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Feature Matching of Multimodal Images Based on
Nonlinear Diffusion and Progressive Filtering

Qiang Xiong , Shenghui Fang , Yi Peng, Yan Gong, and Xiaojuan Liu

Abstract—Traditional image feature matching methods cannot
obtain satisfactory results for multimodal images in most cases
because different imaging mechanisms bring significant nonlinear
radiation distortion differences and geometric distortion. The key
to multimodal image matching is trying to eliminate the nonlinear
radiation distortion and extract more robust features. This article
proposes a new robust feature matching method for multimodal
images. Our method starts by detecting feature points on phase
congruency maps in nonlinear scale space and then removing mis-
matches by progressive filtering. Specifically, the phase congruency
maps are generated by the Log-Gabor filter (LGF). Then, the
feature points on phase congruency maps are detected in nonlinear
scale space constructed by the nonlinear diffusion filter. Subse-
quently, the structure descriptor is established by the LGF, and
the initial correspondences are constructed by bilateral matching.
Finally, an iterative strategy is used to remove mismatches by
progressive filtering. We perform comparison experiments on our
proposed method with the SIFT, RIFT, VFC, LLT, LPM, and
mTopKPR methods using multimodal images. The algorithms of
each method are comprehensively evaluated both qualitatively and
quantitatively. Our experimental results indicate the superiority of
our method over the other six matching methods.

Index Terms—Feature matching, multimodal images, phase
congruency, progressive filtering.

I. INTRODUCTION

F EATURE matching is usually defined as extracting the
correct feature correspondence from the overlapping re-

gions of two or more images [1]. It has been wildly used in
photogrammetry and remote sensing [2], computer vision [3],
and artificial intelligence [4]. However, because of the imaging
characteristics of the sensor itself and distortion of light and
atmosphere, the nonlinear radiation distortions between images
always exist [5]. In general, images with overlapping areas
obtained by different sensors at different times and imaging
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angles are called multimodal images, which are more prone to
nonlinear radiation distortion [6]. Traditional image matching
methods cannot solve the nonlinear radiation distortion between
multimodal images. Developing algorithms for generic models,
capable of working across multimodal images, will be essential
to employing remote sensing as a practical and high-through
tool to assist in image matching.

In the past few decades, there have been many image matching
methods. Existing matching methods can be broadly classified
into feature based, area based, and learning based.

Feature-based matching methods extract salient features such
as points, lines, and surfaces and then establish the correspond-
ing reliable relationship according to the similarity descriptors.
Point features are the most widely used in feature matching.
The traditional point feature refers to the corner point because
it contains the local gray feature. Moravec [7] first proposed the
corner point extraction algorithm in 1977, Harris and Stephens
[8] improved the Moravec operator and then proposed the Harris
operator [9]. SIFT [10] is one of the most widespread and ef-
fective feature-based matching methods, which extracts feature
points in the Gaussian scale space. In recent years, a series of
optimized SIFT algorithms have been proposed, such as SURF
[11], PCA-SIFT [12], ASIFT [13], UC-SIFT [14], SAR-SIFT
[15], and AB-SIFT [16]. However, image matching based on
feature is faced with two problems: 1) in the feature description
stage, when the principal direction estimation (PDE) is used to
resist rotation distortion, a lot of homonymous points will be
removed due to incorrect PDE. 2) In the feature matching stage,
due to the nonlinear radiation difference of multimodal images,
the corresponding points are often unable to be recognized,
resulting in numerous anomalies in the matching results.

Area-based matching, otherwise known as template match-
ing, is achieved by searching the reference image through the
predefined template window on the input image, which utilizes
the similarity measure of the image without involving feature
detection [17]. There are some common similarity measures,
such as the sum of squares of gray difference (SSD) [18],
correlation coefficient (CC) [19], and mutual information (MI)
[20]. Although SSD is simple and efficient, it is very susceptible
to gray differences. CC has been extensively used because of
its linear intensity changes and high computational efficiency.
Despite the fact that MI can resist the intensity difference be-
tween images well, the large amount of computation limits the
wide application of image matching. However, these area-based
matching methods usually achieve locally optimal solutions,
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especially when there are nonlinear radiation distortions among
multimodal images. At the same time, the local optimization
process of image matching has high computational complexity.

The learning-based method needs to use the manual feature
extractor to extract the key points on the image block as the
matching candidate points, and then take the image block of
a specific size as the center to input the convolutional neural
network (CNN) for feature description. CNN has been applied
to learn the similarity between image blocks from the reference
image and feature matching image, respectively, and the center
point corresponding to the image block meeting the similarity
condition is regarded as the corresponding point. There are
some representative learning-based matching methods, such as
LIRT [21], NCN [22], and LF-NET [23]. However, studies of
multimodal image matching by the learning-based method are
relatively rare. The main reasons are as follows.

1) The nonlinear radiation distortions of multimodal images
will lead to the inability of learning-based methods relying
on low-level structure and texture information to extract
the corresponding features.

2) It needs a lot of expert knowledge and manpower for train-
ing, but manually annotated multimodal image datasets
are very rare.

