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Abstract—Medium spatial resolution surface reflectance image
series from the combination of Landsat-8 Operational Land Im-
ager and Sentinel-2 Multispectral Imager observations have great
importance to the land surface monitoring tasks, for which great
efforts have been paid for blending the two data. However, most
of the efforts focus on the image series with spatial resolution of
30 m, which cannot meet the data demand of some applications.
Therefore, it is necessary to fuse Landsat-8 and Sentinel-2 images
to provide 10-m image series. Currently, there are three means to
achieve that, including the area-to-point regression kriging fusion
approach (ATPRK), spatiotemporal fusion methods, and deep-
learning-based fusion models. However, the ATPRK and spatiotem-
poral fusion methods suffer from the limited fusion performance,
while the deep-learning-based fusion models are hardware depen-
dent, i.e., requiring the graphics processing units, which may not
be satisfied sometimes. To address these issues, in this article, we
develop a new pixel-wise local normalization-based fusion method
(LN-FM) for fusing Sentinel-2 and Landsat-8 images. The newly
proposed LN-FM is compared to the ATPRK and three represen-
tative spatiotemporal fusion methods in experiments, which use
imagery collected from both a rural area and an urban area. The
experimental results demonstrate that the newly developed LN-FM
exhibits excellent qualitative and quantitative performance, as well
as remarkable spatial, spectral, and pixel distribution fidelity. Fur-
thermore, this approach is fast, which may improve its applicability

Index Terms—Landsat-8, local normalization, remote sensing
image fusion, Sentinel-2.
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I. INTRODUCTION

M EDIUM spatial resolution surface reflectance image se-
ries are significant for many applications, such as crop

yield estimation [1], cropland mapping [2], evapotranspiration
estimation [3], surface dynamic mapping [4], and soil wa-
ter content analysis [5]. Currently, the two most wildly used
medium spatial resolution data are from the Landsat-8 Oper-
ational Land Imager (OLI) and the Sentinel-2 Multispectral
Imager (MSI). The Landsat-8 is a single satellite launched in
2013 by the National Aeronautics and Space Administration
(NASA) and United States Geological Survey, who has a 16-day
revisit cycle. Differently, the Sentinel-2 includes two satellites,
i.e., the Sentinel-2 A and Sentinel-2B, launched in 2015 and
2017, respectively, by the European Space Agency. Thus, the
Sentinel-2 data have a remarkable temporal resolution of 5
days. Though the Sentinel-2 data can theoretically provide
frequent global observations, cloud contaminate will lead to
considerable data loss of it. Therefore, combining the Landsat-8
OLI and Sentinel-2 MSI images has been a popular way to
providing the medium spatial resolution image series [6], [7],
[8], [9], [10], [11], [12]. In addition, the Landsat-8 OLI and
Sentinel-2 MSI images have similar band settings (displayed by
the Table I) and the same geographic coordinate system [13],
which increases the feasibility of blending them. Furthermore,
the NASA has started a Harmonized Landsat and Sentinel-2
(HLS) project to produce a virtual constellation of OLI and
MSI surface reflectance data [14], which has been adopted by
many researches [15], [16], [17]. Hence, it can be said that the
medium spatial resolution image series from the Landsat-8 OLI
and Sentinel-2 MSI are with great importance to present efforts
about land surface monitoring. Besides, the Landsat-9 with OLI
has been launched in September, 2021, which means the merged
image series of Landsat OLI and Sentinel-2 MSI will keep their
importance within the next 10 years.

Though there have been great efforts paid for blending
Landsat-8 and Sentinel-2 images, such as the HLS project of
NASA, the combined image series may not satisfy some de-
mands since most of them focus on the spatial resolution of
30 m, which means the Sentinel-2 images are upscaled to match
Landsat images with the price of sacrificing their valuable spatial
information [13], [18]. As a matter of fact, in some fields, such
as precision agriculture [19], [20] and tree species classifica-
tions [21], [22], [23], multitemporal remote sensing data with
higher spatial resolution is urgently required. Therefore, fusing
Sentinel-2 and Landsat-8 images to provide the 10-m image
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TABLE I
COMPARISON BETWEEN THE SPECTRAL BANDS OF LANDSAT-8 OLI AND SENTINEL-2 MSI

