
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022 6999

A New Deep Convolutional Network for
Effective Hyperspectral Unmixing

Xuanwen Tao , Student Member, IEEE, Mercedes E. Paoletti , Senior Member, IEEE, Lirong Han ,
Zhaoyue Wu , Peng Ren , Senior Member, IEEE, Javier Plaza , Senior Member, IEEE,

Antonio Plaza , Fellow, IEEE, and Juan M. Haut , Senior Member, IEEE

Abstract—Hyperspectral unmixing extracts pure spectral con-
stituents (endmembers) and their corresponding abundance frac-
tions from remotely sensed scenes. Most traditional hyperspectral
unmixing methods require the results of other endmember extrac-
tion algorithms to complete the abundance estimation step. Due to
the impressive learning and data fitting capabilities of convolutional
neural networks (CNNs), deep learning (DL)-based hyperspectral
unmixing technologies have rapidly developed in the literature. Ac-
cording to the procedure used to combine different layers (i.e., fully
connected layers, convolution layers, and activation layers), these
techniques are mainly divided into three main categories, i.e., those
based on autoencoder networks, convolutional neural networks,
and convolutional autoencoder networks. They usually extract the
weight and output of a specific activation layer as endmember
signatures and abundance maps, respectively. Moreover, most ex-
isting DL-based unmixing approaches usually use 2-D CNNs to
learn the features contained in hyperspectral images, and very
few approaches employ 3-D CNNs to extract spectral and spatial
information. However, 2-D CNN-based techniques cannot capture
good discriminative feature maps from the spectral viewpoint,
and 3-D CNN-based techniques usually have high computational
overload. In this work, to further exploit the feature extraction
capability of CNNs, we combine 3- and 2-D convolutions to propose
a cross-convolution unmixing network (CrossCUN) for hyperspec-
tral unmixing. Simultaneously, to better illustrate the improve-
ments of our proposed CrossCUN, we also build the corresponding
2-D convolution unmixing network (2-DCUN) and 3-D convolution
unmixing network (3-DCUN). We evaluate the performance of
our newly developed networks on two types of synthetic datasets
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and three real hyperspectral images. Experimental results show
that the proposed networks not only obtain better results than
other DL-based unmixing methods but also do not require any
prior knowledge (e.g., the results of other endmember extraction
algorithms) to estimate the abundance maps.

Index Terms—Convolutional neural networks (CNNs), cross
convolution, deep learning, hyperspectral unmixing.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) have been widely stud-
ied and applied in different tasks with the aim of process-

ing and analyzing their sheer amount of information. This has
been done through various techniques, such as image classifica-
tion [1], [2], [3], [4], [5], data fusion [6], [7], [8], target detection
[9], [10], [11], anomaly detection [12], [13], [14], [15], data de-
noising [16], [17], [18], and so on. In this context, hyperspectral
unmixing [19], [20], [21], [22], [23] is one of the most important
applications of HSI data processing. It aims at addressing the
problem of low spatial resolution HSIs, which usually contain
many mixed pixels. These pixels pose a significant challenge for
identifying the materials that compose the considered scenes.
To deal with this problem, hyperspectral unmixing techniques
decompose mixed pixels into pure materials (endmembers) and
their corresponding abundance maps at each pixel. The linear
(LMM) [24], [25], [26], [27], [28], [29], [30], [31] and nonlinear
mixing model (NLMM) [32], [33], [34] are the two most widely
used models for hyperspectral unmixing. The LMM assumes
that the observed pixel spectrum is a linear combination of
endmember signatures, where the weights conform the corre-
sponding abundance maps that need to be estimated. Due to the
simplicity and effectiveness of the LMM, significant efforts to
develop hyperspectral unmixing approaches based on the LMM
have been conducted in the literature. These hyperspectral un-
mixing approaches are mainly used to complete two significant
tasks, i.e., endmember extraction and abundance estimation.

Traditional endmember extraction methods include vertex
component analysis (VCA), automatic target generation process
(ATGP), negative abundance-oriented (NABO), and alternating
decoupled volume max-min (ADVMM), among others. VCA
[26] iteratively projects the HSI data to one direction, which is or-
thogonal to the subspace formed by the determined endmembers.
As a result, the pixel with the extreme projection is extracted as
the new endmember. ATGP [29] uses the notion of orthogonal
subspace projection to extract endmember signatures. NABO
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[30] considers the pixels outside the hull as alternative candidate
endmembers to complete the unmixing task. ADVMM [31]
addresses the worst case simplex volume maximization problem
by alternating optimization. In addition to these approaches,
within the current literature, there are also other interesting
probabilistic techniques, developed as an attempt to address
some of the shortcomings faced by the previous methods [35],
[36]. Nevertheless, these methods are computationally very
expensive. In contrast, the maximum distance analysis (MDA)
[37], [38] has proven to be a simple but effective unmixing
method that does not require any prior knowledge about the
number of endmembers. However, the above methods both focus
on endmember identification and need to be combined with
other abundance estimation methods to perform the abundance
estimation task.

