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Abstract—Early-season crop mapping provides decision-makers
with timely information on crop types and conditions that are cru-
cial for agricultural management. Current satellite-based mapping
solutions mainly rely on optical imagery, albeit limited by weather
conditions. Very few exploit long-time series of polarized synthetic
aperture radar (SAR) imagery. To address this gap, we assessed
the performance of COSMO-SkyMed X-band dual-polarized (HH,
VV) data in a test area in Ponte a Elsa (central Italy) in
January–September 2020 and 2021. A deep learning convolutional
neural network (CNN) classifier arranged with two different ar-
chitectures (1-D and 3-D) was trained and used to recognize ten
classes. Validation was undertaken with in situ measurements from
regular field campaigns carried out during satellite overpasses over
more than 100 plots each year. The 3-D classifier structure and the
combination of HH+VV backscatter provide the best classification
accuracy, especially during the first months of each year, i.e., 80%
already in April 2020 and in May 2021. Overall accuracy above 90%
is always marked from June using the 3-D classifier with HH, VV,
and HH+VV backscatter. These experiments showcase the value
of the developed SAR-based early-season crop mapping approach.
The influence of vegetation phenology, structure, density, biomass,
and turgor on the CNN classifier using X-band data requires fur-
ther investigations, along with the relatively low producer accuracy
marked by vineyard and uncultivated fields.

Index Terms—Convolutional neural network (CNN), COSMO-
SkyMed, crop early mapping, deep learning, dual polarization,
synthetic aperture radar (SAR), X-band.
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I. INTRODUCTION

MODERN agriculture will have to combine the needs
of productivity with those of environmental, economic,

and social sustainability [1] in a climatic context made un-
certain by the effects of climate change [2]. Information that
can help in implementing advanced and integrated monitoring
and forecasting systems to promptly identify the risks and the
impacts of calamities and crop practices on agricultural envi-
ronments is essential. Satellite Earth observation data were re-
vealed to be optimal for the aforementioned tasks for three main
reasons.

1) From the spatial point of view, they can cover wide areas
with different spatial resolutions [3].

2) From the temporal point of view, since they can be fre-
quent, they can benefit from historical series for long-term
analysis [4], and they can be punctual thanks to the con-
tinuous acquisition of Copernicus constellations [5].

3) From an economic point of view, they are becoming more
convenient thanks to the provision of free satellite data
and software for their processing and display [6], [7].

Agricultural ecosystems are characterized by strong varia-
tions within relatively short time intervals. Depending on the ob-
servation period, the agricultural scenario can present itself in a
totally different way due to the different biomass, phenology, and
turgor that can be driven by cultivar and agricultural working,
as well as weather conditions. These dynamics are challenging
for crop classification and the knowledge of vegetation status
can deliver crucial information that can be used to improve the
classifier’s performance [8].

To consider these aforementioned changes in agricultural
vegetation and soil status, a multitemporal approach based
on the study of time series of remotely sensed indices was
revealed to be successful [9], [10]. Time series of satellite
images offer the opportunity to retrieve the dynamic prop-
erties of target surfaces by investigating their spectral prop-
erties combined with temporal information on their changes
[11].

Crop mapping represents important information in the context
of programs for the monitoring of rural areas on a regional and
global scale [12], [13].
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The early season mapping (ESM) allows for a refinement
of crop mapping and plays a prominent role in facilitating the
following:

1) the prediction of water consumption due to irrigation in
water balance monitoring [14], [15];

2) the control of pesticides [16];
3) the control of food production and waste [17];
4) the control of many prescriptions is contained in the plans

of the Community Economic Policy.
ESM is also the basis for developing algorithms and systems

for monitoring the growth of vegetation and for the estimation
of biomass and yield [18]. The main aim of ESM is therefore
to provide public and private decision-makers with timely in-
formation on crop types and conditions that are revealed to be
crucial for agricultural management in the context of programs
for rural areas and resource management on a regional and
global scale [19], [20]. ESM is based on the recognition of
incomplete series of temporal trends of optical or microwave
indices; more in detail ESM is carried out using only remotely
sensed data acquired in the first months of the agricultural years.
The quality of classification and the time horizon in which
crop maps can be provided depends on the type and temporal
resolution of satellite data, the classifier, and the operator’s
ability.

In literature, many studies showed the effectiveness of satellite
optical data for crop mapping with moderate [21], [22], high
[23], [24], very high resolution products [25], [26], and with their
fusion [27], [28], using the bands or arranging them in optical
indices [29], [30], with object- or pixel-based approaches [31],
[32]. However, the usability of optical satellite data is strongly
hampered by illumination and weather conditions since they
can acquire images only in daytime and in cloud-free sky states.
On the contrary, microwave sensors are generally not affected
by weather conditions, clouds, and sun illumination, and with
the advent and the evolution of synthetic aperture radar (SAR)
sensors, the geometric resolution of the imagery is becoming
even closer to the optical one.

