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An Efficient Class-Constrained DBSCAN Approach
for Large-Scale Point Cloud Clustering

Hua Zhang ", Zhenwei Duan

Abstract—To better interpret the scene and facilitate the sub-
sequent processing of large-scale point cloud, clustering is of-
ten implemented in the preprocessing stage. However, when the
original density-based spatial clustering of application with noise
(DBSCAN) approach is used for point cloud clustering, it is easy
to categorize closely spaced vegetation points and nonvegetation
points into the same cluster by mistake. Aiming at the problem, this
article presents an improved DBSCAN by embedding a strategy of
class constraint, which is called CC-DBSCAN. Specially, based on
the RGB and label information of each point in the training sam-
ples, by using the logistic regression model, the logistic regression
color index (LRCI) is calculated for each point in the clustering
samples. Then, points to be clustered are classified as vegetation
points and nonvegetation points through the LRCI. Furtherly, the
class information of point is introduced as a constraint for ensuring
the core point and its directly density-reachable points belong to
the same class, thus, solving the problem that confusion cluster
of the adjacent vegetation points and nonvegetation points. We
evaluate our approach on the benchmark SensatUrban dataset,
where Cambridge 28 scene dataset is taken as the training set
and Cambridge_18 scene dataset is as the dataset to be clustered.
Experimental results show that our method achieved 97.20 % purity
of point cluster, which outperforms the other DBSCAN methods.
At the same time, it takes only 24.25 s for clustering 2 million
points, which indicates that CC-DBSCAN has high computational
efficiency and good practicability.

Index Terms—Class constraint, color index, density-based
spatial clustering of application with noise (DBSCAN), logical
regression, point cloud.

1. INTRODUCTION

OINT cloud data are widely applied in remote sensing,
forest ecology, urban change detection, and autopilot tech-
nology, etc., for its rich geometric, shape, and scale information
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[1]. While effective interpreting the point cloud data, as a core
step of the aforementioned applications, plays an important role.
Due to that large-scale point cloud has the characteristics of
many kinds of ground objects, complex types, and large amounts
of data, the task of fast and precise interpretation of point cloud
remains a great challenge. Thus, clustering methods are often
implemented to preprocess point cloud of large scene, which is
helpful to better understand the scene and facilitate subsequent
processing, such as the monomerization of ground objects, the
learning of overall geometric features, and the balanced sam-
pling of scene points [2]. On this basis, this article focuses on
the developing clustering method, which is used to preprocess
the point cloud data.

Clustering is a technique of unsupervised clustering of similar
data into a cluster based on internal attributes [3]. Many cluster-
ing algorithms, such as K-means [4], k nearest neighbor (KNN)
[5], fuzzy c-means [6], expectation maximization [7], ISODATA
[8], BIRCH [9], Sting [10], Mean shift [11], density-based spa-
tial clustering of application with noise (DBSCAN) [12], [13],
and their variations, have been exploited for unsupervised point
cloud clustering. Amongst them, considering the characteristics
of point cloud as described earlier, DBSCAN is the most suitable
for point cloud clustering due to its robustness against noise and
ability to detect arbitrary shapes of clusters in any dimension
[12]. Despite its advantages, the original DBSCAN still has
the following main shortcomings: 1) it is difficult to determine
the appropriate values of input parameters, including scanning
radius eps and density threshold minPts, 2) the computational
complexity is high due to redundant distance computations.
These drawbacks hinder the application of DBSCAN algorithm
in large-scale point cloud clustering to some extent.

In order to solve the aforementioned shortcomings of tradi-
tional DBSCAN algorithm, many researchers have done large
number of efforts to enhance its performance [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24]. Karami and Jo-
hansson [14] proposed a BDE-DBSCAN, which combines the
binary differential evolution (BDE) and DBSCAN algorithm
to automatically determine proper values for parameter eps
and minPts. Khan et al. [15] presented an adaptive DBSCAN
algorithm to determine appropriate values for parameter eps and
minPts so that the algorithm can identify clusters with varying
densities. Wang et al. [16] proposed an improved DBSCAN
method for lidar data segmentation, in which the clustering pa-
rameters for DBSCAN can be estimated automatically based on
the characteristics of data without any prior knowledge. Lai et al.
[17] suggested a new method for determining the parameters of
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Fig. 1.