series is necessary to be discussed. To achieve that, two fusion
tasks should be considered, including the self-fusion of Sentinel-
2 images (referring to utilize the 10-m bands to sharpen other
coarser bands, such as the 20-m SWIR-1 and SWIR-2 bands) and
the fusion of Sentinel-2 and Landsat images. In the literature,
most Sentinel-2-related fusion works focus on the first task, i.e.,
self-fusion of Sentinel-2 images [7], [24], [25], [26], while the
fusion of Landsat-8 and Sentinel-2 images are relatively rare.
Currently, there are three means to achieve that. First, Wang
et al. [13] proposed to utilize area-to-point regression kriging
(ATPRK) to downcale Landsat-8 images, which achieved re-
markable fusion performance, and it has been adopted in soil
toxic elements determination [27]. Second, spatiotemporal fu-
sion methods have been adopted to fuse Sentinel-2 and Landsat
data. For example, three spatiotemporal fusion approaches are
used to fuse the Sentinel-2 and Landsat 8 images to generate
the 10-m image series to calculate soil salinity [28]. Besides,
deep learning has been introduced into this fusion task. Deep
learning has been widely applied in many tasks of remotely
sensed image processing, such as classification [29], [30], super-
resolution [31], [32], change detection [33], [34], and object de-
tection [35], [36]. Furthermore, some graph-based deep learning
models with outstanding performance for remote sensing image
classification have been developed recently [37], [38], [39], [40],
which indicates the applicability and great potential of deep
learning in remotely sensed image processing. For the fusion
of Landsat-8 and Sentinel-2 images, some deep learning-based
models have been proposed. For example, an extended super-
resolution convolutional neural network [18], a degradation-
term constrained spatiotemporal fusion network [41], and an
enhanced residual dense network [42] have been developed for
this fusion, which achieved excellent fusion performance.

Even though existing approaches can provide the 10-m images
series, their issues cannot be ignored. The ATPRK has been
found suffering from an oversharpening problem, and it cannot
maintain the pixels distribution properly [18]. The spatiotempo-
ral fusion methods have been reported to not do well in keeping
the shapes of subtle features, and they tend to result in the spectral
distortions of the fused images [41] when fusing Landsat-8
and Sentinel-2 images. The deep learning-based fusion models
nearly have no flaws in fusion performance. However, these
models usually require graphics processing units (GPUs) to

perform its computation due to their highly computational com-
plexity, which may limit their applications. Therefore, a new
method for the fusion of Landsat-8 and Sentinel-2 images, which
can address aforementioned issues, should be discussed. In this
article, we develop a new approach for fusing Sentinel-2 and
Landsat-8 images. This new method uses pixel-wise local nor-
malization to transfer the fine spatial details from the Sentinel-2
images to Landsat-8 images to achieve the fusion task. In addi-
tion, it is not deep learning-based, for which it is not hardware
dependent. To demonstrate its performance, we will apply the
proposed method, ATPRK and three representative spatiotem-
poral fusion methods to carry out the fusion between Sentinel-2
and Landsat-8 images and comprehensively test and evaluate its
performance.

The rest of this article is organized as follows. Section II
introduces the ATPRK and the spatiotemporal fusion methods as
related works. Section III describes our new approach in detail.
Section IV evaluates the considered approaches via experiments
on two carefully selected study areas. Section V analyzes and
discusses the performance of the considered methods in detail.
Finally, Section VI concludes this article.

II. RELATED WORKS

A. ATPRK Fusion

The ATPRK approach was initially proposed for downscaling
the MODIS images [43], which consists of two parts: regression
modeling and area-to-point kriging-based residual downscal-
ing. Then, it was introduced into the pan-sharpening task, and
achieved a remarkable performance [44], [45]. Therefore, the
ATPRK can be viewed as a representative pan-sharpening ap-
proach. Recently, the ATPRK fusion approach has been utilized
to conduct the self-fusion of Sentinel-2 images [24] and the
fusion between Landsat-8 and Sentinel-2 images [13], in which
this approach makes use of 10-m Sentinel-2 images and the
15-m Landsat-8 panchromatic band to downscale the 30-m
Landsat-8 bands to 10 m via ATPRK [13]. Roughly speaking,
this approach first utilizes the 15-m Landsat-8 panchromatic
band to downscale the 30-m bands to 15 m. After that, the
10-m Sentinel-2 images are downscaled to 5 m by bicubic
interpolation, which then helps to downscale the 15-m Landsat-8
bands to 5 m. Finally, the 5-m Landsat-8 images are upscaled
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to 10 m. More details about the area-to-point regression kriging
and the downscaling framework can be found in [13].

B. Spatiotemporal Fusion

Spatiotemporal fusion was developed to blend the temporally
sparse fine resolution images and temporally dense coarse reso-
lution images to provide the synthetic data with both high spatial
and high temporal resolution simultaneously, which is mainly
used for blending the Landsat and MODIS data [1], [2], [4],
[5], [46], [47]. Many spatiotemporal fusion methods have been
developed, such as the spatial and temporal adaptive reflectance
fusion model (STARFM) [46], the flexible spatiotemporal data
fusion method (FSDAF) [48], and the sparse representation-
based spatiotemporal reflectance fusion model (SPSTFM) [49].
These methods usually require the coarse resolution image of the
predicted time and at least one base image pair consisting of a
fine and a coarse resolution image from the same day, as an input
to predict the missing fine resolution image, for which it is theo-
retically not appropriate to fuse Sentinel-2 and Landsat images
since Sentinel-2 and Landsat-8 images can be barely acquired on
the same day. Recently, the authors in [50] proposed a strategy to
conduct spatiotemporal fusion with only two images (the coarse
resolution image of the predicted time and the base fine resolu-
tion image) as input. Specifically, the strategy first aggregates the
base fine resolution image to generate a base coarse resolution
image. After that, a linear relative radiometric correction is
implemented on the coarse resolution image of the predicted
time. Finally, the base fine resolution image and the coarse
resolution image (as well as the radiometrically corrected coarse
resolution image) are input to a spatiotemporal fusion method to
generate the fine resolution image at the predicted time. In partic-
ular, the authors in [50] tested this strategy for fusing Sentinel-2
and Landsat-8 images, demonstrating its effectiveness. In this
work, we adopt the same strategy to adapt classic spatiotem-
poral fusion methods to the fusion of Sentinel-2 and Landsat-8
images.