Several studies describe crop mapping results carried out
using L- [33], [34], C- [35], [36], and X-band [37], [38] over the
integration of multifrequency sensors [33], [39]. Polarimetric
SAR data and the related polarimetric-SAR technology were
revealed to be breakthroughs for classification since they can
benefit from up to four polarizations and a set of different
decomposition algorithms that can derive new features from the
whole scattering matrix to be used by the classifiers [40], [41].

The dual-polarization X-band SAR data showed good perfor-
mances in mapping and monitoring the phenology of agricul-
tural environments, both with TerraSAR-X data [42], [43] and
COSMO-SkyMed StripMap imagery [44], [45].

Machine learning techniques have been applied in crop map-
ping with satellite data, for example, using support vector ma-
chines [46], [47], random forest [48], [49], or artificial neural
networks [12], [50]. Deep learning (DL) is a subset of machine
learning based on artificial neural networks related with an
unbounded number of layers of bounded size, permitted to be
heterogeneous and to deviate widely from biologically informed
connectionist models [51]. The performances demonstrated by

DL approaches in many areas of image processing have gen-
erated considerable interest in the extension of DL techniques
to the entire universe of remote sensing, including features
extraction [52], change-detection [53], and data fusion [54].

DL techniques were used for classification exploiting optical
imagery with subdecimeter resolution [55], [56], very high
spatial resolution [57], [58], hyperspectral [59], [60], and multi-
spectral satellite data [61], [62]. SAR image classification using
DL was described in [63], with polarimetric data in [64] and
[65] and in integration with optical data in [66]. Ensemble and
DL techniques have been proved to outperform other machine
learning techniques such as support vector machines [67], [68]
since they take advantage of the redundancy in the number of
classifiers to decrease the variance of the estimation error.

Crop mapping is another important task that can benefit from
the application of DL techniques with optical [69], [70] and the
fusion/integration of optical and SAR data [66], [71], [72]. Few
manuscripts describe the results from the use of DL techniques
with SAR imagery for land and crop classification [73], [74],
despite the good classification accuracy and efficiency [75]. In
[76], Hirose used DL to conduct several pioneering works on
land use classification with SAR.

A convolutional neural network (CNN) is a class of DL able
to learn high-level context features through a large number
of neurons arranged in multiple architectures. Especially, 3-D
convolution can take into account the radiometric, spatial, and
temporal components of a multitemporal stack of satellite scenes
in a more delicate and rigorous manner, other than a direct
concatenation of reflectance or backscatter images [77]. The
main flaw in the use of CNN is represented by the high number
of samples required during the training.

The present study evaluates the performance of CNN applied
to in-season early crop classification of an agricultural area in
the center of Tuscany, Italy, during 2020–2021. The test area
is interesting for crop classification due to the small dimension
of the fields and the similarity in life cycles of some crops that
can be easily confused by the classifiers. X-band satellite data,
purposely tasked and collected by means of the Italian Space
Agency (ASI)’s COSMO-SkyMed constellation in StripMap
PingPong mode, were used. The novelty of this work lies on
1) the use of X-band SAR backscatter alone for early crop map-
ping, in particular exploiting an unprecedentedly long and con-
tinuous time series of dual-polarization data; and 2) the analysis
of the marginal gain obtained by postponing the production date
of the classified map, which technically consists of an increase in
the available satellite SAR scenes used for classification. Several
tests were done to identify and assess the best CNN architecture,
the different performance of the classifiers depending on the time
of maps delivery, and the difference in accuracy attained using
single-polarization versus dual-copolarized data.

II. MATERIALS AND METHODS

A. Test Site and Ground Data

The selected test site extends 270 ha and is located south of
Ponte a Elsa (43°41′20.37′′N, 10°53′42.38′′E), a small town in
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Fig. 1. Map of investigated fields in the Ponte a Elsa test site in (a) 2020 and
(b) 2021.

the Tuscany region, Italy, divided between the municipalities of
Empoli (Florence) and San Miniato (Pisa), as shown in Fig. 1.

The area is mainly suited to viticulture and olive growing, and
annual herbaceous crops like maize, sunflower, sorghum, wheat,
and legumes are a secondary source of income for the small local
farms, which generally do not exceed a few tens of hectares. The
selected agricultural plots belong to five different farms and are
located on the plain along the Elsa riverbed, surrounded by low
and mild hills. Selected plots are always bigger than 1 ha with an
average of approximately 3 ha. They have an irregular shape and
are delimited by moats or shrubs. A criterion for the selection of
those fields was the homogeneity in terms of species, soil type,
and cultivation.