Traditional abundance estimation methods include fully con-
strained least squares (FCLS) [39], sparse unmixing by vari-
able splitting and augmented Lagrangian (SUnSAL) [40], spa-
tial group sparsity regularized nonnegative matrix factorization
(SGSNMF) [41], minimum volume-constrained nonnegative
matrix factorization (MVCNMF) [27], minimum-volume en-
closing simplex (MVES) [24], and robust collaborative non-
negative matrix factorization (R-CoNMF) [42], among others.
SUnSAL utilizes the alternating direction method of multipliers
to decompose a difficult problem into a sequence of simpler ones.
SGSNMF incorporates the group-structured prior information of
hyperspectral images into the nonnegative matrix factorization
optimization to complete abundance estimation, where the data
are organized into spatial groups. MVCNMF includes a volume
constraint into the nonnegative matrix factorization formulation
to integrate least-squares analysis and the convex geometry
model to perform the unmixing task. MVES incorporates convex
analysis and Craig’s criterion to enhance the performance of
spectral unmixing. It is worth noting that FCLS, SUnSAL, and
SGSNMF need the results of endmember extraction from other
methods to complete abundance estimation, and MVCNMF
and MVES can simultaneously complete endmember extraction
and abundance estimation. Compared with the above methods,
R-CoNMF can simultaneously complete the three tasks, i.e.,
determining the number of endmembers, extracting endmember
signatures, and estimating the abundance maps. Especially, a
different advantage of R-CoNMF compared to other abundance
estimation methods is that it completes abundance estimation
without any prior knowledge of the number of endmembers.

A. Deep Learning-Based Methods for Hyperspectral
Unmixing

Recently, based on their impressive learning and data fitting
capabilities, some DL-based unmixing methods have been pro-
posed in the literature [43], [44], [45], [46], [47], [48], [49], [50].
Depending on how different layers are combined, these DL-
based unmixing methods are mainly divided into three groups,
i.e., autoencoder networks, convolutional neural networks, and
convolutional autoencoder networks. These three types of un-
mixing methods usually extract the endmember signatures and
the corresponding abundance maps from the weights and outputs
of a specific activation layer, respectively.

Regarding the first group, unmixing methods based on au-
toencoder networks mainly use fully connected layers and ac-
tivation layers. In [43], Guo et al. proposed an autoencoder
cascade framework that integrates a denoising autoencoder and
a nonnegative sparse autoencoder in order to conduct data de-
noising and endmember estimation, respectively. In this sense,
the autoencoder cascade framework is the first attempt to apply
DL-based methods to spectral unmixing, improving the perfor-
mance of unmixing by considering the observation noise and
a sparsity prior. Nevertheless, its performance may be affected
due to the fact that the same encoder and decoder is used. To
overcome this limitation, in [44], Qu et al. proposed a so-called
untied denoising autoencoder with sparsity (uDAS) method to
address the unsupervised unmixing problem for HSIs with high
noise levels. uDAS incorporates denoising capabilities in the
form of a constraint to reduce the reconstruction errors and
introduces a novel backpropagation method that uses simple
matrix operations to effectively force the endmembers to be
nonnegative (while the abundance vector is constrained to sum
to one). However, both the autoencoder cascade framework
and uDAS ignore spatial information and aim at addressing
LMM-based problems.

On the other hand, unmixing methods based on CNNs mainly
contain convolutional and activation layers. For instance, in
[45], Palsson et al. proposed a novel spectral and spatial linear
mixture model by developing an associated estimation method
based on a convolutional neural network autoencoder unmixing
(CNNAEU) to perform the overall unmixing task, i.e., endmem-
ber extraction and abundance estimation. CNNAEU extends
the LMM to consider the situation where neighboring pixels
take part in the pixel reconstruction. As a result, it represents
the first attempt to use a CNN to directly exploit the spa-
tial correlation in HSIs for spectral unmixing. Nevertheless,
CNNAEU requires a significant number of training samples
to adequately fit a large number of learnable parameters. In
this sense, the network quickly tends to overfit. In addition,
CNNAEU is designed for LMM-based problems. In [46], Gao
et al. proposed a cycle-consistency unmixing network (Cycu-
Net) which learns two cascaded autoencoders (in an end-to-end
manner) to more effectively improve unmixing performance.
Cycu-Net designs a cycle-consistency strategy and introduces a
new self-perception loss containing two spectral reconstruction
terms and an abundance reconstruction term to further refine the
unmixing process. However, it ignores the challenges introduced
by the high spectral dimensionality of the data.

