model produces quite a few false positive and false negative
errors eliminated by our model because the contrastive loss in
our method makes features more consistent. In addition, the SGF
module makes our prediction results more apparent and accurate
at the boundary.

According to Table IV, our method produces 0.1% and 3.8%
improvement in major and destroyed damage levels, respec-
tively, but the overall F1 metric is 0.3% lower than the max-
imum value. Although the overall F1 is slightly lower than
that of the method RescueNet, our method shows a significant
improvement in binaryF1(2.3%, 84.0%→86.3%), which is also
reflected in Fig. 6. The reason is that we use a localization
network to focus on binary segmentation, which is a relatively
simple task, and an SGF module to improve the boundary of
binary segmentation results. The overall F1 score is slightly
lower than that of RescueNet because the network is not designed
to take advantage of the differences between pre and postdisaster
images.
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Fig. 5. Visual comparisons of building subclass segmentation results. From left to right: (a) image (b) ground-truth, (c) our proposed network, (d) FPN (HRNet48
backbone), and (e) MCFINet.

Fig. 6. Visual comparisons of building disaster damage assessment results. From left to right: (a) pre-image (b) post-image, (c) the ground-truth, (d) RescueNet [54],
(e) Weber et al. [55], and (f) our proposed network.
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TABLE V
ABLATION STUDY OF DIFFERENT COMPONENTS: FFM, SGF MODULE, CONTRASTIVE LOSS (CON) IN THE PROPOSED FRAMEWORK

TABLE VI
ABLATION STUDY OF ADDING FFM AFTER DIFFERENT STAGES (SHORTENED

TO S) IN THE PROPOSED FRAMEWORK

C. Ablation Study

To understand how our proposed method works, we perform
complete experiments to study its components. Table V shows
the results of the vanilla network combined with each component
individually. The FFM and SGF modules achieve 0.9% and 1.4%
improvement inF1c, respectively. The contrastive loss promotes
overall performance by 2.8%. The addition of contrastive loss
enhances the network’s ability to distinguish categories with
similar characteristics, thus increasing the F1 scores of HZ, LZ,
and SL by 1.8%, 1.1%, and 3.7%, respectively. The influence
of adding multiple modules is also explored. The FFM module
along with the contrastive loss can bring an improvement in over-
all F1 score by 2.9% to the vanilla network. Each component
will be analyzed more detailedly in the subsequent sections.

1) FFM in Different Stages: To validate the effect of FFM,
we add FFM stage by stage, as shown in Table VI. With the
addition of FFMs, the F1 score of a single category or the
overall F1 score maintains an upward trend. The improvement
of the overall F1 score is 0.4% when FFM is added to the first
stage and 1.1% when FFM is added to all three stages. Through
fusing classification and localization features, our network gives
considerable attention to the location recognized as buildings.
The F1 score of LZ fluctuates after FFM is added in different
stages because manual labeling in the Hainan dataset tends
to label LZ into a whole piece. Hence, accurate localization
information may be of little help in this category.

2) Pixel Contrastive Loss: In (7), we use positive embedding
setPi and negative embedding setNi to compute contrastive loss
LNCE. The way of obtaining these two sets will greatly impact
the network’s performance. Simply using all pixels in the same
batch may be computationally expensive. Accordingly, first,
we randomly sample a specified number of pixel embeddings.
Then, to make the embedding number of each class even, we
set a hyperparameter named view number limiting the max
embedding number of each class.

TABLE VII
ABLATION STUDY OF SAMPLING DIFFERENT NUMBERS OF PIXEL FEATURES IN

CONTRASTIVE LOSS

TABLE VIII
ABLATION STUDY OF USING DIFFERENT PROJECT DIMENSIONS IN

CONTRASTIVE LOSS

Table VII shows the result of using various sample numbers
and view numbers. The network’s computational cost and per-
formance grow as the sample and view numbers increase. When
sample number = 4096 and view number = 800, the network
can achieve the best overallF1 score of 60.3%, but the efficiency
is low at this time. Therefore, considering effect and efficiency,
we choose sample number=1024 and view number=200 as our
default setting.

Moreover, the number of dimensions of the projection head
in our network is crucial. Thus, we study the effects of the
number of embedding dimensions, as shown in Table VIII. The
larger the number of dimensions is, the richer the embedded
information is; otherwise, the less efficient the computation is. At
dimension=256, the overall F1 score reaches the highest value
of 59.6%. However, as the dimensions continue to increase,
the network’s performance decrease. At dimension=1024, the
overall F1 score is lower at 58.4%. The reason is the excessive
dimension of the embeddings, which are mixed with redundant
information and thus affect the network’s performance.

