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Multimodal Information Fusion for Weather Systems
and Clouds Identification From Satellite Images

Cong Bai , Member, IEEE, Dongxiaoyuan Zhao, Minjing Zhang, and Jinglin Zhang

Abstract—Seeing the cloud and then understanding the weather
is one of the important means for people to forecast weather.
There has been a certain progress in the use of deep learning
technology for weather forecasting, especially in the automatic
understanding of disaster weather from satellite image, which can
be seen as the image classification problem. Publicly available
satellite image benchmark database tries to link weather directly
with satellite images. However, single image modal is far from
enough to correctly identify weather systems and clouds. Thus, we
integrate images with meteorological elements, in which five kinds
of meteorological elements, such as season, month, date stamp, and
geographic longitude, and latitude, are labeled. To effectively use
such various modalities for clouds and weather systems identifi-
cation through satellite image classification tasks, we propose a
new satellite image classification framework: multimodal auxiliary
network (MANET). MANET consists of three parts: image feature
extraction module based on convolutional neural network, mete-
orological information feature extraction module based on per-
ceptron, and layer-level multimodal fusion. MANET successfully
integrates the multimodal information, including meteorological
elements and satellite images. The experimental results show that
MANET can achieve better weather systems and clouds and land
cover classification results based on satellite images.

Index Terms—Clouds, image classification, meteorology, multi-
modal.

I. INTRODUCTION

ABOUT 75% of global economic losses are due to disas-
trous weather, and more than 10 000 people die every

year due to severe weather [1]. Disastrous weather, including
tropical cyclone [2], [3], [4], severe convection [5], [6], [7],
and sand storm [8], [9], seriously threaten people’s lives and
property. Monitoring the formation and development of disas-
trous weather is the basis for weather forecasting. Cloud plays an
important role in weather systems since cloud type, cloud phase,
and cloud height [10] profoundly affect the generation and
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development of weather systems. Remote sensing (RS) image
is one of powerful tools to monitor clouds and weather systems.
As one kind of RS image, which can get top–down observations
of cloud cover and earth surface, satellite images can be used to
understand different weather conditions, evaluate their strength
and future development trends, and provide all-weather basis for
weather forecasts and disaster weather predictions. This article
tries to perform monitoring of clouds and weather systems, such
as tropical cyclones, extratropical cyclones [11], [12], [13], and
other possible disastrous weather [14], through satellite image
classification tasks. There are different kinds of classification
tasks. From the perspective of different forms of outputs, classi-
fication tasks can be divided into single-label classification and
multilabel classification. The former task is aiming at finding
the most significant label of images, and the latter allows to
output multiple correct labels. In terms of describing complex
images with multiple objects, multilabel classification is more
suitable. Not only label information but also semantic and spatial
relationships will be learned by multilabel classification models.
On the other side, when we talk about inputs, single-modal and
multimodal are two different forms. The former contains only
one form of data, image for example, while the latter are data
with different ones.

Multimodal classification [15], [16], [17], [18], [19] has
became a hot topic recently. Various sensors, such as radar,
infrared, and camera, can collect various kinds of data. And each
of the above-mentioned kind of data can be seen as a modal.
Single-modal learning is aiming at finding a mapping from
data to its low-dimensional representation, while multimodal
learning can further utilize the complementarity of diversified
data and extract more powerful joint features. However, most of
the existing research works on RS image classification are still
focused on single-modal image classification of ground-base
images. Different from the satellite images, the ground-based
image is captured by a vision sensor located on the ground. And
the related ground-based image classification mostly focuses on
single image modal classification. For example, Li et al. [20]
propose a cloud image detection method based on SVM to
remove thick cloud data for reducing the amount of data to
improve the efficiency of the data. But without taking other
modal information into consideration, it just focus sub-block
cloud image that is used as learning samples of SVM classifier.
Zhang et al. [21] propose a ground-based cloud image dataset,
consisting of 11 categories under meteorological standards as
well as CloudNet for ground-based cloud image classification.
Haut et al. [22] present a cloud implementation of a successful
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technique for hyperspectral image classification: the multinom-
inal logistic regression probabilistic classifier.