The plots were surveyed during several measurement cam-
paigns carried out in spring 2020 and 2021 using the SMASH
Field Data Collection mobile application [78], which allows the
collection of georeferenced pictures with notes attached that can
easily be exported in any vector format.

Herbaceous crops in the Ponte a Elsa test site are always
annual and can be grouped in winter (wheat, rapeseed, and

TABLE I
ACQUISITION DATES OF COSMO-SKYMED STRIPMAP PINGPONG PRODUCTS

IN 2020 AND 2021 OVER THE PONTE A ELSA TEST SITE

fava bean) and summer crops (sorghum, corn, and sunflower)
that follow the annual field’s rotation. Vineyard, olive tree, and
pasture can be considered multiyear crops.

Winter species are generally seeded in autumn before the year
of harvesting, i.e., wheat harvested in mid-June 2020 was seeded
approximately in October 2019. Summer species are seeded the
same year of harvesting, i.e., the sunflower harvested at the end
of August 2021 was seeded approximately in April 2021. Pasture
class consists mainly of forage crops, like alfalfa, clover, cat
grass, oat, fennel, etc. These plots are grazed many times in
a year. Finally, the uncultivated class is represented by natural
vegetation that invades the fields during the year of rest from
agricultural cultivation.

B. Satellite Synthetic Aperture Radar (SAR) Data

X-band SAR data from the COSMO-SkyMed (CSK) constel-
lation [79] were collected for this research by ASI during a
tailored monitoring campaign designed in 2019 and carried out
in the framework of the project “ALGORITMI” [80].

StripMap PingPong (CSK-PP) images were acquired in right-
looking mode along ascending orbits (at ∼05:00 A.M. UTC),
using alternating polarization HH and VV. The beam mode
PP_12 was used, with an off-nadir angle ranging between 37.9°
(near range) and 39.7° (far range) and an incidence angle be-
tween 42.6° and 44.4°, respectively. Following two periods of
acquisitions were selected for the analysis: 1) from 1st January
2020 till 31st August 2020 and 2) from 1st January 2021 till 31st
August 2021. Dates of imagery are provided in Table I.

CSK-PP scenes were accessed as single-look complex slant
range products (Level 1A), then multilooked to obtain squared
pixel maps. The Ponte a Elsa test site lies on a flat plain, and
thus, its backscatter is not influenced by orography. Anyway,
terrain correction has been applied considering the formulas
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Fig. 2. Example of X-band COSMO-SkyMed StripMap PingPong sigma
naught in HH and VV polarization acquired over the Ponte a Elsa test site
on June 3, 2020 along with borders of test fields.

described in [81] and [82], using the 10-m resolution digital
elevation model provided by Regione Toscana [83]. As a result,
backscatter maps with a pixel dimension of 10 m, with the
produced UTM 32N (EPSG 32632) projection, and are finally
despeckled by means of a Kuan filter (window size=3×3 pixels,
equivalent number of looks = 1).

CSK-PP products exploit an incoherent dual-polarization
mode since the phase link between two polarimetric acquisitions
is not preserved [84]. While this prevents the possibility of
obtaining useful polarimetric features like alpha and entropy
from a dual-polarization decomposition, as those derived in
[43] and [85] using TerraSAR-X, this dataset provides sigma
naught backscatter maps in both VV and HH polarization (as
those shown in Fig. 2), which was the key parameter used in the
research.

C. Classification Algorithm

Since the classifier is trained to recognize crops on the basis
(especially) of temporal trends of backscatter and species from
winter classes tend to have similar yearly backscatter temporal

TABLE II
CLASS REPRESENTATIVENESS EXPRESSED AS NUMBER OF PLOTS AND NUMBER

OF PIXELS PER CROP CLASS USED FOR THE EXPERIMENT IN 2020 AND 2021

trends (the same for species from summer classes), this rep-
resents the first difficulty for classification. In this research,
the differences in temporal trends inside crops from the win-
ter macroclass (or summer macroclass) are led mainly by the
amount of biomass per square meter, plant water content, and
by the different structures of the plants [86].

The inclusion of uncultivated (fallow) and pasture classes acts
as another burden for classification due to its high heterogene-
ity in biomass, floristic composition, and dates of grazing or
harvesting.

Furthermore, the entire 2020 and 2021 ground truth datasets
were strongly unbalanced in terms of the number of pixels per
class for both years as shown in Table II, although the variability
of crops from one year to another depends on farmers’ practice
and decisions that cannot always be predictable.

