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Weighted Residual Dynamic Ensemble Learning for
Hyperspectral Image Classification

Hongliang Lu"”, Hongjun Su

Abstract—Recently, collaborative representation classifiers have
been extensively studied as an essential method for the hyper-
spectral image. However, how to comprehensively utilize the clas-
sification advantages of multiple collaborative classifiers has not
been well investigated. In this article, two new dynamic ensem-
ble learning methods using local weighted residual (LWR-DEL)
and double-weighted residual (DWR-DEL) of multicollaborative
representation classifiers are proposed. First, the dynamic ensem-
ble learning method based on clustering is utilized to introduce
prior knowledge for the collaborative representation classifier.
Then, with prior knowledge, the local weights of each classifier
for a different region of competence are obtained. To consider the
global information of hyperspectral data, the K-nearest neighbor
algorithm is adopted to achieve validation samples with global
information. The global weights for each classifier can be obtained
and then used to constrain the locally weighted residuals. Similar to
LWR-DEL, the global information is also used to constrain resid-
ual, and then double-weighted constrained residual fusion obtains
the final classifier result. The effectiveness of the proposed methods
is validated using three hyperspectral data sets. The experimental
results show that both LWR-DEL and DWR-DEL outperform their
single-classifier counterparts. In particular, the proposed methods
provide superior performance compared with the state-of-the-art
methods.

Index Terms—Dynamic ensemble learning, hyperspectral
imagery, multicollaborative representation, weighted residual
ensemble.

I. INTRODUCTION

YPERSPECTRAL images have abundant spectral infor-

mation in hundreds of contiguous narrow spectral bands
[1]. Based on these properties, hyperspectral images have many
applications in many fields [2], [3], [4], [5], [6]. Among them,
hyperspectral image classification is one of the most critical
tasks for real applications. With high spectral resolution, fine
classification can be achieved. However, the vast amount of
hyperspectral data, redundant data, few labeled samples, and
correlation between bands have become essential factors re-
stricting the classification performance of hyperspectral images
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[71, [8], [9], [10], [11], [12], [13]. To solve the above problems,
some advanced hypersectral image (HSI) classification algo-
rithms have been proposed. Song et al. [14] proposed a new
band selection method to deal with the redundant information
problem in HSI classification. In this progressive band selection
method, classification is performed incrementally in multiple
stages. The experimental results show that this method performs
better than other HSI classification methods that use full bands.
Yu et al. [15] investigated the feedback attention modules in an
HSI classification network and proposed a spatial-spectral dense
convolutional neural network (CNN) framework with a feedback
attention mechanism. Experimental results based on real HSIs
demonstrate the superiority of the proposed methods over other
state-of-the-art algorithms. Meanwhile, some advanced algo-
rithms were developed to solve the limited samples problem in
HSI classification [16], [17], [18], [19]. However, a single clas-
sifier often cannot solve the above problems comprehensively.
Therefore, how to develop a classifier or classifier ensemble
that can overcome the above limitations is a crucial problem in
hyperspectral image classification.

Ensemble learning can be divided into two categories ac-
cording to whether prior information is used to measure its
competence. The first category is the static ensemble [20], [21],
[22], [23], [24], [25], [26]. It assumes that each base classifier
is independent and has higher accuracy than random guess-
ing. Then, a specific strategy is adopted to combine multiple
classifiers for higher classification accuracy. The most famous
static ensemble algorithms include boosting [27], [28], bagging
[29], and random subspace [30], which has many applications
in hyperspectral image classification [31], [32], [33], [34]. Su
et al. [35] proposed a new ensemble fusion strategy that first
uses collaborative representation (CR) based classifiers as base
classifiers for hyperspectral image classification. The result
shows that the traditional ensemble strategies such as bagging
and boosting are also suitable for the CR-based models. Bao
et al. [36] first proposed ensemble learning from the perspective
of the feature layer and applied it to hyperspectral image classifi-
cation. The results show that ensemble learning from the feature
perspective is effective for hyperspectral image classification.
Pan et al. [37] first proposed using an ensemble strategy to
combine hierarchical guidance filtering and matrix of spectral
angle distance for hyperspectral image classification, which can
effectively improve classification accuracy. However, there are
many ground objects. Some classifiers have higher classification
accuracy for a specific object but lower overall accuracy (OA).
Moreover, all static ensemble learning requires the high accuracy
of the base classifier. These restrictions make the static ensemble
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TABLE I
SIXTEEN CLASSES OF THE INDIAN PINES DATA SET