In summary, most of research works focus on the single modal
ground cloud image classification. Hence, how to understand
the weather systems and cloud from satellite image using its
multimodal information will be an interesting topic. In this
study, large-scale satellite cloud image database for meteoro-
logical research (LSCIDMR) [23] is upgraded to a multimodal
database named as LSCIDMR database with meteorological
element (LSCIDMRME). Different from LSCIDMR, LSCIDM-
RME not only has the image modal label information but also
has season, month, data stamp, geographic longitude, and geo-
graphic latitude information. The LSCIDMRME contains 521
950 multimodal label tags that can provide a more complete
description of weather information from multiple angles. At
the same time, we design a network framework to fuse the
characteristic information of multimodalities. The results of
comprehensive comparison experiments show that multimodal
image classification can achieve better performance than single-
modal image classification. The main contributions of this article
can be summarized as follow.

1) We upgrade original single-modal dataset LSCIDMR
into a multimodal dataset LSCIDMRME, which will be
uploaded to the IEEE Dataport for attracting more re-
searchers involving deep learning based meteorological
research.

2) LSCIDMRME has total six kind of information: image,
season, month, data stamp, geographic longitude, and ge-
ographic latitude. The total 104 390 images consist of 414
211 multilabels and 40 625 unique labels. And the label of
modal season, month, data stamp, geographic longitude,
and geographic latitude is one modal corresponds to one
image. That is to say, one image has five multimodal
labels. In other words, LSCIDMRME consists 521 950
multimodal labels.

3) Multimodal auxiliary network (MANET) for satellite im-
age classification is proposed to fuse multimodal infor-
mation. MANET consists of three parts: image feature
extraction module (IFEM) based on convolutional neural
network (CNN), meteorological information feature ex-
traction module (MIFEM) based on perceptron, and layer-
level multimodal fusion. Experimental results show that
the proposed MANET can achieve better classification
performance than single image modal classification.

The reminder of this article is organized as follows. Section II
presents related work on single-modal image classification,
multimodal image classification, and RS image classification.
Multimodal database LSCIDMRME is detailed in Section III.
The proposed MANET is shown in Section IV followed by
experimental evaluation in Section V. Finally, Section VI gives
conclusion and perspectives.

II. RELATED WORK

A. Single-Modal Image Classification

Image classification is a basic task in computer vision. From
the 10-class gray-scale image handwritten digit recognition task

performed on MNIST to 10-class cifar10 and 100-class cifar100
tasks, then to the later ImageNet [24], image classification is
accompanied by the growth of the dataset. Nowadays, thanks to
datasets containing more than 10 million images and more than
20 000 categories, such as ImageNet, the accuracy of image clas-
sification has surpassed that of humans. Classical convolutional
networks, such as LeNet, AlexNet, GoogleNet, ResNet, and
EfficientNet, utilize deep learning to investigate the problems
of single-modal image classification. LeNet [25] is a multilayer
neural network trained with backpropagation algorithm that is
marked as the emergence of CNN. AlexNet increases the depth
of the network and adopts dropout algorithm that is well avoids
overfitting and significantly improves the accuracy of image
classification. GoogleNet [26] successfully increases the depth
of model without increasing the complexity of computation.
ResNet [27] gets the highest accuracy of image classification
by increasing the depth of neural network. EfficientNet [28]
systematically study model compression and confirms that care-
ful balance of network depth, width, and resolution can bring
better results. Through this observation, they propose a new
zoom method: use simple and efficient composite coefficients
to uniformly zoom all dimensions, including depth, width, and
resolution. However, the success of those models mentioned
above has just improve the accuracy of image classification, none
of them takes the advantages of the mutual enhancing between
different modalities.

B. Multimodal Image Classification

Single-modal learning was aimed at learning a high-level
representation of images, while multimodal learning attempts to
extract complementary information of diversified forms of data.
According to the classification tasks of different multimodal
datasets, different multimodal fusion classification algorithms
are designed. Camps-Valls et al. [29] contrive to use a cross-
kernel function to map two modalities datasets into the same
feature space. The versatility of classification has been improved
after using this method. Couprie et al. [30] treat the multimodal
data as multichannel input data into the CNN. The multichannel
input method probably interferes with the classification pro-
cess. Wang et al. [31] propose a train structure that can train
two modalities, respectively, and input the result to two fully-
connected layers. Wang et al. [32] concatenate the activation
in the joint loss function to establish the correlation between
the two different modals. In summary, there are many different
multimodal tasks for classification, detection, segmentation,
etc. Thus, we also propose a classification framework for this
task focusing on multimodal classification task in meteorology
research.