On the other side, efforts were made to ensure a robust field
data sample to cover each crop class through as many regular
field visits as they were possibly allowed during a period of
pandemic emergency and related health protection measures.

Eight following time steps were selected for the research,
namely February, March, April, May, June, July, August, and
September. For example, classification carried out in August
consisted in producing a crop map feeding a classifier with a
time series of SAR images spanning from January to July.

This article is focused on ensemble classifiers based on CNNs
to perform crop classification over multitemporal CSK-PP im-
agery. An ensemble classifier is composed of three indepen-
dently trained CNN classifiers. For a given input, the CNN
classifiers produce a similarity score for each possible output
class; the ensemble classifier output corresponds to the class
that has the highest cumulative similarity score. Each CNN
classifier operates on an input feature vector and provides a
corresponding class as output. The input feature vectors are
defined starting from the multitemporal image stack depicted
in Fig. 3, where the acquisitions are preliminarily coregistered
and sorted by polarizations (fast variable) and acquisition dates
(slow variable).

In this experiment, the comparison of two CNN architectures
that work on different kinds of input feature vectors as described
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Fig. 3. Generic image stack for the considered classification algorithms.

Fig. 4. 1-D CNN. (a) Input feature vector. (b) Convolution in the polarization
time domain.

in [66], i.e., one-dimensional and three-dimensional (hereafter
abbreviated as 1-D and 3-D), was done. The former is called
1-D because the convolution kernel is single-dimensional and
operates in the vectorized polarization-time domain, as shown
in Fig. 4. In the latter, the input feature vectors are patches of
size 3-by-3 pixels [see Fig. 5(a)], and the convolutional kernels
span the polarizations and operate in the 3-D domain defined by
the space and the time coordinates, as shown in Fig. 5(b). Both
the architectures provide pixel-by-pixel classification.

In the case of 1-D, this behavior is implicitly given by the size
of the input feature vector; for the 3-D, this is accomplished by
considering a 3-by-3 patch centered on each image pixel and
assigning to it the classification output. The patch dimension,
both for 1-D and 3-D classifiers, is a tradeoff between limiting
the misclassification along the parcels’ borders and grasping the
contextual features.

The parameter values adopted in the previous layers are listed
in Table III. The convolutional layer is responsible for linearly
filtering the input to extract the features for the subsequent layers.

The batch normalization layer is introduced to stabilize the
training process making it less dependent on the values of each
minibatch in the learning phase. The rectifier linear unit (ReLu)
layer is a common choice in the supervised classification of
images [66] due to its efficient implementation and plausibility
with the underlying signal model. The role of the max pooling
layer is to reduce the number of outputs at each stage by
preserving the local maxima of its input.

Fig. 5. 3-D CNN. (a) Input feature vector. (b) Convolution in the space+time
domain.

TABLE III
PARAMETERS SETTING OF THE COMPARED CNN ARCHITECTURES

Independent of the architecture, the CNN classifiers of an
ensemble share the following multilayer structure:

1) input layer;
2) four convolutional blocks;
3) first fully connected layer;
4) second fully connected layer;
5) softMax layer;
Each convolutional block is composed of the following:
1) convolutional layer;
2) batch normalization layer;
3) ReLu activation function;
4) max pooling layer;
5) dropout layer.
The dropout layer aims at reducing the overfitting by ignoring

some of its inputs randomly chosen. The fully connected layers
synthesize the output of the convolutional blocks by intercon-
necting all their inputs. Finally, the softmax layer provides the
similarity score for each of the possible output classes. It is
necessary to remark that the structure of the CNN classifiers
in an ensemble classifier is the same, being the output size of
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the first fully connected layer the only difference (see the last
column of Table III); this setting has been successfully adopted
also in [66] and [87].

The training of the CNN classifiers is performed by means
of the adaptive moment estimation algorithm [88], which is a
common choice for this kind of problem. The minibatch size
and the number of epochs are set to 128 and 100, respectively,
with shuffling at the end of each epoch to reduce the overfitting.
The initial learning rate is set to 10−3 with a dropping factor of
0.1 every 20 epochs; the cross entropy with L_2 regularization is
used as a loss function to avoid divergent behavior. A stratified
threefold partitioning of the dataset was used in all experi-
ments. In turn, two partitions are first oversampled by means
of Synthetic Minority Oversampling Technique plus Tomek
Links (SMOTE+TL), [88] to deal with the dataset unbalancing
and then used to train an ensemble classifier from scratch; the
remaining partition is used for testing. The presented results
and related statistics are computed over the union of the testing
partitions.