III. METHOD

In this section, we present the proposed pixel-wise local
normalization-based fusion method (LN-FM). Our new ap-
proach consists of two main components, which are spatial de-
tails transfer and residual compensation. Spatial details transfer
refers to extracting the spatial details from the Sentinel-2 images
and injecting those into the Landsat-8 images to downscale them.
Residual compensation is conducted to further improve the
downscaled Landsat-8 images. Both the spatial details transfer
and residual compensation are achieved via a new strategy, called
pixel-wise local normalization. In the following, we describe the
LN-FM in detail by addressing the spatial details transfer and
residual compensation steps. Notice that the LN-FM conducts
the same operations to each band separately, for which follow-
ing description of this method is illustrated based on a single
band.

A. Spatial Details Transfer

Let S and S̃ denote the 10- and 30-m Sentinel-2 images,
respectively, while L and L̃ are the 10- and 30-m Landsat-8
images, respectively. Notice that the 10-m Landsat-8 images,
i.e., the L, are the goal of this fusion task. The spatial response
relation between the S and S̃, and that of L and L̃ are assumed
to be the same, which can be denoted as follow:

S̃ = G(S) (1)

and

L̃ = G(L) (2)

where the G(·) is the spatial response between the 10- and 30-m
images. The spatial details transfer processing consists of two
steps, which are spatial details extraction and injection. Here,
we define the spatial details as the ratio between one pixel and
its background, i.e., the sum of its surrounding pixels, for which
the spatial details of the Sentinel-2 image are extracted via pixel-
wise local normalization, given by

D(x, y) =
S(x, y)∑s

i=−s S(x+ i, y + i)
(3)

whereD denotes the spatial details extracted fromS. x and y are
the coordinates of the horizontal and vertical axes, respectively. s
controls the range of the local extent, whose size is the 2s+ 1. In
this work, the s is set to 1 since s = 1 leads to a local range with
3 × 3, which matches the 3× spatial resolution gap between the
Sentinel-2 and Landsat-8 images. After that, two assumptions
are established. First, we assume the relationship between pixels
of 10-m images and their background is constant over time.
Second, we assume the 30-m Landsat-8 images perfectly record
the background information of 10-m Landsat-8 pixels. Under
the two assumptions, the spatial details from (3) can be injected
into the 30-m Landsat-8 images, which is the inverse process of
the extraction operation

Lt(x, y) = D(x, y)

s∑
i=−s

L̃(x+ i, y + i). (4)

Notice that the L̃ in this equation has been downscaled by
nearest neighbor interpolation, for which it has the same size
as that of D. At this point, we obtain a transitional down-
scaled Landsat-8 image, i.e., Lt. However, the fact is that 30-m
Landsat-8 images cannot express the background information
of 10-m Landsat-8 pixels perfectly, for which the transitional
downscaled Landsat-8 image is not reliable enough. To reduce
the negative effect of the second assumption, we conduct a
calibration processing on it. Here, we assume there is a linear
relation between the Lt and the L, which is

L = aLt + b. (5)

To determine the coefficients of the linear model, i.e., the a and
b in (5), the S and S̃ are utilized. Specifically, we first inject the
D into the S̃ via the same way expressed by (4), which can be



7362 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 1. Flowchart of the proposed LN-FM approach, in which S2 and L8, respectively, refer to Sentinel-2 images and Landsat-8 images.

represented as

St(x, y) = D(x, y)
s∑

i=−s

S̃(x+ i, y + i). (6)

Then, a and b can be determined by the St and the S via
regression

(â, b̂) = argmin
(a,b)

ΣN
i=1||aSt

i + b− Si||2 (7)

where N is the number of samples, i.e., the pixels, while the i
refers to the ith sample. After that, the transitional downscaled
Landsat-8 image (Lt) can be calibrated according to (5), and the
calibrated image is donated as Lc.