C. RS Image Classification

From the aspect of classification granularity, pixel-level clas-
sification (PLC) and image-level classification (ILC) are re-
quired by different applications in RS field. The target of PLC
is to generate a classification map of the given images. In other
words, PLC task is designed to find the corresponding category
for every pixel in given images. Some PLC benchmarks, such
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as Houston2013,1 Houston2018,2 and CWI [33], are proposed
for various purposes. For ILC tasks, labels are annotated at
image level, and ILC can further be subdivided into single-
label classification and multilabel classification problems. The
former is aiming at finding the most significant categories of
the given images, while the latter allows multiple correct labels
for a single image. Most of existing classification datasets are
developed in single-labeled form [34], [35], [36]. However, due
to the requirement of describing a complex image with multiple
objects, some multilabeled datasets [37], [38] have also been
proposed. In terms of the modal of the data, except single-
modal image datasets, multimodal benchmarks are also avail-
able, such as above-mentioned Houston2013, Houston2018,
and BigEarthNet-MM [39] which is the extended version of
BigEarthNet [38].

CNN is mainstream solution in RS image classification.
Furthermore, many specific methods are developed in consid-
eration of the nature of RS images. To balance performance
and efficiency, a lightweight discriminative model [40] and
LCNN-BEF [41] have been proposed. What is more, LCNN-
BEF considers the validity of both deep and shallow CNNs, and
for the same reason, best representation branch model [42] and
SCCov [43] have also been brought forward. Inconsistencies
in scales of RS images motivated the appearance of SEMSD-
Net [44] and SF-CNN [45]. To fully utilize the spectralwise in-
formation of hyper-spectral images, HybridSN [46] and mixed-
convolution [47] design 3D–2D hybrid CNNs. For narrowing
the gap between the amount of annotated data and raw RS
data, semisupervised and unsupervised methods, such as GAN-
based method MARTA-GAN [48], and Attention-GAN [49],
similarity-based auxiliary training method Siamese-CNN [50],
and kernel collaborative representation [51] are proposed. To
take multimodal inputs, FUSION-FCN [52], deep-shallow [53],
and two-branch network [54] have been developed, and modal
fusion techniques are studied in detail in [55].

Related works discussed above are for single-label RS image
classification, as for multilabel RS image classification, not only
the most significant semantic representation but also semantic
and spatial relationships between different labels should be
learned by the model. Specifically in RS field, some approaches
are directly transplanted from general CV filed, using off-the-
shelf deep learning tools, such as CNN [56]. However, there
are also some methods especially designed for RS images.
Two-branch network [57], [58], attention mechanism [59], [60],
[61], and GCNs [62] are introduced in RS field to model above-
mentioned semantic and spatial relationships between objects in
images.

In the formation and development of Weather systems, cloud
plays an important role. Cloud and Weather classification via
images is of great significance. [63] uses traditional method to
extract the feature of satellite cloud imagery. Modern deep learn-
ing methods are powerful tools for solving cloud and weather
image classification tasks. Li et al. [64] detect and classify clouds
with Deep neural networks from the perspective of radiance.

1[Online]. Available: https://hyperspectral.ee.uh.edu/?page_id=459
2[Online]. Available: https://hyperspectral.ee.uh.edu/?page_id=1075

TABLE I
NUMBER OF IMAGE IN EACH CLASS AND CORRESPONDING RATIO IN

LSCIDWS-S AND LSCIDWS-M

Except RS images, ground-based cloud images are also explored
in cloud classification [21].

In conclusion, there are limited researches on cloud and
weather system classification especially based on satellite im-
ages and deep learning. And this article, to some extent, is filling
such a research gap.