DBSCAN, where the multiverse optimizer algorithm is utilized
to optimize the parameters through a special variable updating
method. Chen et al. [18] proposed the APSCAN algorithm, in
which the affinity propagation algorithm was utilized to generate
a normalized density list, and then the density parameters in
the normalized density are combined as the parameters of the
DBSCAN. In [19], based on the clusters from DSets, the input
parameters are automatically determined. The aforementioned
methods aim to specify appropriate values for parameters eps
and minPts in DBSCAN. In addition, to improve the computa-
tional efficiency of DBSCAN for dealing with large-scale data,
many strategies have been put forward, Li [20] proposed an im-
prove DBSCAN, where a nearest neighbor similarity based fast
density algorithm and fast nearest neighbor search are presented
for reducing the number of distance calculations, and then the
clustering efficiency is improved. Jang and Jiang [21] presented
the DBSCAN+-+- algorithm to improve the competitive perfor-
mance and robustness by computing the densities for a chosen
subset of points based on uniform and greedy k-center-based
sampling strategies. In [22], a new KNN-BLOCK is presented
for fast clustering, in which a fast approximate KNN algorithm
is first utilized to detect three different blocks where all points
have the same type, then a fast algorithm is proposed for merging
CBs and assigning noncore points to proper clusters. Kumar and
Reddy [23] proposed a fast DBSCAN clustering algorithm by
accelerating the neighbor search operations based on a novel
graph-based index structure. Chen et al. [24] suggested a NQ-
DBSCAN algorithm, which reduced the unnecessary distance
computations by using a novel local neighborhood searching
technique. These methods have promoted the development and
application of DBSCAN to some extent, however, there are still
some problems exit when clustering outdoor large-scale point
clouds. To illustrate this point, we visualize the clustering results
of traditional DBSCAN and our proposed method.

As shown in Fig. 1(a), in the outdoor scene, the nonvegetation
objects are generally discontinuous and not in contact with
each other in geometric space, whereas the vegetation objects
are usually prosperous and close to or even in contact with

Visualization of clustering results by DBSCAN and proposed method. (a) Original point cloud. (b) DBSCAN (xyz). (c) Proposed CC-DBSCAN.

other types of objects (such as buildings). When the original
DBSCAN algorithm is utilized to cluster the large-scale point
clouds in the outdoor scene, the vegetation points and non-
vegetation points are easily categorized into one cluster only
based on distance-based judgment using the position informa-
tion (z,y,z) due to that the vegetation points are close to
nonvegetation points in space. Fig. 1(b) shows the clustering
results by the DBSCAN algorithm based on the position (xyz)
of points, we can find that a large number of building points
and vegetation points are categorized into the same clusters by
mistake while most of the points are correctly clustered using the
proposed class-constrained DBSCAN (CC-DBSCAN) in this
article.

To address the problems, this article presents an efficient
CC-DBSCAN approach for large-scale point cloud clustering.
First, the logistic regression color index (LRCI) is calculated for
each point by using the logistic regression model based on the
RGB and label information provided by the training samples.
Then, points needing to be clustered are labeled as vegetation
points and nonvegetation points through the calculated LRCI of
each point. Finally, the class information of point is introduced
as a constraint in the DBSCAN to reduce the number of distance
calculations and prevent points close to each other but different
classes. The main contributions of this article are listed as
follows.

1) We propose a CC_DBSCAN algorithm for efficient and

accurate large-scale point cloud clustering.

2) A novel color index (LRCI) is proposed and calculated
for efficiently categorizing points as vegetation points and
nonvegetation points.

A novel class constraint strategy is incorporated in
CC_DBSCAN to reduce the number of distance calcu-
lations and prevent points close to each other but different
classes. In addition, other color index can also be favorably
adopted in our algorithm.

The proposed algorithm achieves 97.20% purity of point
cluster, and high computational efficiency with 24.25 s for
clustering 2 million points.