III. RESULTS

The results of early crop mapping using CSK-PP data and
CNN for 2020 and 2021 are shown in Tables IV and V. Two
metrics are used to describe the goodness of classification in
this article, namely overall accuracy (OA) and producer accuracy
(PA). The former is defined as the ratio of the number of correctly
classified pixels over its total number; the latter is defined as the
number of pixels correctly classified to a specific class over the
total number of pixels of that class.

A. Achieved Classification Performance in Terms of OA

In 2020, two big increases are found in OA of crop clas-
sification in March (32.5%) and in April (almost 25%) when
using 1-D with the combination of HH and VV (hereafter called
1D-HH+VV), when two and four SAR images, respectively,
were available. Using a 3-D classifier, the highest increase in
OA happens in March, with a difference above 33% using HH
or VV (these combinations will be called, respectively, 3D-HH
and 3D-VV hereafter) and above 31% using HH+VV (hereafter
called 3D-HH+VV).

In 2021, a big increase was found in OA, above 30% in June
using backscatter from only HH or VV and 1-D (these combina-
tions will be called, respectively, 1D-HH and 1D-VV hereafter).
For 1D-HH+VV this increase is approximately 27% and occurs
earlier, i.e., in May, when ten and six images are respectively
available. Using a 3-D classifier, the boost in classification
performance is immediately higher over time with respect to
1-D until June. With 3D-HH+VV the highest increase of OA
over time happens in March and is above 30%, achieved using
only two SAR images. With 3D-HH and 3D-VV, the highest
increase of OA occurs later, i.e., in June.

In 2020, VV was found slightly more semantic for crop
classification with respect to HH from March, with an average
gap of approximately 2% for 1-D. HH+VV always provides
better classification performance with respect to the use of
backscatter from a single polarization, with both 1-D and 3-D.

TABLE IV
OA OF CROP CLASSIFICATION OF PONTE A ELSA TEST SITE ATTAINED IN

EIGHT MONTHLY TIME STEPS IN 2020 WITH TWO CNN: 1-D AND 3-D AND

BACKSCATTER FROM COSMO-SKYMED STRIPMAP PINGPONG DATA IN HH,
VV, AND HH+VV

The advantage of HH+VV increases until April with 1-D, when
a difference above 30% OA is noticeable with respect to using
backscatter from one polarization only. In the case of 3-D,
the highest difference in OA of classification attained using
3D-HH+VV is already noticeable in February, with a better
performance of approximately 20% with respect to classification
carried out using 3D-VV or 3D-HH. 3D-HH+HV provides the
best classification results for both years, as shown in Tables IV
and VI, and Figs. 6 and 8(a).

In 2021, classification using 1D-HH provides the worst results
among all the tests, as shown in Tables V and VII and Figs. 7 and
8(b). The superiority of OA attained with 1D-VV with respect
to 1D-HH increases until June and is almost always above 5%.
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Fig. 6. (a) Comparison between ground truth map of Ponte a Elsa test site in
2020 produced using in situ campaigns and (b) result of classification with 3-D
structure CNN-based classifier using COSMO-SkyMed StripMap PingPong HH
and VV polarization backscatter at the end of the season.

Fig. 7. (a) Comparison between ground truth map of Ponte a Elsa test site in
2021 produced using in situ campaigns and (b) result of classification with 1-D
structure CNN-based classifier using COSMO-SkyMed StripMap PingPong HH
polarization backscatter at the end of the season.
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TABLE V
OA OF CROP CLASSIFICATION OF PONTE A ELSA TEST SITE ATTAINED IN

EIGHT MONTHLY TIME STEPS IN 2021 WITH TWO CNN: 1-D AND 3-D AND

BACKSCATTER FROM COSMO-SKYMED STRIPMAP PINGPONG DATA IN HH,
VV, AND HH+VV

Using 3-D, the difference in OA between classifications car-
ried out using only HH or VV can be negligible, apart from
April and May. In 2021, HH+VV allows the best OA to be
achieved in crop classification when the advantage of using
backscatter from both the polarizations increases until May
using 1D-HH+VV. In this case, a difference of 35% of OA is
noticeable with respect to using 1D-HH and above 25% using
1D-VV.

In the case of 3-D, a big difference in classification between
using backscatter from both polarizations or a single one is no-
ticeable already in March and April, with a better performance of
approximately 20% of OA attained with respect to classification
carried out using 1D-VV or 1D-HH. The difference in OA using
HH+VV versus HH or VV drops dramatically after May using
both 1-D and 3-D.