III. LSCIDMRME: LSCIDMR DATABASE WITH

METEOROLOGICAL ELEMENT LABEL

LSCIDMR [23] is the first public available large-scale cloud
image database for meteorological research. This database has
104 390 images with sizes of 1000*1000 pixels. Two forms of
database are available, single-labeled LSCIDMR-S and mul-
tilabeled LSCIDMR-M. Table I lists detailed information of
LSCIDMR. The ratio of a specific label in LSCIDMR-S equals
the number of that label divided by the total number of labels
in the database without Labeless. The ratio of a specific label
in LSCIDMR-M equals the number of that label divided by
the total number of images in the database. Fig. 1 gives two
image examples of each categories of LSCIDMR-S. One image
is annotated with one label in LSCIDMR-S that could not show
the rich information. Thus, LSCIDMR-M have a total 414 211
multiple labels that could provide more information in an image.
The second and third columns of Table II give five examples of
two different annotation methods.

However, all the labels of LSCIDMR are only from the
perspective of image information, which is not enough in recog-
nizing clouds and weather systems. In fact, weather conditions
have the essential connection with the geographic location and
seasonal information. Hence, such information elements labels
are added as follows: Season, Month, Date, Longitude, and Lati-
tude. Adding these geographic information elements will enrich
the LSCIDMR from the image to seasonal and geographical
information. The motivations of choosing such five elements
are as follows.

Season [65]: There are several different stages of climate
change in a year that can be generally divided into—spring,
summer, autumn, and winter. Fig. 2 shows the statistical analysis
of typical weather systems in different seasons. From this figure,
we can see tropical cyclones and extratropical cyclones in all
seasons, but we observe tropical cyclones mostly in summer

https://hyperspectral.ee.uh.edu/{?}page_id=459
https://hyperspectral.ee.uh.edu/{?}page_id=1075
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Fig. 1. Images in LSCIDMR-S: selected examples of 11 classes are shown. (a) Tropical cyclone. (b) Extratropical cyclone. (c) Snow. (d) Frontal surface.
(e) Westerly jet. (f) Low water cloud. (g) High ice cloud. (h) Desert. (i) Vegetation. (j) Ocean. (k) LabelLess.

Fig. 2. Statistical analysis of typical weather systems in different seasons.

and autumn. Meanwhile, extratropical cyclones are normally
observed in spring and winter. Thus, the season is an important
factor for meteorological research.

Month: Different catastrophic weather has different probabil-
ities in the early, middle, and late stages of the same season.
Thus, we add the Month as a factor for meteorological research.

Date stamp: A date is a specific time that can be named, for
example, a particular day or a particular year. The probability of
same type of disastrous weather occurring in the first ten days of
the same month, the middle ten days, and the second ten days of
the same month is also different. Hence, we take the Data stamp
into the consideration.

Longitude and latitude: The probability of different severe
weather occurring in different geographical locations is also
different as different geographic locations have different

geographic characteristics, such as oceans, deserts, vegetation,
and etc. All of them have a certain impact on the formation of
weather systems. Thus, the geographic information including
longitude and latitude is also added in the database.

The weather system [66] is a very complex system and many
factors must be considered. However, information mentioned
above is added as it can be extracted from Himawari-8 satellite
directly.

IV. MANET: MULTIMODAL AUXILIARY NETWORK FOR

SATELLITE IMAGE CLASSIFICATION

A. Overview

The structure of our MANET is shown in Fig. 3. And the Algo-
rithm 1 shows the pipeline for training MANET. Our framework
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TABLE II
FIVE EXAMPLES OF LSCIDMRME IMAGES

Fig. 3. Framework of MANET. There are three main modules in MANET—
IFEM, MIFEM, and MFN. In IFEM, images are encoded as semantic represen-
tations fimage through a CNN; in MIFEM, meteorological features fmeteorological
are extracted from meteorological elements through an MLP; then fimages and
fmeteorological are fused in MFN through another MLP to get joint feature
fmultimodal; finally, depending on whether the task is multilabeled or single-
labeled, fmultimodal are fed into Softmax or Sigmoid function to get final result.

contains three main modules: IFEM, MIFEM, and multimodal
fusion based on neural network (MFN). The main purpose of
IFEM is to use deep learning method to extract the image
representation from images. And MIFEM module contains two
main steps. First, it performs nondimensional data processing on
each geographic information element and then performs feature
extraction on the processed data with a multilayer perceptron.
MFCN is a self-designed neural network to fuse the image
and meteorological feature information extracted from IFEM
and MIFEM, respectively. Following the feature extraction of

Algorithm 1: Pipeline of training MANET: Multimodal
auxiliary network for satellite image classification.