Class Train Validation Test Name
1 20 20 17 Alfalfa
2 20 20 1389 Corn-no till
3 20 20 790 Corn-min till
4 20 20 201 Corn
5 20 20 443 Grass/pasture
6 20 20 690 Grass/trees
7 20 20 9 Grass/pasture-mowed
8 20 20 441 Hay-windrowed
9 20 20 4 Oats
10 20 20 932 Soybean-no till
11 20 20 2415 Soybean-min till
12 20 20 556 Soybeans-clean
13 20 20 172 Wheat
14 20 20 1225 Woods
15 20 20 348 Buildings-grass
16 20 20 62 Stone-steel-towers
TABLE I
NINE CLASSES OF THE UNIVERSITY OF PAVIA DATA SET
Class  Train  Validation Test Name
1 20 20 6591 Asphalt
2 20 20 18609 Meadows
3 20 20 2059 Gravel
4 20 20 3024 Trees
5 20 20 1306 Painted metal sheets
6 20 20 4989 Bare Soil
7 20 20 1290 Bitumen
8 20 20 3642  Self-Blocking Bricks
9 20 20 908 Shadows
TABLE III
THIRTEEN CLASSES OF THE YELLOW RIVER DATA SET
Class  Train _ Validation  Test Name
1 20 20 355 Acquaculture (Acq)
20 20 756 Seep sea (Ses)
3 20 20 76 Soybean (Soy)
4 20 20 154 Rice
5 20 20 54 Building (Bui)
6 20 20 63 Maize
7 20 20 62 Broomcorn (Bro)
8 20 20 176 Locust
9 20 20 165 Spartina (Spa)
10 20 20 896 Shallow (Sha)
11 20 20 515 Mud flat (Muf)
12 20 20 430 River
13 20 20 322 Suaeda salsa (Sus)
14 20 20 202 Reed
15 20 20 556 Salt marsh (Sam)
16 20 20 418 Intertidal saltwater (Ins)
17 20 20 100 Tamarix(Tam)
18 20 20 338 Pond
19 20 20 37 Flood plain(Flp)
20 20 20 41 Freshwater herbaceous marsh (FHM)
21 20 20 15 Aquatic vegetation (Aqv)

unable to fully play the advantages of these classifiers with
higher local accuracy.

The second category is the dynamic ensemble selection (DES)
[38], which is to obtain the prior information of the classification
by using a specific region division and classifier selection strat-
egy [39], [40], [41]. The best-fit classifier is assigned to unknown
samples in each region based on these priors. DES assumes
that each classifier, including weak classifiers with extremely
weak classification accuracy, is an expert for specific testing
samples [42], [43], [44], [45]. Therefore, compared with the
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static ensemble, the DES method can better utilize the local
classification advantages of weak classifiers. Recently, the DES
has also been introduced into hyperspectral image classification.
Damodaran et al. [46] first proposed using DES for hyperspectral
image classification and further improved the method [47]. It first
combines a dimensionality reduction process with the dynamic
selection method to construct a DES framework. Then, the
random subspace method, Markov random field, and extreme
learning machine are introduced into DES. The experimental
results show that the two proposed methods can obtain better
classification performance compared with the traditional en-
semble learning methods. However, the typical DES method
is a classifier selection strategy, and some very weak classifiers
with high classification accuracy for specific regions will still be
eliminated. Therefore, the local advantage of the classifier is still
not fully utilized. Meanwhile, DES models directly fuse the clas-
sification results without considering the residuals difference of
these classifiers.

Based on the above analysis, the static ensemble has a specific
improvement in classification accuracy compared with a single-
classifier method. However, most traditional ensemble methods
directly fuse the classification results without considering the
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Fig. 4. Flowchart of LWR-DEL.

local performance. The typical DES methods often use cluster-
ing or K-nearest neighbor (K-NN) methods to divide the classi-
fication target into different regions. However, local and global
information are not both considered in DES methods. Ensemble
learning based on a representation learning model is concise and
computationally efficient and has strong generalization ability.

However, the existing representation learning-based ensemble
methods are still based on traditional ensemble strategies, which
do not fully apply the intrinsic principles of models. Therefore,
how to fully consider the possible local classification accuracy
of extremely weak classifiers and the diversity of CR-based
classifiers for ensemble learning is still an open problem.
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Therefore, the goal of the article is to make full use of the
ability of DES to obtain a priori information. Then, the CR
classifier (CRC) is directly improved by weighting residuals.
This method considers the inherent discrepancies of different
representation learning through residual analysis. The idea of
the DES is introduced to use the prior information of classi-
fier behavior. Meanwhile, the unique advantages of each base
classifier are fully utilized compared with traditional ensemble
learning, double-weighting the residuals directly, and taking into
account both local and global information of the classifier. The
methods proposed in this article have the following advantages.
First, then the two methods make full use of the representation
learning model for the ensemble. Meanwhile, the local and prior
global information is used for weighting. At last, the proposed
methods also consider the inherent differences of the classifiers
and use the specific advantages of each base classifier, which
can yield better classification results. Notably, different from the
traditional DES method, the region of competence (RoC) used in
the article is only to obtain the prior information of the classifier
without the selection process. Since the residuals of different
CR-based classifiers are different, this prior information is used
to construct a weight matrix to constrain the final result of the
ensemble. That is, a new classifier-weighted learning strategy is
proposed based on the DES strategy. The two methods proposed
in the article do not perform classifier selection but weigh each
classifier according to prior knowledge. Two classifier ensemble
strategies called local weighted residuals (LWR) and double
weighted residuals (DWR) dynamic ensemble learning are pro-
posed. The major contributions are summarized as follows:

1) The multiple CR-based classifiers are combined through
the use of residuals. The prior behavior information of the
classifier is obtained by constructing validation samples to
constrain the residuals of CR. Ensemble classifiers from
the perspective of residuals can make better use of the
differences between individual classifiers. Meanwhile, the
misclassification problem due to insignificant residuals
can be avoided by using the prior information to weigh
the residuals.