Finally, unmixing methods based on convolutional autoen-
coder networks mainly use fully connected layers, convolutional
layers, and activation layers. For instance, in [47], Yasiru et al.
developed a convolutional autoencoder (CAE) architecture for
spectral unmixing. CAE captures the spatial distribution in the
original data through convolution filters, which are used to
parameterize the spectral features. The encoder and decoder
parts of CAE are used to translate the feature space into a latent
space representation and to reconstruct the input from the latent
space, respectively. However, CAE is based on the LMM and is
generally unsuitable for nonlinear unmixing problems. In [48],
Qi et al. proposed a deep spectral convolution network with
spectral library (SCSL) support to conduct spectral unmixing.
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SCNL uses convolutional layers and fully connected layers to
capture features and estimate abundance maps, respectively.
Moreover, it exploits another fully connected layer to recon-
struct the original data. Although SCNL reduces complexity
and improves the utilization of the network, it heavily relies on
the quality of the spectral library.

B. Contributions of This Work

As mentioned, existing unmixing methods based on DL ar-
chitectures usually adopt autoencoder networks, CNNs, and
convolutional autoencoder networks to perform spectral unmix-
ing. The methods based on autoencoder networks are the most
commonly used, whilst those involving CNNs and convolutional
autoencoder networks are quite rare. Moreover, most existing
unmixing methods usually employ 2-D convolution kernels
to extract features, but 3-D CNNs have the ability to capture
spectral and spatial features. Nevertheless, only using 2-D-pure
CNNs or 3-D-pure CNNs has some disadvantages, such as the
inability to capture information on the relationship between
the channels or the need to design a very complex model. For
instance, by only using 2-D kernels, the model cannot learn
good discriminative feature maps from the spectral information.
Similarly, a deep 3-D CNN is significantly more complex and
expensive in computational terms. At the same time, it can obtain
worse results for classes with similar textures on many spectral
bands.

To address the aforementioned drawbacks and limitations
faced by existing DL-based methods, in this article we combine
3- and 2-D convolution to propose a new cross convolution
unmixing network (CrossCUN) for hyperspectral unmixing.
The proposed CrossCUN can not only directly complete the
abundance estimation task without any prior knowledge about
endmember extraction, but also get more accurate results than
traditional unmixing methods. Notably, most existing DL-based
methods usually use autoencoder networks or 2-D convolutional
networks to complete abundance estimation, and our proposed
CrossCUN is the first one to exploit cross convolution—that
combines 2- and 3-D convolutions—to perform abundance esti-
mation. Our newly proposed CrossCUN shows the potential of
cross convolution compared to using 2- or 3-D convolution alone
in terms of abundance estimation, and obtains better results than
other traditional and DL-based methods.

The rest of this article is organized as follows. Section II in-
troduces the newly proposed CrossCUN and the corresponding
2-D and 3-D convolution networks, i.e., 2-DCUN and 3-DCUN.
In Section III, we test the performance of different unmixing
methods in abundance estimation on synthetic data and three
real HSIs. Finally, Section IV, concludes this article.

II. PROPOSED FRAMEWORK

Our proposed CrossCUN combines 2- and 3-D convolutions
and aims at estimating the abundance fraction of each endmem-
ber at each pixel in the scene. Let Y ∈ RNx×Ny×Nb denote HSI
data, where Nx is the width, Ny is the height, and Nb is the number
of spectral bands. Since the 3-D CNN is more computationally
complex and hyperspectral pixels contain mixed land cover

classes (with the subsequent inter-class similarity and intra-class
variability), we employ principal component analysis (PCA) to
remove the spectral redundancy on the proposed CrossCUN.
PCA reduces the number of bands from Nb to D, maintaining
the same spatial dimensions whilst keeping the most relevant
spectral information. In this sense, let X ∈ RNx×Ny×D denote
the reduced data by PCA (in our work, D is empirically set to
15).

We build 3-D patches to further improve the performance
of 2-DCUN, 3-DCUN, and CrossCUN when dealing with the
unmixing task. In this context, let P ∈ RS×S×D denote the 3-D
patches, whilst S × S denotes the window size. The number of
created 3-D patches by these three networks is (Nx − S + 1)×
(Ny − S + 1). We assume that Pa,b is the 3-D patch and (a, b)
is its center pixel. In this sense, the width and the height of the
3-D patch Pa,b are from a− (S − 1)/2 to a+ (S − 1)/2 and
b− (S − 1)/2 to b+ (S − 1)/2, respectively. In our work, S is
empirically set to 9.

On the one hand, our proposed 2-DCUN and CrossCUN
involve 2-D convolutions, and their input patches are convolved
with 2-D kernels. 2-D convolution computes the sum of the dot
products between the input patch and the 2-D kernel to obtain
the corresponding results, and the kernel spans the input data to
cover the entire spatial dimension. The convolved features use
an activation function to introduce nonlinearity in the model.
In 2-D convolution, the activation value vx,yi,j at spatial position
(x, y) in the jth feature map of the ith layer is computed by

vx,yi,j = ϕ

⎛
⎝bi,j +

di−1∑
τ=1

ρ∑
β=−ρ

γ∑
α=−γ

wα,β
i,j,τ × vx+α,y+β

i−1,τ

⎞
⎠ (1)

where ϕ denotes the activation function, wi,j is the value of the
weight parameter for the jth feature map of the ith layer, bi,j
is the bias for the jth feature map of the ith layer, di−1 is the
number of feature maps in the (i− 1)th layer, and 2ρ+ 1 and
2γ + 1 are the width and height of kernel, respectively.