Input: The training set of image modal, IXtrain; The
training set of geographic information modal,
GXtrain; The number of model training, m;

Output: The classification result of testing set of image
modal, ITtrain; Model weights of the entire
MANET after training MMANET;

1: Initialize CNN with parameters pretrained on
ImageNet, and initialize other parts with random value;

2: Calculate the loss L based on the network prediction
result and the real label;

3: Backpropagation updates the model parameter W of
the entire network framework MMANET;

4: Repeat steps 1–3 of the algorithm until the model
converges or reaches the maximum number of training
m; return ITtrain; MMANET;

the fused multimodal representation information, multifeature
information is classified. These three modules are detailed in
the following three sections.

B. Image Feature Extraction Module

The main task of IFEM is to use CNNs to extract high-
dimensional features from images. The four kinds of layers
in CNNs are: convolution layer, pooling layer, fully connected
layer, and activation layer. Convolutional layer is used for image
feature extraction. The pooling layer compresses the input fea-
ture map. On the one hand, it makes the feature map smaller and
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Fig. 4. Framework of meteorological information process model. Dimensionless processing is firstly performed on meteorological elements through min–max
scaler, and processed information is than concatenated and fed into an MLP to get meteorological feature.

simplifies the network calculation complexity; on the other hand,
it performs feature compression and extracts main features.
The fully connected layer connects all the features and sends
the output value to the classifier. The activation function is
used to add nonlinear factors, as the expressive power of the
linear model is not enough. Most of CNNs are the stacking
and improvement of layers mentioned above. Therefore, in our
module, we use mainstream image classification networks to
complete the feature extraction fimage of image modalities.

C. Meteorological Information Feature Extraction Module

MIFEM is used to extract the feature of meteorological in-
formation other than images. Fig. 4 is the flowchart of overall
processing of this module that mainly includes two parts: data
processing and meteorological feature extraction.

In the practice of machine learning algorithms, we often
need to convert data of different specifications to the same
specification or to convert data from different distributions to
a specific distribution. This requirement is collectively referred
to as “dimensionless” data. Linear dimensionless [67] includes
centering (Zero-centered or Mean-subtraction) processing and
scaling processing (Scale). The essence of centralization is to
subtract a fixed value from all records, that is, to move the
data sample data to a certain position. The essence of scaling
is to fix the data in a certain range by dividing by a fixed value.
Taking the logarithm is also a kind of scaling process. As for
the characteristics of meteorological information, we choose
the Min–Max scaling method to process it. When the data are
centered according to the minimum value and then scaled by the
range (maximum–minimum), the data move by the minimum
unit and will be converged to between [0,1], and this process is
called data as Min–Max Scaling. xi in (1) represent the ith data

in the modal. min(xi) and max(xi) represent the smallest value
and the largest value in this modal, respectively. xi

∗ is the ith
data after Min–Max Scaling processing.

xi
∗ =

xi − min(xi)

max(xi)− min(xi)
. (1)

After processing each modal data, we input the processed
data into the multilayer perceptron built by ourselves. Our self-
built multilayer perceptron mainly includes two fully connected
layers. In (2), let i as the subscript of the previous layer of neurons
or the input layer node, j as the subscript of the current layer
of neurons or hidden layer of neurons, and wij represents the
weight of each neuron in the previous layer to the current neuron,
that is, the weight of neuron j. hj represents the weighted sum
of all inputs of the current node.

hj =

M∑
i=0

wijxj . (2)

In (3), aj represents the output value of the hidden layer
neuron.

aj = g(hj) = g

(
M∑
i=0

wijxij

)
. (3)

fmeteorological in (4) represents the output value of the output
layer, it is also meteorological feature extracted from the network
structure. hk represents the input weighted sum of neurons k in
the output layer.

fmeteorological = ak = g(hk) = g

(
M∑
i=0

wjkxjk

)
. (4)

We add dropout [68] to the multilayer perceptron we es-
tablished to prevent possible overfitting of the model. Briefly
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speaking, dropout is to let the activation value of a certain
neuron stop working with a certain probability p when the
network is propagating forward, which can make the model
more generalized because it will not rely too much on certain
parts characteristics.