3) It is difficult to use a model trained on one modal image
to match another modal image.

Recently, Zhou et al. [24] used the deep learning method to
refine the image structure features and put the multidirectional
gradient features of the image pair into the pseudo-Siamese
neural network. Although it can capture the finer common
features between SAR images and optical images, it does not
have rotation and scale invariance. Ye et al. [25] proposed a
multiscale framework with unsupervised learning (MU-Net)
for remote sensing image registration. MU-Net does not need
ground truth labels, and directly learns the end-to-end mapping
from image pairs to their transformation parameters. However,
extracting the structural features of image pairs with large-scale
differences and unclear textures is difficult.

Several recent kinds of research have reported that the struc-
tural information is more stable than the gradient or intensity
information between multimodal images [26], [27], [28]. LNIFT
[29] converts different modes into the same modal based on
the local normalized filter, which is robust to severe nonlinear
radiation distortion. Although it realizes rotation invariance,
it does not have scale invariance. LAM [30] is a robust and
effective mismatching elimination algorithm suitable for rigid
and nonrigid image matching. The limitation of LAM is that
it only considers geometric constraints and is not suitable for
image matching that does not meet local affine constraints. Phase
congruency (PC) image [31] has the structural information,
and there are already lots of methods for feature descriptors
based on PC, such as EOH [32], PIIFD [33], and DLSS [34].
However, image noise seriously affects the detection accuracy
of PC [35]. Some researchers used Log-Gabor filter (LGF) to
improve PC models, such as HOPC [36], PCSD [37], and RIFT
[6]. HOPC and RIFT algorithms are typically matching methods
of multimodal images. The HOPC algorithm extends the phase
consistency algorithm and adds phase direction statistics to

enhance the robustness of the description process. However,
HOPC has three significant deficiencies as follows.

1) It needs to know the geographic information for the image.
However, various multimodal images do not have geo-
graphic information.

2) It is sensitive to geometric distortions such as rotation and
scale.

3) It is susceptible to nonlinear radiation distortions because
it detects feature points by the Harris operator.

The RIFT algorithm uses the maximum index map for feature
description, which takes into account the rotation invariance.
However, RIFT has two disadvantages: 1) it uses the “convo-
lution sequence ring” to deal with the rotation distortion of the
image, which may lose some spatial information, resulting in the
lack of rotation invariance and unfavorable feature matching;
and 2) it does not consider the scale invariance and is easily
affected by the image scale distortion.

Although numerous image matching methods have appeared
in the past few decades, there is still no unified feature matching
framework with rotation-radiation-scale-invariant to automati-
cally match multimodal images. In this article, we propose an au-
tomatic feature matching method for multimodal images based
on progressive filtering. The main advantages of the proposed
method are as follows: 1) A new feature descriptor is established
according to the orientation of the average oriented amplitude
map based on the two-dimensional (2-D) LGF (2D-LGF), which
is more robust in nonlinear radiation distortion differences. 2) It
converts the initial correspondence to a convolution filtering and
removes the false correspondences by progressive filtering, and
then restores the structural consistency of the motion vectors.

The rest of this article is organized as follows. Section II
introduces the methodology of the proposed method. Section III
presents the experimental results and discussions. Finally, Sec-
tion IV concludes this article.

II. METHODOLOGY

The implementation of our method is illustrated in Fig. 1. It
consists of four steps as follows.

1) PC maps [see Fig. 1(b)] of multimodal image pair [see
Fig. 1(a)] are constructed by LGF.

2) Feature points are detected in nonlinear scale space, which
is invariant to scale [see Fig. 1(c)].

3) LGF is used to establish a structural descriptor, and initial
correspondences are constructed by bilateral matching
[see Fig. 1(d)].

4) Progressive filtering is used for the convolution operation
to restore the real smooth field, and mismatches are re-
moved through the structural congruence of the motion
vector step-by-step [see Fig. 1(e)–(h)].

A. Phase Congruency Based on 2D-LGF

Sun et al. [38] first proposed the phase congruency (PC)
theory, which points out that the perception of image features
by the eyes mainly depends on phase rather than amplitude.
Different from the feature detection method based on the gra-
dient in the spatial domain, PC is a feature perception model
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Fig. 1. Implementation of feature matching by using the proposed method. (a) Multimodal image pair. (b) PC maps. (c) Feature points (marked by red and green
points). (d) Initial feature matching. (e)–(h) Matching results (top) and motion vectors (bottom) when the iteration threshold is τ1–τ4.

that detects local energy in the frequency domain. Although the
PC model is robust to illumination and contrast differences, the
noise and aliasing effects of the edge structures greatly affect
the accuracy of feature detection. Do and Vetterli [39] extended
PC to be robust to noise by the 2D-LGF. 2D-LGF is constructed
by a Gaussian function in multiple directions. In the frequency
domain, 2D-LGF is defined as

L(ρ, θ) = exp(−(ρ− ρs)/(2σ
2
ρ)) exp(−(θ − θso)/(2σ

2
θ))