TABLE VI
CONFUSION MATRIX RELATIVE TO CLASSIFICATION CARRIED OUT IN 2020
USING 3-D STRUCTURE CNN-BASED CLASSIFIER AND COSMO-SKYMED

STRIPMAP PINGPONG HH+VV POLARIZATION BACKSCATTER

Fig. 8. Two examples of PA attained during the two years experiment with
X-band backscatter and CNN-based classifier. (a) Best result attained with a
3-D structure of classifier and COSMO-SkyMed StripMap PingPong HH plus
VV polarization backscatter in 2020. (b) Worst result attained with a 1-D struc-
ture of classifier and COSMO-SkyMed StripMap PingPong HH polarization
backscatter in 2021.

The OA in classification attained in 2020 is generally higher
than the one in 2021, with the biggest difference reached in
March or April. This is found although ten classes were required
to be recognized in 2020 and eight in 2021. This assertion is valid
generally until June when nine images were available in the 2020
dataset and ten in 2021. In this month, crop classification in 2020
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TABLE VII
CONFUSION MATRIX RELATIVE TO CLASSIFICATION CARRIED OUT IN 2021
USING 1-D STRUCTURE CNN-BASED CLASSIFIER AND COSMO-SKYMED

STRIPMAP PINGPONG HH POLARIZATION BACKSCATTER

and 2021 begins to attain the same OA with all polarizations,
both for 1-D and 3-D, respectively.

B. Achieved Classification Performance in Terms of PA

The analysis of PA attained in the classification of crop
types can help in the explanation of OA for each time frame,
backscatter polarization, and CNN configuration. We first notice
that all the tested classifiers exhibit a consistent behavior since
the PAs in all classes improve and get closer as the deadline of
the observation is postponed. Hence, increment in the OA is due
to an improvement in all classes and not to improvements in the
most represented classes only.

In 2020, sunflower, wheat, and, also, vineyard are the worst
recognized classes at the beginning of the season. Uncultivated
is a class that is easily confused especially at mid-season, along
with vineyard at the end. The classes that are more recognizable
are generally corn and sorghum and then wheat and rapeseed
at the end of the season. PA of all the classes exceeds 90%
late in the season, except for vineyard and uncultivated with
1D-HH and 1D-VV. In 2020 PA generally exceeds 90% just in
June using 1D-HH+VV and 3-D with all the combinations of
polarizations. The class that earlier exceeds or gets close to 90%
of PA (just from March) is corn. Using 1D-HH and 1D-VV, the
highest increment in PA is generally attained in June while using
1D-HH+VV and 3-D, this increase generally occurs earlier, i.e.,
in March, especially for corn, sorghum, pasture, vineyard, and
olive tree. The increase in PA gained moving from HH or VV
to HH+VV with 3-D is more limited. Moving from 1-D to 3-D,
a noticeable amelioration in PA of all the classes is noticeable,
especially for wheat.

In 2021, the worst recognized class at the beginning of the
season is uncultivated and its recognition remains problematic
for the whole year. The same is found in the vineyard. Also, corn
and wheat are easily confused by the classifier at the beginning of
the season. Over time, corn becomes one of the best identified
classes along with olive tree and wheat. Again sorghum was
revealed to be a crop easy to be identified by the CNN-based
classifiers. With respect to 2020, corn is better identified at the
end of the season. Using 1D-HH+VV and 3-D, PA of all the
classes pass 90% just in June and in August or September 2021

using 1D-VV. The class that earlier exceeds or gets close to PA
90% is sorghum, especially with 1D-VV (already in July) and
3D-HH+VV (already in April).

Using 1D-HH and 1D-VV the highest increment in PA is
generally attained in June, whereas using 1D-HH+VV, this in-
crease generally occurs earlier, i.e., in May and in March or April
using 3-D. Passing from a classification using backscatter from
single polarization to HH+VV with 1-D, especially uncultivated
benefited, instead of using 3D-HH+VV, the threshold of PA
70% is reached about a month earlier. Moving from 1-D to 3-D,
a noticeable amelioration in PA of all the classes is noticeable
especially from March to April.

IV. DISCUSSION

The aim of the project was to demonstrate that X-band dual-
polarization SAR data can be effectively used to produce an
early map of crops in a rural area of central Italy. To fulfill this
purpose, we immediately opted for the use of time series of SAR
satellite data collected at a high temporal resolution, to avoid the
issue of gaps due to cloud cover that often affects optical data
[92]. Briefly, priority was given to the temporal regularity of
SAR satellite acquisitions over the spectral richness given by
optical sensors.

A. Performance and Limitations of the Proposed Method

Being able to benefit from dual-polarization HH and VV,
X-band, SAR backscatter imagery, like those coming from
CSK-PP and a classifier based on CNN, arranged in two dif-
ferent architectures (1-D and 3-D), several tests were carried
out on the possible combinations of satellite data acquired in
Spring/Summer 2020 and 2021 with classifier configurations
for early-season crop classifications.