On the other hand, 3-DCUN and the proposed CrossCUN first
employ 3-D convolution to convolve the input patches with 3-D
kernels. Similarly, 3-D convolution also computes the sum of the
dot products between the input patch and the 3-D kernel to obtain
the corresponding results. We then use an activation function to
learn the nonlinear features. In this regard, the activation value
vx,y,zi,j at spatial position (x, y, z) in the jth feature map of the
ith layer is obtained by

vx,y,zi,j =ϕ

⎛
⎝bi,j+

di−1∑
τ=1

η∑
λ=−η

ρ∑
β=−ρ

γ∑
α=−γ

wα,β,λ
i,j,τ ×vx+α,y+β,z+λ

i−1,τ

⎞
⎠

(2)
where 2η + 1 is the depth of the kernel.

The 2-DCUN, 3-DCUN frameworks and our proposed Cross-
CUN are graphically illustrated in Figs. 1–3. From Fig. 1, we
see that 2-DCUN contains three 2-D convolutional layers, one
flatten layer, and one dense layer. The kernel sizes of the three
2-D convolutional layers are 3× 3 (f1

1 = f2
1 = 3, f1

2 = f2
2 =

3, f1
3 = f2

3 = 3, where f i
j denotes the kernel size of the ith

dimension in the jth convolution), and the number of kernels
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Fig. 1. Two-dimensional convolution network for spectral unmixing.

Fig. 2. Three-dimensional convolution network for spectral unmixing.

Fig. 3. Graphical overview of our proposed CrossCUN for spectral unmixing.

(i.e., the depth) of the three 2-D convolutional layers are 128,
64, and 32, respectively. Furthermore, from Fig. 2, we observe
that 3-DCUN includes three 3-D convolutional layers, one flat-
ten layer, and one dense layer. The kernel sizes of three 3-D
convolutional layers are 3× 3× 7 (in particular f1

1 = f2
1 = 3

and f3
1 = 7), 3× 3× 5 (where f1

2 = f2
2 = 3 and f3

2 = 5), and
3× 3× 3 (setting f1

3 = f2
3 = f3

3 = 3), respectively. Moreover,
the number of kernels of the three 3-D convolutional layers
is 128, 64, and 32, respectively. Finally, from Fig. 3, we see
that our proposed CrossCUN has two 3-D convolutional layers,
one 2-D convolutional layer, one flatten layer, and one dense
layer. The kernel sizes of the two 3-D convolutional layers are
3× 3× 7 (with f1

1 = f2
1 = 3 and f3

1 = 7), 3× 3× 5 (where
f1
2 = f2

2 = 3 and f3
2 = 5). The kernel size of the 2-D con-

volutional layer is f1
3 = f2

3 = 3. Especially, applying a 2-D
convolutional layer after the 3-D convolutional layer and before
the flatten layer can better distinguish spatial information in
different spectral bands without losing a large amount of spectral
information, which is very significant for HSI data analysis.
Similar to existing unmixing methods, the estimated abundance
maps need to satisfy two constraints, i.e., abundance sum-to-
one constraint (ASC) and abundance nonnegativity constraint
(ANC). We use SoftMax as the activation function of the last
dense layer in 2-DCUN, 3-DCUN, and CrossCUN, which is
computed by

âij =
ezj∑C
j=1 e

zj
(3)

where âij is the estimated abundance of the jth endmember on
the ith pixel, zj is the output value of the dense layer, and C is
the total number of endmembers. We use cross-entropy as the
loss function to train the 2-DCUN, 3-DCUN, and CrossCUN,

TABLE I
CONFIGURATION OF 2-DCUN ON SAMSON DATA

which is computed as follows:

L = − 1

N

N∑
i=1

[ailogâi] (4)

where âi denotes the abundance estimated for the ith pixel,
ai is the real abundance vector of the ith pixel, and N is the
number of pixels. Tables I– III show a detailed description of
2-DCUN, 3-DCUN, and our proposed CrossCUN in terms of
layer types, output types, and the number of parameters on a
specific HSI dataset (Samson data, described in the following
section). From Tables I–III, we can see that 2-DCUN requires the
fewest number of parameters, and 3-DCUN and CrossCUN have
the same number of parameters. Although CrossCUN does not
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TABLE II
CONFIGURATION OF 3-DCUN ON SAMSON DATA

TABLE III
CONFIGURATION OF OUR PROPOSED CROSSCUN ON SAMSON DATA

need the fewest number of parameters, it obtains more accurate
results on experimental data. Moreover, it is worth noting that
the number of nodes of the last dense layer in the three networks
is 3, which is equal to the number of endmembers in Samson
data.