(1)
where ρ denotes radius and θ denotes angle in log-polar, ρs is
the center frequency, θso is the center orientation of 2D-LGF at
scale s and orientation o, σρ is the width parameter of ρ, and σθ

is the width parameter of θ.
The equation of 2D-LGF in the spatial domain is defined as

follows:

Lso(x, y) = Le
so(x, y) + iLo

so(x, y) (2)

where Le
so(x, y) represents the even-symmetric Log-Gabor

wavelet and Lo
so(x, y) represents the odd-symmetric Log-Gabor

wavelet.
The input image I(x, y) is convolved with 2D-LGF to con-

struct the response components at different scales and orienta-
tions. The convolution is defined as follows:

[Eso(x, y), Oso(x, y)]=[I(x, y)∗Le
so(x, y)+I(x, y)∗Lo

so(x, y)]
(3)

where Eso(x, y) and Oso(x, y) are the convolution response of
Le

so(x, y) and Lo
no(x, y) at scale s and orientation o.

The amplitude response component of I(x, y) can be obtained
by

Aso(x, y) =

√
Eso(x, y)

2 +Oso(x, y)
2. (4)

The phase response component of I(x, y) can be obtained by

ϕso(x, y) = arctan(Eso(x, y), Oso(x, y)). (5)

Based on the Aso(x, y) and the ϕso(x, y), PC is calculated
as the ratio of the sum of scale weighted and energy of noise
compensation in all directions at point (x, y) to the sum of the
average direction and amplitude on the filter response. The final
PC model is as follows:

PC(x, y) =

∑
s

∑
o Wo(x, y) �Aso(x, y)ΔΦso(x, y)− T �∑

s

∑
o Aso(x, y) + δ

(6)
where Wo(x, y) is a weight function, δ is a minimum,
ΔΦso(x, y) is a phase deviation function, and the operator
�·� prevents the enclosed quantity from being negative.

B. Feature Detection

Traditional feature detection algorithms (e.g., SIFT and
SURF) construct linear Gaussian scale space. However, Gaus-
sian scale space will result in the loss of detailed information
about the image. Nonlinear scale space (NSS) is expected to
solve this problem, but the traditional method based on for-
warding the Euler scheme has a very short iterative convergence
step [40]. In this article, the nonlinear diffusion filter is used to
construct a stable NSS, it describes the illumination variation at
different scales, which can be expressed as

∂I

∂t
= div

(
exp

(
−|∇Iσ|2

k2

)
· ∇I

)
(7)

where div is the divergence operator, ∇ is the gradient operator,
k is the contrast factor, and ∇Iσ represents the gradient after
Gaussian filtering.

Then, the differential equation is approximated using disper-
sion analysis. Thus, the discretization of (7) can be expressed
as

Ii+1−Ii

Δt
=

m∑
l=1

Al(I
i)Ii+1 (8)



7142 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 2. Construction of the nonlinear scale space.

where l indicates the direction, Al is the derivative along l, and
Δt is the time step.

Scale levels increased logarithmically when a nonlinear scale
space is constructed. Different from SIFT, the same resolution
is used for all levels of the nonlinear scale space, and the scale
between each level is described as

σi(o, s) = σ0 2
o+s/S (9)

where o represents the index of octave O, s represents the
index of sub-leave S, and σ0 is the initial value of scale σi.
As shown in Fig. 2, the image of the last sublevel in each octave
is down sampled, and the down sampled image is used as the
initial image for the next octave. After the creation of the NSS,
attained multiscale images can preserve structural and detailed
information. Therefore, it expects that our proposed method can
detect more feature points.

The NSS is based on the time unit, so we need to convert scale
unit σi to time unit ti, and the relationship is as follows:

ti = σ2
i /2. (10)

Since Δt = ti+1 − ti, (8) can be described as

Ii+1 = 2Ii/(2I− (σ2
i+1 − σ2

i )

m∑
l=1

Al(I
i)) (11)

where Ii+1 represents the solution of the nonlinear diffusion
equation.

After constructing the NSS, feature points can be detected
by searching local maximum points of the Hessian matrix. The
Hessian matrix is calculated as follows:

IH = σ2
(
IxxIyy − I2xy

)
(12)

where Ixx is the second order derivative in x direction, Iyy is
the second order derivative in y direction, and Ixyis the second
order cross derivative in x and y directions.

C. Feature Description

1) Average Oriented Amplitude Map (AAM): Aguilera and
Sappa [41] concluded that the distribution of the high-frequency
amplitude components is robust to nonlinear radiation varia-
tions. The RIFT descriptor calculates the sum amplitudes of all
scales to obtain a Log-Gabor layer. Different from RIFT, we
use the average amplitude of the different scales to calculate the
distribution. The average amplitude is calculated by adding the
amplitudes of all scales for each orientation o and then dividing
Ns, and the formula is as follows:

Āo(x, y) =

(
Ns∑
s=1

Aso(x, y)

)
/Ns (13)

where o ∈ [1, No] and s ∈ [1, Ns], No represents the number
of orientations. Ns represents the number of scales, Āo(x, y) is
defined as the AAM of orientation o.