B. Residual Compensation

If the Lc acquired via the spatial details transfer stage is
perfect, the G(Lc) should be equal to the L̃, which is the known
30-m Landsat-8 image. However, it is not possible due to the
uncertainty of the model. To enhance the Lc, the residual com-
pensation is conducted. First, we define the difference between
the L̃ and the G(Lc) as the residual, which is

R(x, y) = L̃(x, y)−G(Lc). (8)

According to (8), the residual can be viewed as the wrongly
downscaled part of the L̃. Thus, we downscaled it again via
introducing the spatial details from the S as

Rds(x, y) = D(x, y)

s∑
i=−s

R(x+ i, y + i) (9)

where Rds denotes the downscaled residual. In this equation, R
has been downscaled by nearest neighbor interpolation, which
has the same size as theD. Then, the final downscaled Landsat-8

image, denoted as L̂, is produced by compensating the Rds to
the Lc as

L̂(x, y) = Lc(x, y) +Rds(x, y). (10)

The spatial response relation, i.e., the G(·), is assumed as
follow in this work:

S̃(x, y) =
1

r2

r2∑
i=1

S(xi, yi) (11)

and

L̃(x, y) =
1

r2

r2∑
j=1

L(xi, yj) (12)

where xi and yi represent the spatial coordinates of the fine
resolution images, while r is the ratio of the spatial resolution
between coarse and fine resolution images, which is 3 in this
task. The i and j index the fine resolution pixels within the
spatial extent of the corresponding coarse resolution pixel. The
flowchart of the newly proposed LN-FM is illustrated by Fig. 1

IV. EXPERIMENTS

In this section, we test our newly proposed LN-FM and other
four representative fusion methods, including ATPRK [13],
STARFM [46], FSDAF [48], and Fit-FC [51]. Note that the
ATPRK can be viewed as a modified pan-sharpening approach,
while the last three ones are spatiotemporal fusion methods,
which are chosen thanks to their availability. Due to the fact that
there have been many research works focused on the self-fusion
of Sentinel-2 images [7], [24], [25], [26], we do not discuss
this aspect in this article. Therefore, we just choose four 10-m
Sentinel-2 bands, i.e., the blue, green, red, and near-infrared
(NIR) in the experiments. Notice that, in the experiments, all
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Fig. 2. Sentinel-2 and Landsat-8 images of Ar Horqin Banner, collected on 4 April 2020, 1 May 2020, 20 July 2020, and 24 October 2020, respectively. Three
bands (i.e., near-infrared, red, and green) are, respectively, used as R-G-B bands for demonstration.

the considered images are 3× upscaled due to the fact that there
are no real 10-m Landsat-8 images that can be used as reference.
Therefore, we use the 30-m Sentinel-2 images to downscale the
90-m Landsat-8 images (for ATPRK, the 45-m panchromatic
band of Landsat images are also considered), and the downscaled
Landsat-8 images will be assessed by comparing them with
the reference images, i.e., the real 30-m Landsat-8 image. Five
widely used metrics are considered in our experiments to quan-
titatively assess the fusion results, including root mean square
error (RMSE) [52], correlation coefficient (CC) [53], structure
similarity (SSIM) [54], erreur relative global adimensionnelle de
synthese (ERGAS) [55], and spectral angle mapper (SAM) [56].
A smaller RMSE, SAM, and ERGAS (and a bigger CC and
SSIM) indicate better performance of the evaluated methods.

A. Study Areas and Data

Two study areas are selected for experiments. The first one
is part of Ar Horqin Banner (43.3619 ◦N, 119.0375 ◦E), Inner
Mongolia Province, China, whose spatial extent is 63 km ×
63 km. The Ar Horqin Banner is a small county located in
northeast China, whose major industries are agriculture and
animal husbandry, comprising farmlands, rangelands, forest,
and mountains. A small town is also included. In other words,
Ar Horqin Banner is a typical rural area. In this study area,
the Sentinel-2 images were acquired on April 4, 2020, while
Landsat-8 images were acquired on 1 May, 20 July, and 24 Oc-
tober 2020, respectively, as shown in Fig. 2. Both the Sentinel-2
and Landsat-8 images are Level-2 products, which are surface
reflectance images. Differently, the panchromatic bands of the
three Landsat-8 images are Level-1 C products collected at
the same times (the Level-2 Landsat-8 products do not include
those). The size of the Sentinel-2 image is 6300 × 6300 × 4,
while that of the Landsat-8 images is 2100 × 2100 × 4. We
can observe in Fig. 2 that this area is highly heterogeneous and
significant changes occurred from one date to another.

The second study area is part of Tianjin city (43.3619 ◦N,
119.0375 ◦E), China, whose spatial extent is 63 km × 63 km,
too. Different from Ar Horqin Banner, Tianjin city is a munic-
ipality located in the north China, and this area is covered by
city, towns, factories, farmlands, and rivers. This is a typical

urban area. In the study area, Sentinel-2 images were acquired
on 30 January 2020, while Landsat-8 images were acquired on
22 April, 24 May, and 28 August 2020, respectively, as shown in
Fig. 3. Similarly, all images are Level-2 products except for the
Landsat-8 panchromatic images, which are Level-1 C products.
The size of the Sentinel-2 image is 6300 × 6300 × 4, while that
of the Landsat-8 images is 2100 × 2100 × 4. It is obvious that
there were significant surface changes within the study period
in this area (see Fig. 3).