The use of backscatter from both the polarizations always
provided the best classification OA for all the eight monthly
time steps (from February till September). When using only
one polarization, like for other CSK imaging modes such as
StripMap HIMAGE (albeit a much better spatial resolution) and
having the choice of selecting imagery among the co-polarized,
the VV is preferable. A possible explanation for the best clas-
sification performances of backscatter in VV polarization can
be its highest sensitivity toward the vertical elements of plants,
such as stems or trunks, that often constitute a big percentage
of the entire vegetation biomass, as explained in [86] and [93],
whereas backscatter in HH polarization is more influenced by
soil moisture and roughness [94], which could represent sources
of uncertainty for the classifier. The same results have been
described in the literature for X-band [95] and C-band [96], and
L-band backscatter allows slightly better crop classification re-
sults in HH polarization [96], but L-band scattering mechanisms
on crops are not comparable with those in X-band [97]. Regard-
ing the classifier architecture, the 3-D almost always showed
better performance with respect to 1-D, except for February
2021, but again the OA of crop classification level marked
in this month is very low. The 3-D-based classifiers achieved
better performance due to the convolution performed on patches
that also consider spatial information. Only the combination
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3D-HH+VV permitted to attain the earliest crop classification
accuracy above 80% already in April 2020 and in May 2021,
and the earliest OA above 90% already in May 2020 and June
2021. Anyway, 90% in OA is always attained from June when
using a 3-D classifier, with both single-polarization backscatter
and HH+VV (and with 1D-HH+VV).

Based on this two-year-long experiment, the beginning of
May, which is equivalent to a total amount of six/seven available
images with an average of one/two images per month, emerged
as the most likely deadline to achieve an encouraging result of
early crop mapping on an agricultural test site with eight/ten
classes by means of dual-polarization X-band SAR satellite data
and CNN technology. In May, the winter species such as fava
bean, rapeseed, and wheat are in full vegetation, although they
did not reach the peak of growth, whereas the fields that will
host the summer species are generally prepared for seeding. The
classifier is therefore capable of carrying out a satisfactory clas-
sification already when winter species are in the stem elongation
phase and the summer species are not sprouted yet and, indeed,
these plots are still bare and smooth.

The difference in OA between the same months from two
consecutive years of experiment (i.e., May 2020 and May 2021)
dramatically decreases after April for 1-D and after March for
3-D for all the configurations of polarization and architecture.
Classification OA in May 2020 and 2021 is very close, this
is another reason to consider May as the ideal deadline for
early classification. Thanks to the adoption of the oversampling
algorithm, the negative effect of an unbalanced dataset was
strongly reduced since it anticipates the recognition of the less
represented classes right away.

The main parameters that play a relevant role in class recogni-
tion are the characteristics of the vegetation itself like phenology,
structure, density, biomass, and turgor, but its influence on OA
falls out of the scope of this research. Anyway, the use of a 3-D
classifier and backscatter from both the polarizations tends to
mitigate the differences in PA of the classes and among the years,
since it copes with the spatial information coming from the 3× 3
kernels of convolution and the spectral information coming from
both the polarizations. These are other elements suggesting the
use of 3D-HH+VV as the best performing approach to use.

The reasons for the weak PA of vineyards in 2020 and 2021
need to be further investigated. A possible explanation may be
found in the influence of soil parameters, such as moisture and
roughness, that overtake the effect of vegetation in this class.

Indeed in a vineyard, the canopy cover is always incomplete
and a large portion of the soil underneath the plants can be
targeted by the SAR sensor. Instead, the reason for the weak
PA of uncultivated in 2020 and 2021 is due to its high intraclass
heterogeneity.

B. Comparison With OA Achieved by Existing Methods

As already stated, an OA close to 99% in crop classification
was attained in July using a stack of about ten scenes and 3D-
HH+VV in our research. This result is among the best among
those obtained in other works in which only SAR data were used
for the classification of agricultural areas. For instance, in [35], a

maximum OA of 93% is obtained in the recognition of 9 classes
using dynamic conditional random fields and a long series of 45
images from Sentinel-1.

In [36], Useya and Chen achieved an OA of 99% using
30 Sentinel-1 scenes and a random forest-based classifier. In
[38], Sonobe et al. used a very similar satellite dataset to ours,
composed of 16 X-band dual-polarization HH and VV scenes
to recognize six classes and the highest OA achieved was 95%
using a support vector machine. In [37], by using ten X-band
dual-polarization HH and VV scenes and aiming at recognizing
eight classes, Sonobe attained an OA of 92.1% using a multiple
kernel learning-based classifier. The results we obtained using
only SAR data are good enough to be compared with other stud-
ies using optical sensors [69] or the integration/fusion between
optical and SAR data [74].