3)

4)
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Fig. 2. Framework of CC-DBSCAN for point cloud clustering.
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Fig. 3. Diagram of the DBSCAN algorithm.

nonground points are furtherly processed through the following
steps: based on the RGB and label information of each point
in the training samples, the classification decision boundary
between vegetation points and nonvegetation points is obtained
by using the logistic regression model, then, on the basis of the
boundary parameters obtained from the aforementioned classifi-
cation decision boundary, the LRCI is calculated for every point
and used to classify each point in the point cloud to be clustered
as vegetation point or nonvegetation point. Furtherly, together
with the position information (z,y, z), the class information
of each point is embedded as a constraint for the DBSCAN to
cluster the nonground points. Finally, the clustered results and
the ground points are merged as the final clustering result.

A. Improved DBSCAN With Class Constraint (CC-DBSCAN)

The basic principles of DBSCAN and the DBSCAN-based
algorithms [12] are as following: according to the setting scan-
ning radius (eps) and the minimum number of included points
(minPts), randomly selecting a point which is not visited as
the starting point, and finding out its neighborhood points that
are within a radius of eps (including eps). If the number of
neighborhood points > minPts, then the current point and its
neighborhood points form a cluster, which is called directly
density-reachable points set, and the current point is named as
core point, the starting point is marked as visited. Recursively, all

points in the cluster that are not marked as visited are processed
in the same way, by this way, the cluster is expanded. From
above, we can see that judging whether a point belongs to a
cluster is only based on the distance between points without
considering point’s characteristics, such as land cover category,
color, etc., which may lead to mistake. For example, as described
earlier, the vegetation points are close to nonvegetation points
for the vegetation cover, only distance-based judgment may lead
to categorize them into one cluster by mistake. To address this
problem, the strategy of class constraint is incorporated in the
DBSCAN, which can be described as following: when judging
whether the current point and its neighborhood points belong to
cluster or not, if the nearby point has different class from the
current point, the nearby point is not considered, thus, the false
clustering can be prevented in a certain.

A detailed description of the strategy is as following: as shown
in Fig. 3, supposing there are four clusters, including cluster_1,
cluster_2, cluster_3, and cluster_4, in which different color and
shape indicate different clusters, eps is set as r and minPts is 3,
the cluster_2 is adjacent to the cluster_3. pl is selected as the
starting point, according to the set scanning radius eps = r and
mainPts = 3, its neighborhood points includenl, n2,n3, n4, and
nS, and they are categorized into the same cluster, but the points
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Algorithm 1: CC-DBSCAN.
Function: CC-DBSCAN (dataset P, eps, minPts)
Input: Dataset: P, eps, minPts
Output: Clusters C
Setting up an empty list of clusters C and an empty queue
Q for the points that need to be checked
forp, € P
if p; is visited then
continue

end
add p; to the Q
forp; € 0
search neighborhood points set p;? of the p;ina
sphere with a radius of eps
for p, Ep?
if p, is not visited and has the same category
with p; then
add p; to Q
end
end
end
number = the point number of Q
if number > = minPts then
add Q to the clusters C
for p; € O do
mark p; as visited
end
set O as empty
end
end
return C

n4 and n5 belong to the cluster_3 in fact, as a result, the cluster
resultis wrong. To improve it, the class constraint is incorporated
in the DBSCAN, when judging whether the current point pl
and its neighborhood points nl, n2, n3, n4, and n5 belong to
the same cluster or not, except for the radius eps and minPts
constraints, the class constraint is added, if the neighborhood
points have different classes from the current point p1, it will be
not considered as the same cluster with the current point. By this
way, points n4 and n5 will be clustered with point pl into one
cluster, then the points pl, nl, n2, and n3 are categorized into
the same cluster. Recursively, the points n1, n2, and n3 are taken
as the core points, and processed in the same way, by this way,
the cluster is expanded, as a result, cluster_ 2 and cluster_ 3 are
separated by two clusters. The optimized DBSCAN algorithm
is as follows (Algorithm 1).