B. Experimental Results

1) Overall Quantitative Evaluation: A quantitative evalua-
tion of the six considered fusion methods is given in Table II.
Notice that the RMSE, CC, and SSIM in the table are the
mean value of all four bands. First, it can be seen the newly
proposed LN-FM achieves the best scores in all metrics, and
the precedence of LN-FM in ERGAS and SAM is especially
remarkable, which demonstrates superior accuracy of LN-FM.
Then, it can be found that the FSDAF is competitive in the
fusion results of Ar Horqin Banner, which outperforms the
ATPRK in all three fusion results. In contrast, the quantitative
performance of STRAFM and FITFC is barely satisfactory, and
the STARFM achieves the smallest SAM in the result of 1 May
2020. Differently, for the Tianjin dataset, the ATPRK achieves
better CC, SSIM, and ERGAS than the three spatiotemporal
fusion methods, while the FSDAF is the best in terms of RMSE.
Regarding SAM, ATPRK is better in the result of 22 April 2020,
while FSDAF performs better in the results of 24 May and 28
August 2020. The STARFM and FITFC still underperform in
those cases.

In summary, the quantitative performance of LN-FM is the
best among the considered methods. In addition, the FSDAF
(one of the three selected spatiotemporal fusion methods) per-
forms remarkably well in the quantitative evaluation, which
proves the potential of spatiotemporal fusion methods for fus-
ing Sentinel-2 and Landsat-8 surface reflectance. Finally, the
ATPRK exhibits a very good performance in the Tianjin area,
which indicates its applicability for the fusion task.

2) Detailed Comparison: To further compare the perfor-
mance of all considered methods, we select the fusion results
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Fig. 3. Sentinel-2 and Landsat-8 images of Tianjin, collected on 30 January 2020, 22 April 2022, 24 May 2020, and 28 August 2020, respectively. Three bands
(i.e., near-infrared, red, and green) are, respectively, used as R-G-B bands for demonstration.

TABLE II
QUANTITATIVE ASSESSMENT OF THE CONSIDERED FUSION METHODS

of 24 October 2020 in Ar Horqin Banner and those of 24 May
2020 in Tianjin to perform a detailed qualitative and quantitative
comparison. Fig. 4 shows the fusion results in 24 October 2020,
Ar Horqin Banner. Notice that, in Fig. 4, every fusion result
consists of two parts, i.e., the complete fused image and the
zoomed subarea image, which is marked by a yellow rectangle.
We can see that the five involved methods are able to recover the
30-m Landsat-8 image from the 90-m one well, due to the fact
that their complete fused images are all visually similar to the
ground truth, i.e., Fig. 4(b). However, the subarea reveals some
differences. First, the STARFM and Fit-FC perform unsatisfac-
torily due to the fact that they fail to capture the slight surface
change, which is marked by a yellow circle. In contrast, the
ATPRK, FSDAF, and LN-FM predict this change well. Although
the ATPRK recovers that change, the visual performance of its
fused image is undesirable, as it suffers from oversharpening.
The fused image of FSDAF appears in better visual form than
that of ATPRK, which proves its powerful ability to capture the
surface changes. However, although FSDAF captures the slight
surface change, it cannot keep the shape of the change well.
Compared to FSDAF, the LN-FM can keep the shape of surface
features better, which demonstrates its excellent performance.
The quantitative assessment of the fusion results is displayed in

Table III, which is basically in agreement with the analysis given
by Fig. 4. Specifically, the ATPRK quantitatively outperforms
STARFM and Fit-FC due to the fact that the ATPRK achieves
better scores in most indices, while the FSDAF exhibits obvi-
ously better accuracy than the ATPRK. However, we can see
that the LN-FM achieves the best scores in all indices except the
SSIM of the blue band, which further reveals the quantitative
accuracy of LN-FM. The corresponding scatter plots are given
in Fig. 5. Note that the color scheme indicates point density,
which increases from blue color to red color. From Fig. 5, we
can conclude that the results of LN-FM are better correlated than
the results provided by the other methods, which suggests that
the fused image of LN-FM is the most similar to the reference
Landsat-8 image collected on 24 October 2020.

The fusion results for Tianjin of 24 May 2020 are displayed in
Fig. 6, from which we can see that the five considered methods
can reconstruct the 30-m Landsat-8 images successfully. Similar
to the fusion results obtained for the Ar Horqin Banner, the
subarea tells the difference. There is a bright parcel in the subarea
of the reference Landsat-8 image, which can be used to test
the qualitative performance of the involved methods. First, it
is obvious the STARFM and Fit-FC cannot capture that parcel,
while the ATPRK, FSDAF, and LN-FM can recover it. Although
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Fig. 4. Fusion results in 24 October 2020, Ar Horqin Banner. (a) 30-m Sentinel-2 image of April 4, 2020. (b) and (c) 30- and 90-m Landsat-8 image of 24 October
2020, respectively. (d)–(h) Fused 30-m Landsat-8 images by ATPRK, STARFM, FSDAF, Fit-FC, and LN-FM, respectively.