D. Multimodal Fusion Network

Multimodal fusion network is used to get joint feature
fmultimodal after extracting features from image modal and mete-
orological modal. What is more, MFN further extract the fused
features for final classification. fimage and fmeteorological features
extracted from IFME and MIFEM, respectively, are the input of
our self-built MFN. The input of this module is the features
extracted from two front modules. Unlike the IFME, using
mainstream CNN as the feature extractor, MFCN is designed on
the basis of multilayer perceptron. And the purpose of MFCN
is to extract the multimodal feature fmultimodal. MFCN mainly
includes three fully connected layers and choose ReLU as activa-
tion function. And we also add two dropout layers after first and
second fully connected layers in order to avoid overfitting. The
activation function selected in the last fully connected layer is
different according to the specific classification task. We choose
the softmax activation function for the single-label classification.
In (5), k represents the total number of outputs in MFN, Zj

represents the jth original output value.
∑k=1

k eZk represent
all the factors of the original output value, which means that
the different probabilities obtained by the Softmax function are
related to each other.

softmax(Zj) =
eZj∑k=1
k eZk

for j = 1, 2, ..., k. (5)

Different from single-label classification, we choose sigmoid
function [69] for multilabel classification to project output log-
its to probability domain because in multilabel classification
problem, for one image, multiple correct answers exist and
the separate processing of different logits is needed. In (6), Zj

represents the jth original output value.

sigmoid(Zj) =
eZj

1 + eZj
. (6)

We get the final classification result based on the output value
of the final activation function.

V. EXPERIMENTS AND ANALYSIS

Experiments are conducted on a NVIDIA Quadro RTX
A6000 GPU with 48 G memory. LSCIDMRME is composed
of LSCIDMRME-S and LSCIDMRME-M, dealing with single-
label and multilabel. Hence, two groups of experiments are
carried in this section.

A. Experiments on LSCIDMRME-S

1) Baseline Modal Used in the Image Feature Extraction
Module: We utilize three classical CNNs as the base model
in IFEM in the experiments: AlexNet [24], ResNet-101 [70],
and EfficientNet-B5 [28]. These base models and corresponding
CNN part of MANET are pretrained on ImageNet, and other

TABLE III
LSCIDMR WITH LABELLESS: OVERALL ACCURACIES (%) OF FOUR KINDS OF

DEEP LEARNING METHODS UNDER DIFFERENT TESTING RATIOS

parts of MANET are initialized randomly. Feature vectors of
4096 dimensions, 2048 dimensions, and 2048 dimensions are
constructed by the features extracted from the last fully con-
nected layer of AlexNet, ResNet-101, and EfficientNet, respec-
tively.

2) Parameter Setting: Two different training and testing ra-
tios are taken into consideration in order to get a more compre-
hensive evaluation: 10% and 20%. For the former, 10% of data in
each category is used for testing and the rest for training. For the
latter, 20% of the data in each category is used for testing, while
the rest is served as the training set. During training, the input to
the CNN model is a batch of RGB images, whose sizes are fixed
at 256 × 256 pixels. Simple data augmentation such as vertical
flipping at random with a certain probability and proportional
cropping is performed. We choose cross-entropy loss as the loss
function, and stochastic gradient descent (SGD) is selected as
the optimizer. The momentum rate of SGD is set as 0.9 and the
learning rate is initialized as 1× 10−5. Training will last 100
epochs and the learning rate will be decreased by a factor of 5
every 20 epochs.

3) Evaluation Metrics: Overall accuracy [71] and confusion
matrix [72] are used to evaluate the performance of image
classification models. We perform training of these networks
with 10 epochs, and the means and standard variances of the
overall accuracy for each epoch would be calculated. During the
training process, the model that can get the highest means and
standard variances of the overall accuracy is saved as best models
for the computation of confusion matrix. And then, through each
of these best models, the correct and incorrect classification of
each category would be calculated and put to corresponding
position of the confusion matrix.