B. LRCI Value Calculated Based on Logistic Regression
Model

From the aforementioned description of CC-DBSCAN, it
is crucial to effectively distinguish whether the neighborhood
points and the core point belong to the same class or not.
And as described earlier, the vegetation points are close to
nonvegetation points for the vegetation cover in the nonvege-
tation points set, it is easy to cluster the vegetation points and
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nonvegetation points into one by mistake. Thus, in this article,
the nonground points are first divided into vegetation points or
nonvegetation points before clustering. And the crucial problem
becomes that the neighborhood points and the core point both
belong to vegetation points or nonvegetation points. Inspired
by the successful application of vegetation index in optical
remote sensing classification, for the labeling of point cloud,
nonvegetation points and vegetation points have very different
spectral characteristics, so vegetation index may be used to
preliminarily distinguish nonvegetation points and vegetation
points. However, as for the calculation of traditional vegetation
indices, the data of near-infrared band of vegetation are needed
while the general point cloud does not have such band, but the
RGB information can be obtained. Many classical vegetation
indices based on RGB information had been proposed (see
Table II), and they had been used to classify the point cloud
into vegetation points and nonvegetation points in the study
area, but the experimental results show unsatisfactory, the details
are described in Section III-C. To address this problem, based
on studying the distribution of RGB characteristics of point
cloud, this article attempts to obtain the classification decision
boundary of vegetation points and nonvegetation points in RGB
space using the logical regression method, then, the LRCI is
calculated for each point based on the boundary parameters
of regression model, Finally, the point cloud is classified as
vegetation points and nonvegetation points by LRCI.

As one of the most common algorithms in the field of machine
learning, logical regression is usually used for classification
[26]. In which, the probability regression is utilized to find the
correlation between input features and output labels, and prob-
ability values are taken as the prediction results. It is a classical
classification model with characteristics simple implementation,
low computational cost, and highly efficient. In this article,
the logical regression is introduced for binary classification
(vegetation points and nonvegetation points), the probability
distribution model of the logical regression is as (1)

P(Y|X; W) = (hw (X))" (1= b (X)) (0

1
hw (X) = 1L o WTx 2)

m

WX =Y wifi =wo+wifit, ., +wnfm (3)

i=1

where Y = {1,0} denotes the point is the vegetation point or
nonvegetation point, respectively. X = {x1, 29, -+ ,xy}is the
input sample points, and /N is the number of sample points.
P(1|X )denotes the probability that point x is a vegetation point,
and P(0|X) denotes the probability that point z is a non-
vegetation point. f = {f1, f2, -, fm } represents the features
of input sample X, m is the feature number of input points,
W = {wy,ws, -+ ,wy,} represents the model parameters, and
wy is the bias term. Equation (2) gives the prediction function
for outputting the probability that the sample point belongs to
the vegetation point, and the probability value is between 0 and
1, here, if hy (X) > 0.5, then Y = 1, the current point belongs
to vegetation class, otherwise, Y = 0, the current point belongs
to nonvegetation class.



ZHANG et al.: EFFICIENT CLASS-CONSTRAINED DBSCAN APPROACH FOR LARGE-SCALE POINT CLOUD CLUSTERING

7327

TABLE I
COMPARISON OF THE NUMBER OF POINTS BEFORE AND AFTER DOWN SAMPLING IN CAMBRIDGE_ 18 AND CAMBRIDGE_28 SCENES

Scene Down sample| Ground |Vegetation| Building | Wall Bridge | Parking Trr(a:if(;lc fusx‘:;itre Car |Footpath| Bike Water Rail
Cambridee 18]  Before 21963301920 0753 132569 94| 54 618 0 [1668332(1672848 260057 | 874 730| 651 143| 3817 0 0
8o After 185506 | 765371 |1106998| 6071 0 130 654 | 133792 | 22300 | 71006 | 51823 | 297 0 0
Cambridee 29 Before |7 1121431483 4535/18 264 992 575 512 |1 462 599/1 128 1573 964 518{ 552 574 |1 063 593|1 284 032 1413|1526 111 0
8 After 603998 | 1261789 |1487593] 61369 | 112999 | 88281 | 310393 | 47162 | 83556 | 100728| 120 | 157801 0
TABLE II w1 fi+, ..., +wm, frn = 0, and the probability prediction clas-
CLASSICAL VEGETATION INDEX sification can be carried out according to (2).
Vegetation Index Bquation To mgke it easy to be understanded, the boundary 1s.trans.—
RI [28] RI=G/B formed into wq f1 + wa fo + ... + Wi frn = —wp. In this arti-
VARI [28] VARl = (G =R)/(R+G - B) cle, the features of input point include RGB information, thus
ExG [29] ExG=2g-r-b the feature number m of input points is 3. Therefore, we let
ExG-ExR [29] ExG - ExR =3g —24r-b LRCI(R,G, B) = w1 R + woG + w3 B, and §,; = —wy, thus,
I\i/(;’;s\]/jl 1[2) (;] D IZIG_[? f é - ;G__Bf /) (/ 2(21 11: )+ B the LRCI value of each point in the point cloud can be calculated
LRCI LRCT = 0.0471R — 0.0924G + 0.0807 8 by the function LRCI(R, G, B), and the point cloud is classified