To study the effect of the contrastive loss, we perform experi-
ments using different contrastive loss weights λNCE. As the result
shown in Fig. 10(b), we can get the best overall F1 score when
λNCE = 0.1. Interestingly, with the growth of weight, the overall
F1 score remains constant at around 60.0%. This shows that, the
contrastive loss can only bring limited help to learning after it
has learned to a certain extent. This is because the features of
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Fig. 7. Visualization of features learned with pixel-wise entropy loss (5) (left)
and our pixel-wise contrastive loss (8) (right) on the Hainan dataset. Features’
color is in accordance with class labels. As presented, features of contrastive
loss have a result of clustering.

Fig. 8. Visualization results for analyzing the impacts of pixel contrastive loss
on segmentation prediction. From top to down: (a) image, (b) contrastive loss,
and (c) vanilla network.

different classes of buildings are similar, which makes it difficult
for the network to learn new knowledge.

In addition, to understand the improvement from pixel con-
trastive loss, we use t-SNE [57] to visualize the embedding
space before and after contrastive loss is added. Fig. 7 exhibits
that, after the addition of contrastive loss, the boundary between
features of different categories is more apparent, or the clustering
of embeddings of the same category is more compact. As a result,
the network can better distinguish different categories. From the
predicted masks in Fig. 8, with pixel contrastive loss, our method
is capable of producing a more accurate segment.

3) Boundary Loss: Although additional constraints on the
boundary can improve the segmentation effect, learning the
boundary with different loss functions will have a great impact
on the result. Table IX reports the influence of boundary con-
straints with different loss functions on the F1 score of binary
segmentation. BCE, weighted BCE and Dice loss yield about
0.3%, 0.4%, and 0.2% raise in binary F1 score, respectively.
The biggest gains of 0.6% were made by utilizing BCE and
Dice loss together in the network.

To find out how the combined Dice loss and BCE loss lead
to such competitive advantages, we analyze the visualization

TABLE IX
ABLATION STUDY OF USING DIFFERENT BOUNDARY LOSSES IN THE

LOCALIZATION NETWORK

Fig. 9. Visualization results for analyzing the impacts of different loss func-
tions to boundary prediction. From left to right: (a) ground truth, (b) BCE loss,
(c) weighted BCE loss, (d) Dice loss, and (e) Dice-BCE loss.

Fig. 10. Ablation Studies on the Hainan dataset with different Dice loss
weights λDice and contrastive loss weights λNCE. From left to right. (a) Binary
F1 score with different Dice loss weights λDice. (b) Overall F1 score with
different contrastive loss weights λNCE.

results using different boundary loss functions in detail. As
shown in Fig. 9, weighted BCE tries to solve the data imbalance
problem by applying balancing weights. Still, this hard balanc-
ing carries few promotions because the proportion of boundary
pixels of different images fluctuates over a wide range, and fixed
weights cannot cope with this problem. Dice loss makes bound-
aries clearer, but buildings are incomplete because it regards
loss function as the F1 score, thus ignoring the influence of a
single pixel. Consequently, combining Dice loss and BCE loss
can generate precise, clear, and complete building boundaries by
combining the advantages of both to complement each other. It
is worth noting that Dice loss is much brighter than the boundary
lines in the other comparisons. According to (10), we can get the
gradient of boundary prediction: b̂(b2 − b̂2)/(b2 + b̂2)2, which
is much stricter to wrong predictions than that of BCE loss.
Therefore, compared with BCE loss, the correct prediction of
Dice loss tends to be 1, while the wrong prediction tends to be
0, resulting in the brighter prediction.

We conduct experiments in Fig. 10(a) to study the impact
of different Dice loss weights on the boundary loss function.
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This weight parameter λDice has a certain impact on the perfor-
mance. We find that λDice = 1.0 achieves the best binary building
segmentation performance. Large λDice will cause the network
to focus too much on the boundary, leaving the incomplete
prediction.

V. CONCLUSION

This article proposes a CNN-based learning framework with
two subnetworks named BSSNet for building subclass seg-
mentation from satellite images. The first network is used for
binary building segmentation and guides the building locations
in building subclass segmentation. An SGF module is added to
the first network, and it improves the binary segmentation result
by supervising the spatial gradient map of prediction. In the
second network, building subclasses (HZ, LZ, SH, and SL) are
predicted. Intermediate features of the second network are super-
vised using contrastive learning loss to improve feature consis-
tency. Finally, predictions of the two networks are combined to
generate the final result. Experimental results demonstrate that
significant improvements can be obtained using our proposed
framework. Adequate experiments are performed on the Hainan
and xBD datasets to prove our method’s effectiveness.

For future works, it would be interesting to divide the building
into more fine-grained subclasses. And another possible direc-
tion of subclass segmentation is extending other classes, such as
vegetation and road. These classes are more challenging than the
building. For vegetation, the concept of object ceases to exist,
and there is less difference in features between subclasses. The
scale of roads is more flexible, and its subclasses may need to
be determined by features that are far apart on the same road.
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