III. EXPERIMENTS

To assess the performance of 2-DCUN, 3-DCUN, and our
proposed CrossCUN in terms of abundance estimation, two big
families of synthetic data, i.e., with and without pure pixels, and
three real HSIs (Samson, Jasper, and Urban scenes) are adopted
in our experiments. We use the following:

1) minimum-volume enclosing simplex (MVES) [24];
2) spatial group sparsity regularized nonnegative matrix fac-

torization (SGSNMF) [41];
3) robust collaborative nonnegative matrix factorization (R-

CoNMF) [42];
4) convolutional autoencoder (CAE) [47];

5) untied denoising autoencoder with sparsity (uDAS) as
comparison methods to test the performance of different
unmixing methods in abundance estimation.

Especially, the initial endmember results required by
SGSNMF are extracted by VCA. We employ the root-mean-
square error (rmse) and the mean rmse as metrics to test the
performance of 2-DCUN, 3-DCUN, and CrossCUN. RMSE is
computed by

RMSE =

√√√√ 1

N

N∑
i=1

(âij − aij)2 (5)

where N is the number of pixels, and âij and aij are the
estimated and real abundance fractions of the jth endmember
on the ith pixel. The mean rmse is computed by

Mean RMSE =
1

C

C∑
j=1

√√√√ 1

N

N∑
i=1

(âij − aij)2 (6)

where C is the number of endmembers.

A. Data Descriptions

1) Synthetic Dataset: To evaluate the impact of pixel purity,
the number of endmembers, and the level of noise on abundance
estimation, we generate two big families of synthetic data, i.e.,
with and without pure pixels. Each kind of synthetic data com-
prises two types: 1) synthetic data with 2500 pixels and 20dB
noise with different numbers of endmembers, i.e., 5, 10, 15, and
20; and 2) synthetic data with 2500 pixels and 5 endmembers
under different levels of noise, i.e., 10, 20, 30, and 40 dB.

2) Samson Dataset: The Samson dataset was captured by
the SAMSON sensor, and it is one of the most widely used
datasets for evaluating hyperspectral unmixing algorithms. The
scene contains three endmembers, i.e., soil, tree, and water.
The original Samson data has 952× 952 pixels and 156 bands
covering the wavelengths from 401 to 889 nm. In our ex-
periments, to reduce the computational burden, we start from
the (252,332)-th pixel and utilize a region of 95× 95 pixels
to validate the performance of different unmixing methods in
estimating abundance maps. The false color composition and
the corresponding spectral of Samson are shown in Fig. 4(a)
and (d), respectively.

3) Jasper Dataset: The Jasper dataset was obtained by the
airborne visible/infrared imaging spectrometer (AVIRIS) of
NASA’s Jet Propulsion Laboratory (JPL). The original Jasper
data contains 512× 614 pixels recorded in 224 bands, ranging
from 380 to 2500 nm. It has four endmembers, i.e., tree, water,
soil, and road. Since the original Jasper data are too complex
and will bring high computational overload, we start from the
(105 269)th pixel and keep 100× 100 pixels in our experiments.
In addition, due to dense water vapor and atmospheric artifacts,
we remove bands 1–3, 108–112, 154–166, and 220–224 and
retain 198 bands in our experiments. The false color composition
and the corresponding spectral of Jasper are shown in Fig. 4(b)
and (e), respectively.
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Fig. 4. Proposed models have been evaluated on three different real hyper-
spectral scenes. (a) Samson, (b) Jasper, (c) Urban, (d) endmember spectrum of
Samson, (e) eEndmember spectrum of Jasper, and (f) endmember spectrum of
Urban.

4) Urban Dataset: The Urban dataset contains four different
endmembers, i.e., asphalt, grass, tree, and roof. It comprises
307× 307 pixels ranging from 400 to 2500 nm. Due to dense
water vapor and atmospheric effects, we remove the bands 1–4,
78, 87, 101–111, 136–153, 198–210 and retain 162 bands for our
experiments. The false color composition and the corresponding
spectral signatures of Urban are shown in Fig. 4(c) and (f),
respectively.

B. Implementation Details and Performance Metrics

In our work, we empirically set the number of layers and
randomly select 80% pixels and run 50 epochs for training 2-
DCUN, 3-DCUN, and our proposed CrossCUN. Especially, for
randomly selecting 80% pixels, we first determine the number
of pixels (e.g., N ) and then randomly generate N × 80% non-
repeating numbers between 1 andN . Next, we use theN × 80%
numbers to extract the corresponding data and abundances from
the original experimental data and abundances to ensure random-
ness. Finally, we use the extracted data and abundances to train
our proposed network. The parameters that need to be adjusted
in our proposed CrossCUN are the learning rate, input size,
input dimension, dropout rate, and weight decay. We perform
a parameter sensitivity analysis on Samson data and report their
results in Fig. 5. From Fig. 5(a), we see that the mean rmse
increases as the learning rate grows, and the mean rmse reaches
the lowest value when the learning rate is 0.0001. Therefore,
we choose 0.0001 as the final training rate in our proposed
CrossCUN. From Fig. 5(b), the mean rmse achieves the lowest
value when the input size is 9× 9. In this sense, we choose 9× 9
as the final input size to train our proposed CrossCUN. From
Fig. 5(c), we can see that the value of the mean rmse fluctuates
as the input dimension increases, and the mean rmse reaches
an optimal value when the input dimension is 13. Therefore,
we consider 13 as the final input dimension in our proposed
CrossCUN. From Fig. 5(d), we also can observe that the mean
rmse fluctuates as the dropout rate grows, and reaches the lowest
value when the dropout rate is 0.03. Therefore, we choose 0.03 as
the final dropout rate to train our proposed CrossCUN. Fig. 5(e)