From (2), we can see that how to obtain the optimum model
parameter W is vital for classification, the maximum likelihood
method is introduced to solve the optimal parameters, and the
likelihood function L(W) can be constructed based on (1)

n

11 Pwilasw)

i=1

L(W)

n

T (hw (@) (1 = b ()",

i=1

“)

According to the requirement of the maximum likelihood
method, the probability of correct prediction of the correspond-
ing category of each sample is as large as possible, that is, the
optimal parameter W can be obtained through calculating the
maximum point of L(W). While gradient ascent is rarely used
in machine learning task, therefore, in order to convert it into the
gradient descent task, which is easy to be solved, the following
transformation is often done [26]:

L(W)

1
— ZlogL
~log (W)

13" slog huw (1) + (1~ i) og (1 huy (7).
i=1
4)

Thus, the problem is transformed into an optimization prob-
lem with the objective function L(W'). The optimal parameter
W can be obtain when L(TW) reaches the minimum value. In
which, the gradient descent method is used to update the model
parameters step by step using (6), and « is the learning rate of
the model

n

1
m +— Wy, — O— h i) — Yi In
Wi 1= 0 — 0 S (haw () — i)

i=1

(6)

Based on the obtained best parameters W, the classifica-
tion decision boundary can be determined as W7 X = wq +

as vegetation point or nonvegetation point using (7)

1, LRCI(R, G, B) > 6,;

0, LRCI(R, G, B) < du; 7

F(R,G,B) = {
where F' is the function for classifying point cloud, the input is
a set of points with RGB information (R, G, B).

III. EXPERIMENTAL RESULTS
A. Experimental Environment and Dataset

All algorithms are implemented with Python 3.7.9, and are
tested on an Intel(R) Core (TM) i5-8500 CPU (@3.00 GHz
3.00 GHz), 8.0-GB RAM. To verify the performance and ef-
fectiveness of the proposed method, the SensatUrban dataset
is used [27], it is an urban-scale photogrammetric point cloud
dataset with nearly three billion labeled points, and consists of
large areas from three U.K. cities (Birmingham, Cambridge, and
York), covering about 7.6 km? of the city landscape. In which,
each point is labeled as one of 13 classes, including ground,
vegetation, building, wall, bridge, parking, traffic road, street
furniture, rail, car, footpath, bike, and water. In our experiments,
taking the Cambridge_28 scene in SensatUrban as the training
dataset to obtain the classification decision boundary function
for classifying vegetation points and nonvegetation points in the
RGB color space, and the Cambridge_18 scene as the test dataset
for vegetation points and nonvegetation points classification and
point cloud data clustering. Since the density of point cloud is
too high, which requires high computer hardware, they are first
down-sampled with a uniform grid of 0.2 m without affecting the
experimental effects, Table I gives the description of the point
cloud datasets before and after down-sampled in Cambridge_18
and Cambridge_28 datasets.

B. Calculating the Classification Decision Boundary

The CSF algorithm [25] is first applied to divide the training
point cloud data of Cambridge_28 scene into ground points
and nonground points, in the logistic regression model, we
use the following settings: adaptive moment estimation (Adam)
optimizer is adopted, and the initial learning rate is set to 0.001,
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Fig. 4. Curves of loss and accuracy with different epochs.