TABLE III
QUANTITATIVE ASSESSMENT OF THE AR HORQIN BANNER FUSION RESULTS OF OCTOBER 24, 2020

ATPRK and FSDAF can capture the bright parcel, unfortunately
the result suffers from oversharpening and overblurring (some
lines in the subarea are blurred in the fused image of FSDAF),
respectively. The LN-FM can not only capture the bright parcel,
but also keep the lines complete, which proves its qualitative
performance again. Table IV shows a quantitative evaluation of
these fusion results. Still, the ATPRK outperforms STARFM
and Fit-FC. Differently, the ATPRK achieves better scores than
FSDAF in three visible bands (and the ERGAS metric), while
the FSDAF is better in the NIR band (and the SAM metric). The

LN-FM shows its outstanding quantitative performance again by
outperforming all other methods according to all tested indices.
Especially, the ERGAS and SAM of LN-FM are much smaller
than those of other methods. Fig. 7 displays the scatter plots of
the fusion results. Still, the scores of the proposed method are
closer to the diagonal, which indicates that the fused image is
the best among all considered fusion methods.

In summary, the LN-FM achieves the best qualitative and
quantitative performance in all experiments. Besides, the AT-
PRK and FSDAF are remarkably good in terms of qualitative
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Fig. 5. Scatter plots of the fusion results of 24 October 2020, Ar Horqin Banner, compared with the reference Landsat-8 image. (a)–(e) are the scatter plots of
blue bands from ATPRK, STARFM, FSDAF, Fit-FC, and LN-FM, respectively, while (f)–(j), (k)–(o), and (p)–(t) show those of the green band, the red band, and
the NIR band, respectively. The color scheme indicates point density, which increases from blue color to red color.

TABLE IV
QUANTITATIVE ASSESSMENT FOR TIANJIN FUSION RESULTS OF MAY 24, 2020

and quantitative performance as well. However, the ATPRK
exhibits serious oversharpening problems. Finally, STARFM
and Fit-FC are barely satisfactory in terms of both qualitative
and quantitative performance.

V. ANALYSIS AND DISCUSSION

In this section, we analyze and discuss issues that have not
been widely explored in the previous section regarding the
performance of the compared methods, including their spatial

fidelity, spectral fidelity and computational efficiency. We also
discuss the parameter settings of the proposed LN-FM.

A. Spatial Fidelity Analysis

To analyze the spatial fidelity of the five considered methods,
we conduct boundary extraction on the fusion results of 24
October 2020, Ar Horqin Banner (see Fig. 4), and those of 24
May 2020, Tianjin (see Fig. 6), via Laplace operator. Figs. 8
and 9 show the boundary maps obtained from the green bands
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Fig. 6. Fusion results of 24 May 2020, Tianjin. (a) 30-m Sentinel-2 image of 30 January 2020. (b) and (c) 30- and 90-m Landsat-8 image of 24 May 2020,
respectively. (d)–(h) Fused 30-m Landsat-8 images by ATPRK, STARFM, FSDAF, Fit-FC, and LN-FM, respectively.

TABLE V
AAD OF THE BOUNDARY MAPS BETWEEN THE CONSIDERED METHODS AND THE REFERENCES

of the reference Landsat-8 images and the fused images of all
involved methods, in which all results comprise the complete
boundary maps and the zoomed subarea boundary maps. We
can see that the boundaries of the ATPRK results are more
dense than those of the reference images in Figs. 8 and 9, which
reveals the oversharpening problem of ATPRK. In Fig. 8, the
boundary maps of STARFM, FSDAF, Fit-FC, and LN-FM are
visually similar. As a result, we focus on the subarea boundary
maps to tell which one is better. Apparently, the boundaries of
LN-FM are closer to those of the reference images. Among

the three spatiotemporal fusion methods, the boundaries of
FSDAF are most similar to those of the reference images. In
Fig. 9, we can see that the boundaries of Fit-FC are more
sparse than those of the reference image. Among STARFM,
FSDAF, and LN-FM, the subarea maps demonstrate that the
boundaries of LN-FM are still closer to those obtained from the
reference images. To quantitatively assess the boundary maps
from the considered methods, we calculate the absolute average
difference (AAD) between them and those from the reference,
as shown in Table V. From this table, we can conclude that
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Fig. 7. Scatter plots of fusion results of 24 May 2020, Tianjin, compared with the reference Landsat-8 image. (a)–(e) are the scatter plots of blue bands from
ATPRK, STARFM, FSDAF, Fit-FC, and LN-FM, respectively, while (f)–(j), (k)–(o), and (p)–(t) show those of green band, red band, and NIR band, respectively.
The color scheme indicates point density, which increases from blue color to red color.