2) Direction of Phase Congruency: The odd-symmetric
wavelet of 2D-LGF is a smooth derivative filter whose convolu-
tion result represents the energy change. Therefore, the direction
of PC can be constructed by using the odd-symmetric wavelet of
2D-LGF. The odd-symmetric wavelet can obtain o convolution
results according to different directions, which are projected to
the x- and y-axes, respectively. The direction of the PC is defined
as

ϕso=arctan

(∑
θ

PCso(θ) sin(θ)

)
,
∑
θ

PCso(θ) cos(θ)+δ))

(14)
where PCso(θ) is the convolution result of odd-symmetric
wavelet at the direction θ and δ is a minimum in case the
denominator is zero.

For multimodal images, gradient inversion may occur when
the PC direction exceeds π. In this article, the direction of PC is
restricted to 0 to π as

ϕ′
so =

{
ϕsoϕso ∈ [0, π]
ϕso − πϕso ∈ (π, 2π].

(15)

3) Feature Descriptor: For each feature point, a local area
with P×P pixels is divided into 6×6 patches, and the block
distribution histograms are established by the average oriented
amplitude maps and amplitude maps. The local feature descrip-
tors are generated by merging the histograms of each patch. The
histogram is divided into 36 equal parts at intervals of 10�, and
the phase consistency gradients of each equal part are counted.
The peak direction of the histogram is selected as the main
direction of the features. The specific construction process is
shown in Fig. 3, and the main steps of descriptor construction
are as follows.

1) The odd and even convolution at scale s and direction o is
calculated using 2D-LGF.

2) The average oriented amplitude map is calculated by (13).
3) The PC orientation map is calculated by (14) and (15).
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Fig. 3. Construction of proposed feature descriptor.

Fig. 4. Feature points are detected by five methods (a) visible image (left)
and near-infrared image (right). (b) SIFT. (c) OS-SIFT. (d) SURF. (e) RIFT.
(f) FMPF. (Yellow points represent feature points.).

Fig. 5. TP and precision of the rotation angle from 0� to 350�. (a) TP.
(b) Precision.

4) The PC orientation maps and AAM are divided into 6×6
patches.

5) The feature vector of each patch is calculated by using six
bins of PC orientations. The sample adds to the histogram
is the element of the corresponding position on the AAM.
To interpolate the peak position for better accuracy, a
parabola is fitted to the three histogram values closest to
each peak.

6) The descriptor of each feature point is composed of feature
vectors of 36 subareas calculated by step 5. The feature
vector of patch A1 corresponds to V1, so the feature vector
is as follows: V = [V1, V2, …, V36].

D. Feature Matching

Jiang et al. [42] used linear adaptive filtering (LAF) to elim-
inate mismatches, which takes the local structural consistency
as the constraint condition and transforms the local topology
space into domain sequence space for consistency measurement
to improve the matching accuracy. However, the LAF algorithm
uses SIFT algorithm to establish the initial matching set, which
largely depends on the local consistency between the potential
real inliers. Due to the large nonlinear radiation difference
between multimodal images, the initial matching obtained by
SIFT algorithm contains a large number of mismatches, and
the assumption of local structural consistency cannot satisfy.
Therefore, LAF is not suitable for multimodal image matching.

In this article, we use progressive filtering to eliminate mis-
matches by the structural consistency of the motion vector.
The motion vector is defined as the difference between the
coordinates of two points with a matching relationship in the
sensed image and reference image. The motion vectors formed
by correct matches of adjacent pixels have strong structural
consistency. The motion vectors formed by mismatches are
different from the correct matches and can be regarded as
outliers in the smooth field. Therefore, for multimodal image
matching, we focus on how to preserve or recover the correctly
matched smooth field with a large number of outliers. In this
article, we transform the initial matching set into a matrix and
removed outliers by kernel convolution. The elements in the
matrix can represent the spatial properties of the initial matches,
so we can solve the matching problem with kernel convolution
filtering.

For two images I and I ′ with overlapping areas, the initial
matching set D = {(Ii, I ′i)}Ni=1 is extracted by using the
proposed method, where Ii = (xi, yi)

T and I ′i = (x′
i, y

′
i)

T are
the coordinates of the ith feature matching point on images I and
I ′. The difference between I ′i and Ii represents motion vector,
which is defined as mi = I ′i − Ii. The initial matching set D
can be transformed into D′ = {(Ii,mi)}Ni=1, then the correct
matches are found from the initial correspondences according
to the structure congruence of motion vectors.