TABLE III
QUANTITATIVE COMPARISON OF OA, PRECISION, RECALL, AND F1 OF THE
POINT CLOUD DATA IN THREE DATASETS

Vegetation OA |Precision| Recall F1
Data set lgn dex Threshold %) %) %) %)
RI 1.142 | 88.73 | 83.01 85.53 84.25
VARI 0.168 | 80.82 | 80.26 65.83 72.33
VDVI 0.117 | 92.46 | 9598 83.70 89.42
Cambridge 18 ExG 0.170 | 9235 | 96.11 83.29 89.24
ExG-ExR 0.071 91.75 | 93.17 84.54 88.65
NGBDI 0.169 | 91.81 | 95.57 82.31 88.45
LRCI 0.976 | 93.04 | 93.56 88.03 90.71
RI 1.142 | 91.63 | 84.59 96.68 90.23
VARI 0.168 | 62.88 | 52.07 90.59 66.12
VDVI 0.117 | 88.70 | 87.63 83.53 85.53
Birmingham_ 12 ExG 0.170 | 88.24 | 87.77 82.04 84.81
ExG-ExR | 0.071 88.12 | 85.96 84.03 85.00
NGBDI 0.169 | 88.60 | 88.04 82.73 85.30
LRCI 0.976 | 93.88 | 88.46 97.41 92.72
RI 1.142 | 94.69 | 92.57 96.64 94.56
VARI 0.168 | 86.72 | 88.79 82.60 85.58
VDVI 0.117 | 96.11 | 98.04 93.71 95.83
Cambridge 25 ExG 0.170 | 9597 | 98.12 93.35 95.67
ExG-ExR | 0.071 | 96.24 | 97.61 94.43 96.00
NGBDI 0.169 | 94.54 | 97.81 90.59 94.06
LRCI 0.976 | 96.31 | 94.00 98.55 96.22

betas is (0.9, 0.99), respectively. We conduct 500 epochs on
the Cambridge_28 dataset. Besides, the binary classification
cross-entropy loss is used as the loss function samely.

Fig. 4 illustrates the curves of loss and accuracy with different
epochs during training, in which the loss value gradually stabi-
lized after 50 epochs, and the accuracy value gradually stabi-
lized after 100 epochs. The model parameters are determined
when the accuracy reaches the highest, based on which, we
obtain parameters w; = 0.0471, we = —0.0924, w3 = 0.0807,
wo = —0.976, thus, the classification decision boundary de-
duced from the training dataset is described as 0.0471*R —
0.0924*G + 0.0807*B — 0.976 = 0, accordingly, the function
LRCI(R, G, B) and the threshold value 4,; can be described as

LRCI(R, G, B) = 0.0471R — 0.0924G
+0.0807B, 6,; = 0.976. (8)
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Based on (7) and (8), the input points with RGB information
are classified as vegetation points or nonvegetation points.

C. Classifying the Nonground Points Into Vegetation Points
and Nonvegetation Points

As described earlier, LRCI will be used to classify the non-
ground points into vegetation points and nonvegetation points,
in order to assess the performance of proposed LRCI, other
six classic vegetation indices [28], [29], [30] (see Table II) are
introduced for comparison. While the training points only have
RGB information, thus, RGB information is utilized to calculate
the color vegetation indices. Prior to calculate the indices, a color
space normalization for each point is performed as following:

. R . G . B
“"R+G+B? R+G+B’ T R+G+B

where R, G, and B stand for the actual RGB values from the
point cloud based on each RGB channel of the point.

As the metrics to evaluate the performances of different
indices, overall accuracy (OA), precision, recall, and F1 score are
applied to assess the performance of LRCI and other compared
indices. Equations are described as follows:

€))

TP + TN
OA*TP+FP+FN+TN (19)
Il = ™ (11)
recall =75 TN
TP
preCiSiOn :m (12)
Fl :2 X precision x recall (13)

precision + recall

where TP is the true positive prediction (correctly labeled veg-
etation points), FP is the false positive prediction (points that
are mislabeled as vegetation points), TN is the true negative
prediction (points that are correctly labeled as nonvegetation
points), and FN is the false negative prediction (points that
are mislabeled as nonvegetation points or labeled as missed
vegetation points).