shows that our method obtains the best results in terms of mean
rmse when the weight decay is 0.0001. As a result, 0.0001 is
considered the final weight decay in our experiments.

C. Experiments With Synthetic Data

We generate two big families of synthetic data, i.e., with and
without pure pixels, to evaluate the performance of different
unmixing methods in estimating abundance maps, and retrain
the network when synthetic data have different numbers of
endmembers or different levels of noise. Especially, considering
that synthetic data include many endmembers, we only report
the mean rmse results of different unmixing methods on the two
big families of synthetic data. Table IV presents the mean rmse
results obtained by different unmixing methods on synthetic data
with pure pixels under different numbers of endmembers. From
Table IV, we see that 2-DCUN, 3-DCUN, and CrossCUN both
get better results than other methods and CrossCUN obtains
the most accurate results on synthetic data with any number
of endmembers. The results shown in Table IV reflect that the
number of endmembers almost has no effect on the performance
of our proposed CrossCUN in abundance estimation. Table V
displays the mean rmse results of different unmixing methods
on synthetic data with pure pixels under different levels of noise,
i.e., 10, 20, 30, and 40 dB. From Table V, we observe that our
proposed CrossCUN obtains the best results on synthetic data
with 10 and 20 dB, and R-CoNMF achieves the best results on
synthetic data with 30 and 40dB. From Table V, we also see
that although our proposed CrossCUN does not achieve the best
results on all synthetic data (the gap between it and R-CoNMF
is very small). Therefore, our proposed CrossCUN can be used
as an effective abundance estimation method.

Table VI shows the mean rmse results obtained by differ-
ent unmixing methods on synthetic data without pure pixels
using different numbers of endmembers. From Table VI, we
observe that MVES and R-CoNMF exhibit better results than
other methods. Moreover, 2-DCUN, 3-DCUN, and CrossCUN
achieve more accurate results than MVES and R-CoNMF, and
CrossCUN obtains the best results in terms of abundance es-
timation on synthetic data with any number of endmembers.
Table VII presents the mean rmse results obtained by different
abundance estimation methods on the synthetic data without
pure pixels under different levels of noise, i.e., 10, 20, 30, and
40 dB. From Table VII, we observe that our proposed CrossCUN
is better than other methods on synthetic data with 10 and 20
dB, and R-CoNMF obtains the most accurate results compared
with other methods on synthetic data with 30 and 40dB (but
the gap between R-CoNMF and our proposed CrossCUN is
small). Therefore, our proposed CrossCUN is also very effective
in terms of abundance estimation.

D. Experiments With Samson Data

Table VIII quantitatively compares the performance of dif-
ferent unmixing methods in the task of estimating abundance
maps on Samson data, reporting the rmse and mean rmse scores
obtained by them. From Table VIII, we see that SGSNMF
obtains the best results in the task of estimating the abundance
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TABLE IV
MEAN RMSE RESULTS OF DIFFERENT UNMIXING METHODS ON SYNTHETIC DATA (CONTAINING PURE PIXELS) WITH 2500 PIXELS AND 20 DB NOISE USING

DIFFERENT NUMBERS OF ENDMEMBERS

TABLE V
MEAN RMSE RESULTS OF DIFFERENT UNMIXING METHODS ON SYNTHETIC DATA (CONTAINING PURE PIXELS) WITH 2500 PIXELS AND FIVE ENDMEMBERS

USING DIFFERENT LEVELS OF NOISE

TABLE VI
MEAN RMSE RESULTS OF DIFFERENT UNMIXING METHODS ON SYNTHETIC DATA (MAXIMUM PURITY OF 0.8) WITH 2500 PIXELS AND 20DB NOISE UNDER

DIFFERENT NUMBERS OF ENDMEMBERS
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Fig. 5. Quantitative analysis of different (a) learning rates, (b) input sizes, (c) input dimensions, (d) dropout rates, and (e) weight decays for our proposed
CrossCUN on Samson dataset.