Many published papers referring to “early mapping” of agri-
cultural areas actually confuse this concept with the classi-
fication carried out using few images, while a proper early
crop mapping is accomplished using the scenes concentrated
at the beginning of the crop season. In [89], Kingma and Ba
carried out an early mapping exercise of an agricultural area
with seven classes using eight scenes from Sentinel-1 attaining
OA = 92.9% using an artificial neural network-based classifier.
In our experience, OA= 94.9% and OA= 98.5% were achieved,
respectively, using seven and nine CSK scenes in 2020 with ten
classes. Similar results were achieved using the integration of
optical and SAR data like in [90], where OA = 93.7% was
reached with the fusion of eight Sentinel-1 and two Landsat-8
images. In [91], Villa et al. used the integration of seven CSK
and six Landsat-8 in 2013 and six CSK and eight Landsat-8
scenes in 2014 for the recognition of seven crop classes, attaining
results very similar to ours with a decision tree-based classifier.
Anyway, the analysis of the marginal gain in terms of OA and PA
with the progressive addition of images presented in this article
is a novelty, preventive direct quantitative comparison with other
publications.

Moving to the comparison of our results with those from
other studies related to crop classification using CNN, to the
best of our knowledge, the literature seems to lack manuscripts
describing the use of SAR satellite data. Although it is very
difficult to compare works that aim to map very different test
areas, it emerges that external results are in line or outstripped
ours when (almost) the same number of classes are foreseen.

For example, in [73], Castro et al. aimed in recognizing 11
classes with 27 Sentinel-1 scenes, obtaining a maximum OA of
71.2%, even if they did not use the entire satellite dataset, but
they trained and evaluated a classification approach based on
CNN using the stacked features and the reference for the last
image in the sequence, respectively. In [71], Adrian et al. aimed
in recognizing 13 classes and they attained OA = 58.6% and
OA = 81.2% using CNN-2D and CNN-3D, respectively, with a
Sentinel-1 dataset.

The results obtained in our work with CNN using only SAR
data are also satisfactory even if compared with those achieved
through optical and SAR fusion. For example, in [66], Kussul
et al. aimed in recognizing 11 classes using 15 Sentinel-1 and 4
Landsat-8 scenes, obtaining an OA of 93.5% with CNN-1D and
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94.6 with CNN-2D, respectively. In [72], one of the experiments
involved the joint use of Sentinel-1 and Sentinel-2 data and
CNN, attaining OA = 87.7% for the recognition of 7 classes and
OA = 87.5% for the recognition of 12 classes. Again, in [71],
Adrian et al. attained OA = 94.3% with the fusion of Sentinel-1
and Sentinel-2 imagery, in the recognition of 13 classes.

C. Choice of the Metric

We conclude this section by discussing the choice of the
metrics. OA is by far the most used metric in the literature
for classifier comparison. Other global scores such as the area
under the curve, F1-score, Matthews Correlation Coefficient,
and Cohen’s kappa (K) [98] are less frequently used in multiclass
classification problems. They were computed on the proposed
experimental results, showing very similar rankings to OA. Since
OA is strongly dependent on the dataset balancing [99] we opted
to support it with the best and worst PA to provide the reader with
a range of performance while preserving a concise statistical
description.

V. CONCLUSION

An agricultural test site in the country of central Tuscany,
Italy, was selected and two years (2020 and 2021) of in situ
measurement campaigns were carried out on a regular basis in
winter, spring, and summer to gather information on species
cultivated on more than one hundred plots each year. Backscatter
from dual-polarization HH and VV X-band satellite SAR data
from the COSMO-SkyMed constellation were acquired from
January to September. Backscatter and in situ data were used
for the training and validation of a crop classifier based on CNN
arranged with two different architectures (1-D and 3-D). Ten
crop classes in 2020 and eight in 2021, and eight monthly time
frames (from February to September) were selected to test the
improvement of crop classification over time and the increase
of image availability.

Results showed that 3D-CNN structure along with the com-
bination of backscatter at both the polarizations provides the
best OA, especially during the first months of the year, i.e., OA
is close to 90% in April 2020 and above 80% in May 2021.
Nevertheless, the beginning of May, which is equivalent to a
total amount of six/seven available images, with an average of
1or 2 images per month, emerged as the most likely deadline
for encouraging results of early crop mapping. In case of only
single polarization X-band data are available, VV is preferable
with respect to HH.

Further efforts need to be spent to explain the influence
of parameters like phenology, structure, density, biomass, and
turgor on classification using X-band data and CNN classifier,
along with the poor PA marked by vineyard and uncultivated.
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