4) Results and Analyses: Table III presents the means and
standard variance of the overall accuracy of each model with
different testing ratio. From this table, it can be observed that
the proposed MANET is more effective compared to the clas-
sification accuracy of a single modal. The overall classification
accuracy of the proposed method has been improved after fusing
the information of other meteorological modalities. Compared
with the test ratio 20%, the classification accuracy got when the
test ratio is 10%, reaches a better result. As for 10% testing ratio,
there is more data that can be used in training and get more infor-
mation during this process. And MANET-ResNet-101 achieves
the highest classification accuracy compared with others.
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Fig. 5. LSCIDMR-S: Confusion matrices of baseline models under the different testing ratios. That of 10% are shown in (a)–(c) and that of under 20% are shown
in (d)–(f). ExtratropicalC refers to Extratropical Cyclone. (a), (d) AlexNet. (b), (e) ResNet-101. (c), (f) EfficientNet-B5.

Figs. 5 and 6 show confusion matrices of baseline models and
MANET, respectively, under different test ratios. Comparing
these two figures, it can be told that with the same baseline
model, the addition of meteorological information would im-
prove the classification accuracy of each category, especially
for weather systems and clouds. Take Frontal surface as an
example, in Fig 5(a), the accuracy of it through AlexNet is
0.30, and if we add meteorological information into model
as the form of MANET, the accuracy will improve to 0.43,
as shown in Fig. 6(a). This kind of improvement of specific
categories can be seen on different baseline models and test
ratios. Above all, the accuracy of weather systems and cloud
types are improved to varying degrees with the help of mete-
orological information. Thus, it is proved that the purpose of
improving the performance of identifying weather systems and
clouds is achieved by MANET. This improvement comes from
the introduction of prior knowledge about what weather systems
or cloud would emerge at what time and location. What is more,
because 60% of samples are in the Labeless category, a shortcut
solution for models is simply predicting unrecognized images as
Labeless, and this cheating way ensures 60% correct probability
of guessing. But we can tell from confusion matrices that this
harmful situation will be mitigated by MANET since the number
of false Labeless of MANET is smaller than baseline models.

B. Experiments on LSCIDMRME-M

1) Parameter Setting: For LSCIDMRME-M, the setting of
training and testing ratio is the same as LSCIDMRME-S: 10%

and 20%, respectively. The network structures mentioned above
are utilized, but some slight modifications in the structure are ap-
plied since there are some differences in the processes of multi-
label classification and single-label classification. The input im-
age size of networks is 256×256 pixels, same as LSCIDMRME-
S. The activation function is changed to Sigmoid [69] in the
added fully connected layer of these networks; the loss function,
further more, is replaced by binary cross entropy [73], [74].
Sigmoid is utilized as activation function to map the vector of
each category’s prediction score into the probability domain,
which is in the range of 0–1. The threshold is set to 0.5. If
the prediction score of a sample for a category is greater than
this threshold, this sample is then categorized as that class.
We still chose SGD as the optimizer. The initial learning rate
and adjustment strategy of learning rate are the same as the
above-mentioned experiments on LSCIDMRME-S.

2) Method Standard: Precision, recall, accuracy, and Abso-
luteTrue are introduced as four indicators to evaluate our multi-
label classification models; the specific formulas and principles
of these four metrics are as follows. For a better illustration
of the relationship between the ground truth and the predicted
labels in a same patch, we draw a chart in Fig. 7. Given N as
the number of patches in the dataset and Lk as the subset that
contains every label for the kth patch, while L∗

k denotes the
subset which contains every predicted label for the kth patch. In
(9), the formula Lk ∪ L∗

k represents that every element in this
set is a member of Lk or L∗

k. And an element in Lk ∩ L∗
k in

(7)–(9) denotes a sample that belongs to both Lk and L∗
k. ||∗ ||

denotes the number of elements of a specific set.
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Fig. 6. LSCIDMRME-S: Confusion matrices of proposed MANET under different testing ratios. That of 10% are shown in (a)–(c) and that of under 20% are
shown in (d)–(f). ExtratropicalC refers to Extratropical Cyclone. (a), (d) MANET-AlexNe. (b), (e) MANET-ResNet-101. (c), (f) MANET-EfficientNet.

Fig. 7. Schematic drawing to show the meanings of some set theory symbols
used in evaluation protocols in multilabel image classification. Lk represents
the subset that contains all the label(s) for the kth sample; L∗

k represents the
subset that contains all the predicted label(s) for the kth sample.

Precision [75]: Precision is the ratio of the number of properly
predicted labels to all predicted labels.