Based on the input point cloud data, the six classic vegetation
indices for each point are calculated, and the histogram of each
calculated index dataset is drawn, taking the value at the bottom
position as the initial threshold, then the optimal threshold is
obtained iteratively by the global optimal method for each index,
the details threshold-deciding method can be referred from Zhou
et al. [31]. The obtained optimal threshold of each index is used
to classify point cloud data into vegetation points and nonveg-
etation, in each calculated index, if index value > threshold,
then the corresponding point belongs to the vegetation point,
otherwise the point belongs to the nonvegetation point. For the
LRCI, the threshold had been provided by (8), the thresholds for
the aforementioned indices are listed in Table III. Here, three dif-
ferent datasets, including Cambridge_18 scene, Cambridge_25
scene, and Birmingham_ 12 scene in SensatUrban, are applied to
test the classification performance of the proposed LRCI. From
Table III, the highest values are highlighted in bold. We can
conclude that LRCI has made achievements in the accuracy



ZHANG et al.: EFFICIENT CLASS-CONSTRAINED DBSCAN APPROACH FOR LARGE-SCALE POINT CLOUD CLUSTERING

7329

Fig. 5.

(h)

Visualization of classification of vegetation points and nonvegetation points by different index in the Cambridge_18 scene. (a)—(g) Classification results

by RI, VARI, VDVI, ExG, ExG-ExR, NABDI, and LRCI, respectively. (h) Ground truth of points (red points represent the vegetation points). (a) RI. (b) VARL. (c)

VDVL. (d) ExG. e) ExG-ExR. (f) NABDI. (g) LRCI. (h) Ground Truth.

compared with the other six indices on the three datasets. On
the Cambridge 18 scene, LRCI achieves the highest OA, re-
call, and F1 score, and gets higher precision. The classification
effects of RI and VARI are poor, the reasons may be that the
vegetation index histograms of vegetation and nonvegetation
points overlap, which makes the optimum threshold difficult to
be determined. Other classic indices have slightly better results,
but recall rates are low, mostly below 85%. For example, the
accuracy and precision of the ExG index are as high as 92.35%
and 96.11%, respectively, but the recall rate is only 83.29%. The
similar conclusions can be drawn from the other two datasets.
We also visualized the classification results. Fig. 5 shows clas-
sification results of vegetation points and nonvegetation points
by different index on the Cambridge_18 scene. Seen from the

visualization results, we can clearly notice that vegetation points
are misclassified as nonvegetation points (red) in area A and
mislabeled nonvegetation points as vegetation points in area B
in the six classic indices, and while LRCI corrects this error to a
certain extent, most points labeling of the vegetation are closer to
the real value. To sum up, the LRCI has the best performance of
classifying the points into vegetation and nonvegetation points
quantitatively and visually.

D. Point Cloud Clustering Results

Through Section I1I-C, the points in the Cambridge 18 scene
had been classified as vegetation and nonvegetation points based
on the LRCI, the classification results will be taken as the
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Fig. 6.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Visualization of clustering results by different strategies of Cambridge_18 scene. (a) Original point cloud. (b) and (c) Results of DBSCAN clustering

using xyz and xyz + RGB features, respectively. (d) and (e) Results of DBSCAN clustering by using PCA to reduce the xyz + RGB features to two-dimension
and five-dimension, respectively. (f) Results of CC_DBSCAN clustering based on XYZ features using LRCI as a constraint.

class constraint embed in the CC-DBSCAN (as described in
Algorithm 1). To assess the effectiveness of proposed method, its
performances are analyzed and compared with other approaches
through the following experiments. The purity is used to quan-
titatively evaluate the effect of clustering different classes of
points. Purity refers to the ratio of the sum of major class points
in each cluster to the total number of points in all clusters and is
calculated as follow:

purity(C, L) = % Xk: max ek N 1| (14)
where C' = {¢1, ca, - -+, cx } s the set of clusters, & is the number
of clusters, and L = {1, 1o, -- ,1;} is the set of classes, j is the
number of classes, and N represents the number of points in all
clusters. The higher the cluster purity, the better the separate
clustering effect. In addition, the computational efficiency is
another important index for evaluating the clustering strategy.
The CC-DBSCAN is compared with the traditional DBSCAN
with different input features. Table IV shows the comparison of
results on the Cambridge_18 scene. In the “features” column,
xyz denotes the input points’ features only contains position
information (x,y, z), xyz + RGB denotes input points’ features
contains position information (x,y,z) and color information
(R,G,B), xyz + RGB (2-D) denotes that input points’ fea-
tures contains the first two PCs of the results produced by
principal component analysis (PCA) method based on the posi-
tion information (x,y, z) and color information (R, G, B), and