TABLE VII
MEAN RMSE RESULTS OF DIFFERENT UNMIXING METHODS ON SYNTHETIC DATA (MAXIMUM PURITY OF 0.8) WITH 2500 PIXELS AND FIVE ENDMEMBERS

UNDER DIFFERENT LEVELS OF NOISE

maps of soil, tree, and water compared with the other two tradi-
tional unmixing methods, i.e., MVES and R-CoNMF. Moreover,
CAE is the best abundance estimation method compared with
uDAS. From Table VIII, we also find that 2-DCU, 3-DCUN,
and CrossCUN are better than the best traditional and DL-based
methods, i.e., SGSNMF and CAE, and our proposed CrossCUN
achieves better abundance estimation results compared with
2-DCUN and 3-DCUN. This fact reveals that our proposed
CrossCUN is not only very effective for abundance estima-
tion purposes but also improves the results obtained by the
corresponding 2- and 3-D convolution networks, i.e., 2- and
3-DCUN.

Fig. 6 presents the abundance maps obtained by different un-
mixing methods from the Samson data. From Fig. 6, we observe
that SGSNMF and CAE provide results that are more similar to

the ground-truth compared with other traditional and DL-based
unmixing methods. We also find that 2-DCUN, 3-DCUN, and
our proposed CrossCUN are closer to the ground-truth compared
with all methods, and CrossCUN is slightly better than 2- and
3-DCUN.

E. Experiments With Jasper Data

Table IX shows the results of rmse and mean rmse obtained
by different unmixing methods and reports their performance
evaluation in abundance estimation on Jasper data. From Ta-
ble IX, we observe that SGSNMF is the best method in the
task of estimating the abundance maps of three, water, soil, and
road compared with another two traditional unmixing methods,
i.e., MVES and R-CoNMF. CAE obtains the best results in
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TABLE VIII
RMSE AND MEAN RMSE RESULTS OF DIFFERENT UNMIXING METHODS ON SAMSON DATA

Fig. 6. Ground-truth and estimated abundances obtained by different unmixing methods for each endmember material on Samson dataset.

TABLE IX
RMSE AND MEAN RMSE RESULTS OF DIFFERENT UNMIXING METHODS ON JASPER DATA

estimating the abundance maps of tree and water, and uDAS
obtains the best abundance estimations for soil and road. In
fact, uDAS is the best among DL-based methods in terms of
the value of the mean rmse. In addition, from Table IX we
also see that 2-DCUN, 3-DCUN, and CrossCUN are not only

better than the best traditional and DL-based methods, i.e.,
SGSNMF and uDAS, but also can get quite accurate results when
estimating the abundance maps of all minerals. Simultaneously,
CrossCUN is better than 2- and 3-DCUN. Therefore, CrossCUN
is not only very effective in abundance estimation but also has
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Fig. 7. Ground-truth and estimated abundances obtained by different unmixing methods for each endmember material on Jasper dataset.

TABLE X
RMSE AND MEAN RMSE RESULTS OF DIFFERENT UNMIXING METHODS ON URBAN DATA

improvements compared with traditional and DL-based meth-
ods, and the corresponding 2- and 3-D convolution networks,
i.e., 2- and 3-DCUN.

The results obtained by different unmixing methods on Jasper
data are presented in Fig. 7. From Fig. 7, we see that MVES
and CAE provide the worst results compared with the other
traditional and DL-based methods, while 2-DCUN, 3-DCUN,
and our proposed CrossCUN are more similar to ground-truth
than all other methods. This fact, together with the results in
Table IX, leads us to conclude that our proposed CrossCUN
is not only an effective abundance estimation method but also
outperforms 2- and 3-DCUN.

F. Experiments With Urban Data

Table X shows the rmse and mean rmse values obtained
by different unmixing methods and reports their performance

evaluation in abundance estimation on Urban data. From Ta-
ble X, we can conclude that the three traditional unmixing
methods, i.e., MVES, SGSNMF, and R-CONMF, and the two
DL-based methods i.e., CAE and uDAS cannot obtain ideal re-
sults in abundance estimation. Clearly, 2-DCUN, 3-DCUN, and
CrossCUN obtain better results in terms of rmse and mean rmse
compared with all traditional and DL-based unmixing methods.
As in previous experiments, CrossCUN is better than 2- and
3-DCUN.

Fig. 8 reports the abundance maps obtained by different
unmixing methods on Urban data. From Fig. 8, we see that
2-DCUN, 3-DCUN, and our proposed CrossCUN are all close
to the ground-truth. After analyzing the results in Table X and
Fig. 8, we can conclude that CrossCUN not only gets the best
results in abundance estimation compared with other traditional
and DL-based unmixing methods, but is also more effective than
2- and 3-DCUN.
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Fig. 8. Ground-truth and estimated abundances obtained by different unmixing methods for each endmember material on Urban dataset.