Precision =
1

N

N∑
k=1

( ||Lk ∩ L∗
k||

||L∗
k||

)
. (7)

Recall [75], [76]: Recall is the ratio of the number of correctly
predicted labels to the real labels.

Recall =
1

N

N∑
k=1

( ||Lk ∩ L∗
k||

||Lk||
)
. (8)

Accuracy [71]: Accuracy is the ratio of correctly predicted
labels to the total labels including correctly and incorrectly
predicted labels, those real labels missed in the prediction are
also included.

Accuracy =
1

N

N∑
k=1

( ||Lk ∩ L∗
k||

||Lk ∪ L∗
k||
)
. (9)

AbsoluteTrue [76]: In the kth sample, when and only when
all its label(s) predicted are identical to its true label(s) can be
scored with 1; otherwise, 0.

AbsoluteTrue =
1

N

N∑
k=1

Δ(||Lk, L
∗
k||) (10)

Δ(||Lk, L
∗
k||) =

{
1, all labels in Lk are same as in L∗

k

0, otherwise
.

(11)

To calculate the four metrics mentioned-above, during the
training process, the best model of each deep learning network
in different training and testing ratios is saved.

3) Results and Analyses: Different metrics of baseline mod-
els and MANET are listed in Tables IV and V, respectively.
The addition of meteorological information can improve the
performance of multilabel classification on most metrics of all
three baseline models. What is more, we can draw similar con-
clusions with single-label classification experiments that smaller
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TABLE IV
EXPERIMENTAL RESULTS MEASURED BY PRECISION, RECALL, ACCURACY, AND ABSOLUTETRUE OF SINGLE-MODAL IMAGE CLASSIFICATION ON LSCIDMR-M IN

DIFFERENT TEST RATIOS

TABLE V
EXPERIMENTAL RESULTS MEASURED BY PRECISION, RECALL, ACCURACY, AND ABSOLUTETRUE OF MULTIMODAL IMAGE CLASSIFICATION ON LSCIDMRME-M

IN DIFFERENT TEST RATIOS

TABLE VI
SINGLE-MODAL IMAGE CLASSIFICATION ON LSCIDMR-M: EXAMPLE OF LSCIDMR-M IMAGES WITH THE TRUE MULTILABELS AND THE MULTILABELS

ASSIGNED BY DIFFERENT METHODS IN DIFFERENT TEST RATIOS
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TABLE VII
MULTIMODAL IMAGE CLASSIFICATION ON LSCIDMRME-M: EXAMPLE OF LSCIDMR-M IMAGES WITH THE TRUE MULTILABELS AND THE MULTILABELS

ASSIGNED BY DIFFERENT METHODS IN DIFFERENT TEST RATIOS

test ratio can bring better performance due to a bigger training
set. Generally speaking, consistent with the experiment results
on LSCIDMRME-S, Tables IV and V proved that MANET has
the ability to improve overall performance of classification.

From the perspective of model implementation, the multilabel
classification task is done by changing the last Softmax function
of single-label classification model to Sigmoid function. In other
words, we canceled the incompatible assumptions of single-
label classification to make model has the ability to predict
multiple labels. This make our models actually groups of binary
classifiers that can model the different labels separately. As given
in Tables VI and VII, some examples of prediction results are
listed. We can see that the first example image in Table VI
is annotated with Tropical Cyclone and all baseline models
cannot identify that label, but with the help of meteorological
information, MANET-AlexNet and MANET-EifficientNet-B5
are able to detect such labels. From these two tables, we can
also see that MANET is helpful for identifying land cover labels
such as Desert and Vegetation. These proved that the proposed
MANET has better performance on modeling weather systems,
clouds, as well as other land cover labels.

VI. CONCLUSION

In this article, we upgrade the original single-modal dataset
LSCIDMR into a multimodal dataset LSCIDMRME. Compared
with LSCIDMR, LSCIDMRME has 521 950 multimodal tags.

The new multimodal dataset will be uploaded to the GitHub and
IEEE Data port. And we design MANET for satellite image clas-
sification by fusing multimodal information of LSCIDMRME.
And the experimental results reflect that the proposed framework
is able to achieve better classification performance than a single
image modal classification. The purpose of identifying specific
cloud types and weather systems also benefits from MANET
through RS image classification tasks.
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