TABLE VI
QUANTITATIVE EVALUATION OF THE CLASSIFICATION AGREEMENT BETWEEN THE FUSED IMAGES OBTAINED BY THE FIVE CONSIDERED METHODS AND THE

REFERENCE LANDSAT-8 IMAGES

ATPRK achieves the biggest AAD in all four bands, while
the LN-FM is generally the best method. Among STARFM,
FSDAF, and Fit-FC, the FSDAF exhibits the smallest AAD in all
bands.

In summary, we can conclude that the spatial fidelity of AT-
PRK is not high due to its oversharpening problem. In contrast,
the LN-FM exhibits remarkably good spatial fidelity, which can
preserve the boundaries well. Among STARFM, FSDAF, and
Fit-FC, the FSDAF exhibits the best spatial fidelity.

B. Spectral Fidelity Analysis

To explore the spectral fidelity of the considered methods, we
conduct classification on the fusion results of 24 October 2020,
Ar Horqin Banner (see Fig. 4), and those of 24 May 2020, Tianjin
(see Fig. 6), using four classic classifiers, including the multi-
nomial logistic regression (MLR) [57], support vector machine
(SVM) [58], random forest (RF) [59], and K-nearest neighbors
(KNN) [60]. The classifiers are trained by the samples randomly
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TABLE VII
ABSOLUTE DIFFERENCE OF AVERAGE AND STANDARD DEVIATION BETWEEN THE FUSED IMAGES OF THE CONSIDERED METHODS AND THE REFERENCE

LANDSAT-8 IMAGES (×10−3)

TABLE VIII
COMPUTING TIME COMPARISON FOR THE CONSIDERED FUSION METHODS

TABLE IX
QUANTITATIVE ASSESSMENT FOR LN-FM WITH DIFFERENT VALUES OF PARAMETER s

chosen from the clustered pixels of the reference Landsat-8
images, which are divided into four clusters by K-means. After
the training, the classifiers are utilized to classify the fused
images of the five methods, and the reference Landsat-8 images,
whose agreement is measured by using the overall accuracy
(OA) and Kappa coefficient. Table VI displays the OA and Kappa
of the classification. It is clear that the LN-FM outperforms all
other methods with all considered indices, which indicates that
the spectra of the fused image via LN-FM are closer to those
of the reference Landsat-8 images in both Ar Horqin Banner
and Tianjin. Besides, the FSDAF and ATPRK achieve similar
quantitative performance, which is in fact better than that of
STARFM and Fit-FC. We can conclude that the spectral fidelity
of LN-FM is the best among all the compared methods, while
FSDAF and ATPRK also perform relatively well.

C. Pixel Distribution Fidelity Analysis

Figs. 10 and 11 show a pixel distribution comparison between
the fused images of the considered methods and the reference

Landsat-8 images of 24 October 2020, Ar Horqin Banner and
24 May 2020, Tianjin, respectively. Table VII illustrates the
absolute difference of their average and standard deviation. From
Fig 10, we can conclude that the curves of STARFM, FSDAF,
and LN-FM are similar to the reference curves, while those
of ATPRK and Fit-FC obviously differ from the references,
which means the STARFM, FSDAF, and LN-FM keep the
pixel distribution better than ATPRK and Fit-FC in Ar Horqin
Banner. To figure out which one is the best among STARFM,
FSDAF, and LN-FM, we can pay attention to the results in
Table VII, which demonstrates that the dominance of LN-FM
in terms of average and standard deviation is quite remarkable.
Fig. 11 shows the pixel distribution curves of Tianjin, from which
we can conclude that the curves of ATPRK and FSDAF are
different from reference ones, which indicates that the ATPRK,
FSDAF, and Fit-FC cannot preserve the pixel distribution well
in the Tianjin data. The STARFM and LN-FM have visually
similar curves. However, Table VII reveals that the LN-FM
outperforms STARFM. In summary, we can conclude that the
LN-FM exhibits better pixel distribution fidelity than the other
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Fig. 8. Comparison of boundary maps for the fusion results of 24 Octo-
ber 2020, Ar Horqin Banner, where (a) is the boundary map extracted from
green band of reference Landsat-8 image, while (b)–(f) are the boundary maps
extracted from the fused images of ATPRK, STARFM, FSDAF, Fit-FC, and
LN-FM, respectively.

four methods, as shown in Figs. 10 and 11 and Table VII.
Besides, the STARFM is the best among three spatiotemporal
fusion methods, and also outperforms ATPRK. Finally, the AT-
PRK cannot perform satisfactorily in terms of pixel distribution
fidelity, which is coincident to the conclusion of [18].