TABLE IV
QUANTITATIVE COMPARISON OF DIFFERENT CLUSTERING STRATEGIES OF THE
POINT CLOUD DATA IN CAMBRIDGE_18 SCENE

Computational

Strategy Features eps minPts Purity cost
(%) ()
Xyz 0.253 3 37.19 22.50
xyz+RGB 4.807 28 46.55 107.34
DBSCAN xyz+RGB (5-D)| 4.339 29 43.40 105.51
xyz+tRGB (2-D)| 0.704 41 30.12 32.40
CC_DBSCAN Xyz 0.253 3 97.20 24.25

xyz + RGB (5D) denotes that input points’ features contains
the first five PCs of the results produced by the PCA method
based on the position information (x,y,z) and color informa-
tion (R, G, B). As we known, parameters eps and minPts are
particularly important for the DBSCAN clustering algorithm.
In this experiment, the optimal parameters of all strategies are
determined by the method [31], and the results are listed in
Table IV, and the best records are marked with bold.

The quantitative results are listed in Table IV. As seen from
Table IV, amongst all strategies, CC_DBSCAN obtains the
greatest purity and produces a value of 97.20%, with gains of
60.01%, 50.65%, 53.8%, and 67.08% over DBSCAN (xyz),
DBSCAN (xyz + RGB), DBSCAN (xyz + RGB (5-D)), and
DBSCAN (xyz + RGB (2-D)), respectively. And it is clear
that time consumption increases with the added dimensions of
input features, whereas CC_DBSCAN achieves the much higher
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purity than that of DBSCAN (xyz) while the time required is a
little more.

The visualization of clustering results by different strategies of
Cambridge_18 sceneis shownin Fig. 6(b)—(f). Due to the vegeta-
tion cover and only distance-based judgment used in the cluster,
DBSCAN (xyz + RGB (2-D)) produces a result with plenty
of wrong cluster points and shows the weakest performance
amongst the five strategies. Only based the position features xyz,
DBSCAN (xyz) obtains a higher accuracy than that of DBSCAN
(xyz + RGB (2-D)) for the added input features, but many wrong
clustered points remain in the result for only distance-based
judgment is considered, which may lead to categorize them
into one cluster by mistake for that the vegetation points are
close to nonvegetation points. With the color information RGB
is incorporated into input features, DBSCAN (xyz + RGB), DB-
SCAN (xyz + RGB (5-D)), and CC_DBSCAN produce accurate
clustering results. As we known, the position information xyz
and color information RGB belong to different metric spaces,
thus, it can be seen from the clustering results of DBSCAN
(xyz + RGB) and DBSCAN (xyz + RGB (5-D)), although the
degree of clustering points belongs to different classed into the
same cluster is alleviated to a certain, but some noise points are
produced and there are still many mistaken clustering points. The
CC_DBSCAN achieves the most satisfactory result, almost of
the points are categorized into one cluster according to theirs real
classes. The reason may be that the strategy of class constraint
is incorporated in the DBSCAN, the false clustering can be
prevented to a certain extent.

IV. CONCLUSION

In this article, an improved DBSCAN, namely CC-DBSCAN,
is proposed for large-scale point cloud clustering. The proposed
algorithm can overcome the drawbacks of the well-known DB-
SCAN by incorporating the strategy of class constraint in the
DBSCAN. The CC-DBSCAN is effective in clustering large-
scale point cloud with high accuracy and computational effi-
ciency. This advantage is based on the definition of a new class
constraint, which can prevent the core point and neighborhood
points with different classes from being wrongly categorized
into the same cluster. Experiments on the benchmark Sensat-
Urban dataset were conducted to demonstrate the effectiveness
of CC-DBSCAN. Compared with DBSCAN using different
input features, it achieved the highest purity of point cluster,
and reaches a value of 97.20%, furtherly, it takes only 24.25 s
for clustering 2 million points. Therefore, the proposed CC-
DBSCAN is an effective clustering method for large-scale point
cloud clustering.

Generally, the research provides a new approach for large-
scale point cloud clustering. Currently, the optimal parameters
of CC-DBSCAN are determined by the method [31], we will
conduct more research works on how to determine the optimal
parameters. Moreover, our experiments are implemented on
point cloud clustering, and we will further use the clustered
results in the classification of point cloud, to achieve automatic
interpretation of point cloud in future work.
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