It is practicable to calculate the average motion vectors of
initial correspondences and eliminate mismatches by checking
the consistency between each image pair. Therefore, we divide
D ′ into c× c nonoverlapping areas and define the average motion
vector in the (m, n)th area as

m̄m,n =

{ 1
Am,n

∑
mi, Am,n > 0

0, Am,n = 0
(16)

whereAm,n is the number of motion vectors in the (m, n)th area.
The initial set of matches is converted into the estimation of

average motion matrix m̄m,n. We define the deviation between
the initial motion vectors and the average motion vectors as
ε = {ei = mi − m̄m,n}Am,n

i=1 . Due to the random distribution
of initial motion vectors, we assume that the inlier set obeys
the normal distribution einlier ∼ N(0, σ2I) and the outlier set
obeys the uniform distribution eoutlier ∼ U(−bI, bI), where 0
is the 2-D 0 vector, I is a 2×2 identity matrix.
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Algorithm 1: The FMPF Algorithm.
Input: Multi-modal images
Output: Correct matching set I∗

1 Calculate PC maps by using (1) - (6);
2 Obtain the initial matching set D = {(xi, yi)}Ni=1 by

using (7)–(12);
3 Initialize c, k and τ ;
4 Convert D to D’ and divide it into c × c grids;

Iteration:
5 Calculate m̄ by using (16);
6 Calculate m̃ by using (17);
7 Calculate di by using (19);
8 Determine correct matching set I∗ by using (20);
9 Update τ ;

Until Convergence;
10 Return I∗

To link the initial correspondences in the surrounding units
and improve the robustness and filtering performance, we calcu-
late the typical motion vector of the current unit by convolution
theory. The typical motion vector m̃m,n is defined as follows:

m̃m,n = (w · m̄m,n) ∗ k/ (w ∗ k+ δ) (17)

where w is a counting matrix, |wm,n| = Am,n , δ is a minimum
in case the denominator is zero. k is a k × k Gaussian kernel
distance matrix, which is defined as

ki,j = exp{−ni,j}/
⎛
⎝ nk∑

i=1

nk∑
j=1

exp{−ni,j}
⎞
⎠ ,ni,j

= ‖ci,j − c∗‖2 (18)

where ci,j = (i, j)Tand c∗ = (k/2, k/2)T.
The deviation between mi and m̃m,n is defined as

di = 1− exp
{−‖mi − m̃m,n‖2/0.08

}
. (19)

Then by comparing the deviation di with the threshold τ , the
correct matching set I∗ can be obtained as

I∗ = {(Ii, I ′i) : di ≤ τ, i ∈ N}. (20)

As shown in Fig. 1(d), the initial matching set contains many
outliers, which makes it difficult to separate the outliers from
the initial matches. As shown in Fig. 1(e), only a litter of
mismatches can be filtered out by the given threshold τ . To solve
this problem, an iterative method is used to anneal the threshold
τ to remove outliers until convergence.

As shown in Fig. 1(f)–(h), mismatches are filtered out grad-
ually as the iterations proceed until the correct matching set
is obtained. Meanwhile, the motion vectors corresponding to
the correct matching set have structural consistency. Since the
feature matching method is based on progressive filtering, the al-
gorithm is named FMPF and the whole algorithm is summarized
in Algorithm 1.

III. EXPERIMENTAL SETTINGS AND RESULTS

In this section, we perform extensive experiments to test the
performance of the proposed method and compare it with six
advanced feature matching methods such as SIFT [10], RIFT
[6], VFC [43], LLT [44], LPM [45], and mTopKRP [46]. All
experiments are implemented on a laptop with 32 GB RAM,
2.6 GHz Intel Core i7-10750h CPU, and MATLAB R2021a
compiler.

A. Settings

1) Evaluation Criteria: Repetition rate (RR) is used to il-
lustrate the robustness of the feature detection of FMPF. RR
describes the percentage of repeatable features detected in the
image pair and is defined as

RR =
2 · n

n1 + n2
(21)

where n is the number of homonymous points, n1 is the number
of feature points on the reference image, and n2 is the number
of feature points on the target image.

Precision, recall, and F-score are used to evaluate the feature
matching performance with the following definitions:

Precision =
TP

TP + FP
(22)

Recall =
TP

TP + FN
(23)

F− score = 2 · Precision · Recall
Precision + Recall

(24)

where TP, FP, and FN represent true positive, false positive, and
false negative, respectively.

In addition, root-mean-square error (RMSE), MEAN, and
standard deviation (Std) are used to measure the registration
accuracy with the following definitions:

RMSE =

√√√√ 1

N

N∑
i=1

(xs
i − xr

i )
2 + (ysi − yri )

2 (25)

MEAN =

(
N∑
i=1

√
(xs

i − xr
i )

2 + (ysi − yri )
2

)
/N (26)

Std =

√√√√∑N
i=1 (

√
(xs

i − xr
i )

2 + (ysi − yri )
2 − MEAN)

N
(27)

where N represents the number of correct matches and (xr
i , y

r
i )

and (xs
i , y

s
i ) are the coordinate of the ith feature matching point

on the reference and registration image.
2) Parameter Settings: When using progressive filtering to

eliminate mismatches, parameters c, k, and τ severely influence
the filtering results. We restrict c to an odd number between 15
and 30, and set k not greater than c/3, as follows:{

c = min{max{[√N ], 15}, 30}
k = odd(c/3)

(28)
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Fig. 6. Feature matching results of five methods with six rotation angles. (From left to right) 30°, 90°, 150°, 210°, 270°, and 330°. (From top to bottom) SIFT,
OS-SIFT, SURF, RIFT, and FMPF.

where N is the number of initial correspondences, [] rounds the
elements, and odd(c/3) denotes the odd number not greater than
c/3.