D. Evaluation of Computational Complexity

Table VIII shows the average computing time of all considered
methods in Ar Horqin Banner and Tianjin experiments. We can
see that the faster one is STARFM, whose mean computing time
is 98 s in Ar Horqin Banner and 92 s in Tianjin. Remember
that the codes of STARFM and FSDAF are ENVI IDL version
(http://www.chen-lab.club/), while those of ATPRK and Fit-
FC are MATLAB version (https://github.com/qunmingwang/),
which are all open and available. Recently, a GPU version
of FSDAF has been developed [61], which is available, too.
However, we do not select that under the consideration of fair
comparison since other methods are all CPU based. The newly
proposed LN-FM is coded by Python. All experiments are
conducted on a computer with 3.60 GHz Inter(R) Core(TM)
i7-9700 K CPU. In comparison, our LN-FM (which achieves

Fig. 9. Comparison of boundary maps for the fusion results of 24 May 2020,
Tianjin, where (a) is the boundary map extracted from green band of reference
Landsat-8 image, while (b)–(f) are the boundary maps extracted from the fused
images of ATPRK, STARFM, FSDAF, Fit-FC, and LN-FM, respectively.

the best performance in experiments) takes 222 and 219 s in
Ar Horqin Banner and Tianjin experiments, respectively . The
ATPRK spends 642 s and 649 s on the experiments in Ar Horqin
Banner and Tianjin, respectively, which is faster than FSDAF
and Fit-FC. The FSDAF and Fit-FC are quite time consuming,
with both spending thousands of seconds. To sum up, the ATPRK
can achieve a moderate fusion performance, and its computing
time is moderate too. Among the three spatiotemporal fusion
methods, the FSDAF has the best fusion performance but it
is time consuming. Differently, the STARFM is fast while its
fusion performance is quite limited. In contrast to the other
four methods, the proposed LN-FM not only achieves the best
performance in the fusion of Sentinel-2 and Landsat-8 images,
but also exhibits relatively low computational complexity.

E. Parameter Settings of LN-FM

There is just one parameter involved in the proposed LN-FM,
which is the s. This parameter controls the extent of the local
normalization, whose size is 2s+ 1. In our experiments, the s is
set to 1 due to the fact that this leads to the local range of 3×3,
which matches the spatial resolution gap between Sentinel-2 and
Landsat-8 images. To figure out the impact of s on the perfor-
mance LN-FM, we select the Ar Horqin Banner Sentinel-2 and
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Fig. 10. Pixel distribution comparison among the fusion results of 24 October 2020, Ar Horqin Banner, where (a) is the result from the reference Landsat-8
image and (b)–(f) are the results from the fused images of ATPRK, STARFM, FSDAF, Fit-FC and LN-FM, respectively.

Fig. 11. Pixel distribution comparison among the fusion results of 24 May 2020, Tianjin, where (a) is the result from the reference Landsat-8 image and (b)–(f)
are the results from the fused images of ATPRK, STARFM, FSDAF, Fit-FC and LN-FM, respectively.

Landsat-8 images of 4 April and 24 October 2020, respectively,
and Tianjin Sentinel-2 and Landsat-8 images of 30 January and
24 May 2020, respectively, to conduct the fusion by LN-FM
using different values of s. The ERGAS and SAM are chosen
for quantitative evaluation. The results are displayed in Table IX,
from which we can learn that the ERGAS and SAM scores
both increase with the increase of s (notice that smaller ERGAS
and SAM values indicate better fusion results). Therefore, the
bigger the s, the worse the performance of LN-FM. These results
confirm our introspection that the best value of s for LN-FM in
our experiments is 1.

VI. CONCLUSION

It is feasible to fuse Landsat-8 and Sentinel-2 images to
acquire the dense image series with spatial resolution of 10 m,

which is important for some applications. However, exist-
ing fusion approaches suffer from limited fusion performance
(ATPRK and spatiotemporal fusion methods) or highly com-
putational complexity (deep learning-based fusion models).
To address these problems, we develop a new pixel-wise lo-
cal normalization-based fusion method (LN-FM) for fusing
Sentinel-2 and Landsat-8 surface reflectance in this study. For
the purpose of testing the performance of the proposed LN-FM,
the experiments are conducted on two typical study areas (a rural
area and an urban area). Four representative fusion approaches,
including ATPRK, STARFM, FSDAF, and Fit-FC, are selected
for comparison, and five widely used metrics, including RMSE,
CC, SSIM, ERGAS, and SAM, are chosen for quantitative as-
sessment. In addition, the spatial, spectral, and pixel distribution
fidelity, as well as the computation efficiency of the LN-FM
are also investigated. According to the experimental results and
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analysis, it can be concluded that the proposed LN-FM can not
only exhibit the best qualitative and quantitative performance
among all five involved methods, but also keep the spatial,
spectral, and pixel distribution fidelity of fused images well.
Furthermore, the LN-FM is a fast approach, which may improve
its applicability. In the future, on the one hand, we plan to further
improve the LN-FM method in order to adapt it to other different
satellite sensors, on the other hand, we will try to apply it on the
cloud computing platform of remote sensing data, such as the
Google Earth Engine.
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