TABLE XI
AVERAGE RUNNING TIME (INCLUDING TRAINING AND TESTING TIME) OF DIFFERENT UNMIXING METHODS FOR ALL PIXELS ON SYNTHETIC DATA WITH

DIFFERENT NUMBERS OF ENDMEMBERS

TABLE XII
AVERAGE RUNNING TIME (INCLUDING TRAINING AND TESTING TIME) OF DIFFERENT UNMIXING METHODS FOR ALL PIXELS ON SYNTHETIC DATA WITH

DIFFERENT LEVELS OF NOISE
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TABLE XIII
RUNNING TIME (INCLUDING TRAINING AND TESTING TIME) OF DIFFERENT UNMIXING METHODS FOR ALL PIXELS ON DIFFERENT DATASETS

TABLE XIV
MEAN RMSE RESULTS OF 2-DCUN, 3-DCUN, AND CROSSCUN ON THE CONSIDERED DATASETS USING DIFFERENT PERCENTAGES OF THE AVAILABLE TRAINING

SAMPLES

TABLE XV
SUMMARY OF THE MEAN RMSE RESULTS OBTAINED BY DIFFERENT UNMIXING METHODS ON THE CONSIDERED DATASETS (ALL METHODS TRAINED USING 80%

OF THE AVAILABLE TRAINING SAMPLES)

G. Computational Cost

We conducted all experiments on a computer with 2.6-GHz
Intel Core i7 CPU and 16 GB of memory (NVIDIA GeForce
RTX 2060 GPU) and evaluated the computational cost of differ-
ent unmixing methods using different datasets. By analyzing the
experimental results on synthetic data, we find that the existence
of pure pixels does not significantly affect the efficiency of
different unmixing methods. In this sense, we report the results
of the average running time (including training and testing

time) of different unmixing methods on synthetic data with and
without pure pixels. Table XI displays the average running time
of different unmixing methods on synthetic data under different
numbers of endmembers. From Table XI, we see that MVES
achieves the highest efficiency on synthetic data with five end-
members, and the number of endmembers has a greater impact
on MVES. In addition, R-CoNMF is the fastest on synthetic data
with 10, 15, and 20 endmembers, and it is stable on synthetic data
with any number of endmembers. From Table XI, we also find
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that 2-DCUN is faster than 3-DCUN and CrossCUN, and the
efficiency of 3-DCUN and CrossCUN is similar. Although our
proposed CrossCUN is not faster than MVES and R-CoNMF, the
time gap between them is not significant. Moreover, the results
in Tables IV and VI show that CrossCUN is more effective than
MVES and R-CoNMF. Therefore, our proposed CrossCUN is
very effective and efficient for abundance estimation. Table XII
shows the results of different unmixing methods on synthetic
data under different levels of noise, 10, 20, 30, and 40 dB.
The experimental results in Table XII indicate that MVES is
the fastest method on synthetic data with any level of noise.
Moreover, we find that 2-DCUN achieves higher efficiency than
3-DCUN and CrossCUN, and the running time of 3-DCUN and
CrossCUN is similar. Although our proposed CrossCUN does
not have higher efficiency than MVES, the results in Tables V
and VII show that CrossCUN is more effective than MVES.
Therefore, our proposed CrossCUN is an effective and efficient
abundance estimation method.

Table XIII shows the running time of different unmixing
methods on the three real hyperspectral datasets, i.e., Samson,
Jasper, and Urban. From Table XIII, we see that MVES is the
most efficient among the considered methods. Although MVES
is faster than CrossCUN, the results in Tables VIII–X show
that CrossCUN is more effective than MVES. Moreover, the
computational cost of CrossCUN is acceptable for abundance
estimation.

H. Sensitivity to the Number of Training Samples

Although the proposed CrossCUN is a supervised unmixing
method, it obtains accurate abundance estimation results without
requiring a lot of training samples. To illustrate this point, we
choose different training set sizes (i.e., 20%, 40%, 60%, and 80%
of the available labeled samples) to evaluate the performance
of 2-DCUN, 3-DCUN, and CrossCUN on different datasets.
The related mean rmse results are reported in Table XIV. From
Table XIV, we see that: 1) more training pixels will lead to
more accurate results (as expected); and 2) CrossCUN provides
more accurate results than 2- and 3-DCUN with limited training
samples. For clarity, we summarize the mean rmse results of
different unmixing methods in Table XV (using 80% of the
available samples). After analyzing the results of Tables XIV and
XV, we can conclude that 2-DCUN, 3-DCUN, and CrossCUN
outperform other compared methods even when the training
pixels are very few, and CrossCUN obtains the best results
compared to all other methods.

IV. CONCLUSION

In this work, a new cross convolution unmixing network
(CrossCUN) has been introduced. The proposed CrossCUN can
not only get more accurate results than DL-based methods but
also directly complete the abundance estimation results without
any prior results about endmember extraction, as opposed to
traditional unmixing methods. We evaluated the performance of
the newly proposed CrossCUN in terms of abundance estimation
on synthetic data and three real HSIs, and our experiments reveal
that CrossCUN outperforms the competitors in most cases.

As with any new approach, there are some unresolved issues
that may present challenges over time. Similar to other DL-
based methods, our proposed CrossCUN is a supervised method
that requires labeled samples to train the network. Although the
process of collecting training data for unmixing applications is
costly, this can be done using image data at multiple resolutions
or even field visits. In future work, we will work on designing
a new unsupervised network to directly complete abundance
estimation.
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