As shown in Fig. 1(d), there are many mismatches in the initial
matches. A progressive iteration method is used to gradually
separate outliers and outliers, which is similar to the simulated
annealing strategy. We set a larger threshold at the beginning of
the iteration, and gradually lower the threshold as the number of
iterations increases. It eliminates outliers from coarse to fine and
optimizes the threshold τ . The inlier set is approximated with the
result of each iteration until convergence. In our experiments,
reliable matching performance is obtained in four iterations, and
the threshold for each iteration can be set to 0.8, 0.2, 0.1, and
0.01.

B. Detector Evaluation

1) Repetition Rate: A pair of visible-near-infrared images
are used as test images [see Fig. 4(a)], and the feature points are
detected by five methods (i.e., SIFT, OS-SIFT, SURF, RIFT, and
FMPF). The feature detection results are shown in Fig. 4(b)–(f).
In Fig. 4(b), the feature points detected by SIFT are unevenly
distributed. In Fig. 4(c) and (d), the number of feature points
detected on the near-infrared image is very small, resulting in a
low repetition rate. In Fig. 4(e) and (f), both RIFT and FMPF
can detect more feature points, but the feature points detected
by FMPF are more evenly distributed. Repetition rates of five
methods are computed by using (21), which are 0.1260, 0.0147,
0.0996, 0.1308, and 0.2512, respectively. The repetition rate
of FMPF is higher than that of the other four methods, which
indicates that the feature detection performance of FMPF is more
robust to multimodal images.

2) Rotation Invariance: To verify the rotation invariance of
FMPF, a pair of visible-NIR images are chosen for testing.
Thirty-six NIR images are obtained by rotating the NIR images
from 0–350° with an interval of 10°. These 36 near-infrared
images and the visible image consist of 36 image pairs. SIFT,
OS-SIFT, SURF, RIFT, and FMPF are used to match those image

pairs. Fig. 5 shows the results of the TP and precision on all
image pairs. It can be found that the TP and precision of FMPF
are higher than that of the other four methods. Specifically,
although TP and precision of FMPF are different at different
rotation angles, all TPs are greater than 200 and all precisions
are greater than 0.2. The results show that the FMPF has rotation
invariance in the whole 360° range. In order to qualitatively
analyze the matching performance, we selected the matching
results at six rotation angles (i.e., 30°, 90°, 150°, 210°, 270°,
and 330°) of each method, as shown in Fig. 6. We can find
that the matching performance of RIFT is the worst, and there
are several-for-one correspondences among the six matching
results. Compared with SIFT, OS-SIFT, SURF, and RIFT, FMPF
shows the best matching performance.

3) Scale Invariance: To study the impact of scale change, a
group of SAR-optical images with different scales are chosen
for testing. The scales are 0.5, 1, 1.5, 2, and 2.5, respectively.
The matching results of FMPF are shown in Fig. 7, it can be seen
that the matching is successful when the scales are 0.5, 1, 1.5, 2,
and 2.5, respectively. Although the number of correct matching
decreases with the increase of scale, the distribution of feature
matching points is relatively uniform. It indicates that FMPF has
scale invariance.

C. Experimental Results on MIDs

Four multimodal image datasets (MIDs) are used to evaluate
the performance of FMPF, including 45 pairs of visible-near-
infrared (VIS-NIR) [47] images, 44 pairs of visible-thermal
infrared (VIS-TIR) [41] images, 40 pairs of optical–optical
(OPT–OPT) [48] images and 24 pairs of depth map-RGB
(DEPTH-RGB) [49] images.

1) Feature Matching: We first give the result of feature
matching and motion vectors of our FMPF on eight multimodal
image pairs in Fig. 8. These image pairs are chosen from the
aforementioned datasets, and each dataset contains two pairs.
It can be found that our PMFP method can remove most of the
mismatches are removed and realize structural congruence from
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Fig. 7. Image matching results. (a) s = 0.5. (b) s = 1. (c) s = 1.5. (d) s = 2. (e) s = 2.5.

Fig. 8. Feature matching results (left) and motion vectors (right) on eight multimodal image pairs. (a1) VIS-NIR1. (a2) VIS-NIR2. (b1) VIS-TIR1. (b2) VIS-TIR2.
(c1) OPT-OPT1. (c2) OPT–OPT2. (d1) DEPTH-RGB1. (d2) DEPTH-RGB2.

the motion vectors. By using (21)–(23), the precision, recall,
and F-score on eight image pairs are (83.98%, 95.72%, 0.9847),
(82.43%, 94.02%, 0.8785), (65.16%, 74.47%, 0.6951), (63.89%,
98.64%, 0.7755), (51.78%, 95.83%, 0.6723), (63.02%, 98.82%,
0.7697), (47.52%, 85.82%, 0.6117), and (41.70%, 88.89%,
0.5678). Although the precision of the last two image pairs
is lower than 50%, the correctly matched motion vectors have
structural congruence.

The feature matching performance of FMPF is quantitatively
compared with four advanced feature matching methods, in-
cluding VFC, LLT, LPM, and mTopKPR. The local features of
the four comparison methods are detected in the nonlinear scale
space, which is the same as FMPF. We calculate the precision,
recall, and F-score on all MIDs, and then plot precision-recall
and cumulative distribution curves of F-score, as shown in Fig. 9.

The cumulative distribution curve indicates that 100×x% of the
image pairs have performance values not greater than y. The
larger the precision, recall, and F-score, the better the match-
ing performance. The average precision, recall and F-score
of FMPF are (73.55%, 95.50%, 0.8136), (58.13%, 76.83%,
0.6508), (54.97%, 88.96%, 0.6627), and (43.21%, 78.12%,
0.5286). The feature matching performances are characterized
by the cumulative distribution of the F-score, and it can be noted
that our FMPF method is superior to the other four advanced
feature matching methods.

2) Image Registration: The key point of image registration
is whether the transformed image can maximize the alignment
of overlapping regions. We use the affine transformation model
to transform the sensed image after feature matching. Fig. 10
shows the eight multimodal image pairs (left) and the visual
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Fig. 9. Quantitative comparison of feature matching on four MIDs. (From left to right) VIS-NIR, VIS-TIR, OPT–OPT, and DEPTH-RGB. The average value of
each comparison method is displayed in the legend (AP denotes average Precision, AR denotes average Recall, and AF denotes average F-score).

Fig. 10 Image pairs (left) and registration results (right) on eight multimodal image pairs. (a1) VIS-NIR1. (a2) VIS-NIR2. (b1) VIS-TIR1. (b2) VIS-TIR2.
(c1) OPT–OPT1. (c2) OPT–OPT2. (d1) DEPTH-RGB1. (d2) DEPTH-RGB2.

registration results (right). It can be found that FMPF achieves
satisfactory performance and obtain high registration accuracy.

Then, the registration accuracies of VFC, LLT, LPM, and
mTopKPR are quantitatively compared and the cumulative dis-
tribution curves are plotted. The cumulative distribution curve
indicates that 100×x% of the image pairs have performance
values not greater than y (i.e., RMSE, MEAN, and Std). The less

the RMSE, MEAN, and Std, the better registration performance.
As shown in Fig. 11, the average RMSE, MEAN, and Std of
mTopKPR are the largest, while the average RMSE, MEAN,
and Std of FMPF are the smallest on four multimodal image
datasets. It can be concluded that the accuracy of FMPF on
RMSE, MEAN, and Std is higher than that of the other four
algorithms.
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Fig. 11. Quantitative comparison of image registration on four MIDs. (From left to right) VIS-NIR, VIS-TIR, OPT–OPT, and DEPTH-RGB. (From top to bottom)
RMSE, MEAN, and Std to the cumulative distribution. The average value of each comparison method is displayed in the legend (AM denotes average RMSE, AM
denotes average MEAN, and AS denotes average Std).

Fig. 12. MRSIPs. (a) OPT–OPT. (b) SAR-optical. (c) Day-night. (d) Map-
optical. (e) Infrared-optical. (f) Depth-optical.

D. Experimental Results on MRSIPs

In Section III-C, all MIDs have no coordinate information.
In this part, six types of multimodal remote sensing image pairs
(MRSIPs) with geographic coordinate information are selected
for testing. These MRSIPs include OPT–OPT images, SAR-
optical images, day-night images, map-optical images, infrared-
optical images, and depth-optical images, which consider almost
all applications of multimodal remote sensing images (MRSI)
matching, such as image fusion, image interpretation, and image
registration. The six MRSIPs are displayed in Fig. 12. The size
of MRSI ranges from 400×400 pixels to 1000×1000 pixels. We
can find that the geometric distortions and radiation distortions
of the MRSIPs are much more serious than those of MIDs.

Therefore, it is essential to test our proposed method’s robustness
on multimodal remote sensing image matching. Qualitative and
quantitative experiments are conducted to evaluate the accuracy
of feature matching and image registration on these MRSIPs.

1) Feature Matching: Two descriptors (SIFT and RIFT) and
four mismatch removal methods (VFC, LLT, LPM, and mTop-
KPR) are used to compare with the proposed FMPF method.

a) The qualitative results of feature matching are shown in
Fig. 13. SIFT failed to match the MRSIPs in Fig. 13(a2), (a5),
and (a6) while successfully matching in Fig. 13(a1), (a3), and
(a4). SIFT performs blur processing on the MRSI using the
Gaussian pyramid to construct the image scale space, which
leads to the weakening of image texture edge features and the
difficulty of extracting contour edge features. In summary, the
traditional Gaussian pyramid scale space is not conducive to
MRSI matching.

Although the LPM algorithm matches successfully, there are
a small number of FPs in Fig. 13(e2), (e3), and (e4) (i.e., 2, 2,
and 1, respectively). If we use FPs to transform the image, it will
increase the error of image matching. Moreover, the average TP
of the LPM algorithm is 38.83, which is less than that of RIFT,
VFC, and FMPF. In summary, the LPM algorithm is not good
for MRSI matching.

The matching results of VFC, LLT, mTopKPR, and FMPF
are all successful, and the average TPs are 47.83, 32.67, 29.83,
and 220, respectively. LLT has the least TPs on the OPT–OPT
dataset, SAR-optical dataset, day-night dataset, and map-optical



XIONG et al.: FEATURE MATCHING OF MULTIMODAL IMAGES BASED ON NONLINEAR DIFFUSION AND PROGRESSIVE FILTERING 7149

Fig. 13. Feature matching results on MRSIPs. (From left to right) OPT–OPT, SAR-optical, day-night, map-optical, infrared-optical, and depth-optical. (From
top to bottom) SIFT, RIFT, VFC, LLT, LPM, mTopKPR, and FMPF.

Fig. 14. Registration results on MRSIPs. (From left to right) OPT–OPT, SAR-optical, day-night, map-optical, infrared-optical, and depth-optical. (From top to
bottom) SIFT and FMPF.

dataset, which are 18, 22, 28, and 25, respectively. The mTop-
KPR has the least TPs on the infrared-optical dataset and depth-
optical dataset, which are 50 and 23. FMPF produces the best
performance on the six MRSIPs, and the TPs are 204, 73, 104,
322, 439, and 124, respectively.

b) We use the F-score to quantitatively evaluate the matching
performance, and the quantitative comparison results are shown
in Tables I and II. SIFT performs better on the OPT–OPT dataset,

the day-night dataset, and the map-optical dataset than on the
other three datasets. In three successfully matched image pairs,
all F-scores are very small (smaller than 0.02). It proves that
SIFT is not suitable for matching multimodal remote sensing
images.

The F-score of LPM on six data sets is much lower than that
of the other four mismatch removal algorithms. The main reason
may be that TP contains a small amount of NP, resulting in a
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TABLE I
F-SCORE RESULTS OF SIFT, RIFT, AND FMPF ON SIX MRSIPS

(“-” MEANS NO RESULT)

TABLE II
F-SCORE RESULTS OF VFC, LLT, LPM, MTOPKPR, AND FMPF

ON SIX MRSIPS

TABLE III
RMSE RESULTS OF SIFT, RIFT, AND FMPF ON SIX MRSIPS

(“-” MEANS NO RESULT)

TABLE IV
RMSE RESULTS OF VFC, LLT, LPM, MTOPKPR, AND FMPF ON SIX MRSIPS

significant decrease in the F-score. We can clearly observe that
the F-score of FMPF reaches the maximum, which demonstrates
its robustness and effectiveness on MRSIPs.

2) Image Registration: The affine transformation model is
utilized to transform the sensed image. We compare the regis-
tration results of SIFT and FMPF, as shown in Fig.14. Since the
TP of Fig. 13(a2), (a5), and (a6) is 0, there are no true matches to
compute the homography model, resulting in the failure of image
registration of Fig. 14(a2), (a5), and (a6). In Fig. 14(a1), (a3),
and (a4), SIFT performed better registration performance on the
OPT–OPT dataset, the day-night dataset, and the map-optical
dataset because of its resistance to illumination changes. In
Fig. 14(b1)–(b6), all the registered image has achieved a good
alignment effect with our FMPF method, and the registration
performance is better than SIFT.

We use the affine transformation model to transform the
sensed image after feature matching. We select 20 pairs of
landmarks manually as the truth values, they are uniformly
distributed around the region of interest of each multimodal
image pair. The RMSE of the transformation residual error is
computed by the homography model. The less the RMSE, the
better the registration performance of corresponding points. The
RMSE of each method of MRSIPs is shown in Tables III and IV.

As can be seen, the proposed FMPF method achieves the best
performance followed by RIFT. SIFT obtains the worst RMSE
performance, which proves that it is not suitable for multimodal
image registration. The average RMSE of VFC, LLT, LPM, and
mTopKPR is 122.83, 47.83, 32.67, 29.83, and 220, respectively.
LPM and mTopKPR have competitive performance because
they can maintain reliable matches, which can estimate the
transformation correctly. As for VFC and LLT, some obvious
false correspondences may be preserved, resulting in relatively
poor registration performance.

IV. CONCLUSION

We propose a feature matching method for multimodal images
based on progressive filtering in this article. We conduct a
series of experiments on MIDs and MRSIPs, the results show
that our proposed FMPF method outperforms the other six ad-
vanced feature matching methods. However, the proposed FMPF
method is tested only on rigid multimodal images. For non-rigid
multimodal images, there may be only a small number of correct
matches. The locations of the inliers can be very scattered, so the
initial correspondences may not have structural consistency. We
plan to use different feature detection and description methods to
create more effective correspondences on nonrigid multimodal
images in the feature work. In the feature matching stage, there
are four empirical thresholds τ1–τ4. We use an iterative strategy
to remove the mismatches progressively, which is similar to
deterministic annealing. We use the same threshold for the MDIs
and MRSIPs. We plan to use the dynamic adaptive threshold to
remove the mismatches for different datasets in the feature work.
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