2) The article proposes to obtain the prior information of the
classifiers and use it directly for a residual ensemble to
better exploit the unique advantage of each classifier. The
prior information on the classification behavior in multiple
target regions is obtained by K-NN and clustering. The
residuals for each classification are then constrained with
local priors” weights. Then, the behavior of each classifier
is also constrained by weighting the residuals. This method
is different from the traditional ensemble method that fuses
classification results but directly weights the residuals
from individual classifiers. This makes better use of the
local classification advantages of each classifier.

3) The article proposes to use both local and global infor-
mation to double constraints on the classifier to obtain
ensemble results. Local weights are used to constrain the
behavior of the classifier while also considering global
information. Using the clustering method to obtain the
local information of the classifier, the global behavior
information of the classifier is also obtained by K-NN.
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Finally, a more reliable dual-weight constrained classifier
fusion result is obtained. This method simultaneously
considers each classifier’s regional and global behavior
on the unknown testing samples while ensuring that weak
classifiers can also be fully utilized.

The remainder of this article is organized as follows. Section I1
introduces related work. Section III proposes the LWR-DEL
and DWR-DEL algorithms. In Section IV, experiments and
analyses with three real hyperspectral data are presented. Finally,
Section V concludes this article.

II. RELATED WORK
A. Residuals of CR-Based Classifiers

The basic idea of sparse representation comes from com-
pressed sensing. It is assumed that the fewest samples can
represent the testing data. When the samples are highly cor-
related, the projection of the sample y in each class may be
roughly the same, and the result of the sparse representation
classifier is unstable. Therefore, CRC is proposed, which is
described in detail as follows. Given a matrix of training samples
X = [x1,29,...,x;] € R™"forkclasses and a testing sample
y € R™, the objective is to solve the 2—minimization problem

&1 = arg min, ||z, subjectto [[aX —y|, <e. (D)
The residual is computed as
ri(y) = ||y — ax;||, fori=1,... k. (2)
Finally, y can be classified as
class(y) = arg min;r;(y). 3)

Based on CRC, improved variants are developed from kernel
tricks (KCRC) [48], probabilistic interpretation (ProCRC) [49],
and other perspectives. Fundamentally, the basic principle of
all CR-based classifiers is still based on the /2> — minimization
problem.

However, the significant difference between the improved
methods of CR-based classifiers makes their residuals dissimilar
in value. Therefore, a suitable residual fusion method for optimal
CR-based classifiers ensemble results is to be found in the article.
The normalized residuals were used in the article because large
difference among the residuals obtained by multiple CR-based
classifiers.

B. Dynamic Selection

DES is an ensemble strategy that can choose an expert clas-
sifier for each testing region in the feature space. Unlike the
traditional ensemble methods, the DES method assumes that
each classifier has its own advantage. Even a weak classifier
may have a better classification performance for some classes
and some testing samples. Therefore, the most competent clas-
sifiers can be chosen for specific instances. For DES, the most
essential concept is competence. It should be noted that the most
competent here refers to the classification ability of each base
classifier for a specific area.
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The general process for DES can be divided into three main
steps: RoC definition, competence estimation, and selection
strategy. RoC definition is the critical step, and it is also the
main idea introduced by the algorithm proposed in the article.
The summary is detailed as follows:

1) RoC Definition Based on Clustering: The first common
RoC definition method is mainly based on clustering. Given
validation and testing samples, they are assumed to have the
same classes and feature space. The number of verification sam-
ples and test samples and the corresponding class are described
in detail in Tables I-III, respectively. Then, according to the
concept of multiview clustering, the validation and the testing
set can be divided into the same homogeneity regions according
to a specific pattern similarity measure. As shown in Fig. 1,
given the validation sample set X, = [z},...,2"] and testing
samples set X; = [z}, ..., 27"], they are divided into the same
homogeneous testing set. It can be considered that each base
classifier has the same classification ability for the corresponding
roc;. Therefore, the prior competence information of each base
classifier can be obtained through the validation set. Finally,
assign the most suitable base classifier for each RoC of the
testing set. In fact, by using the clustering method to divide the
RoC, the local prior information of the samples in each cluster
can be obtained. The method is shown to be effective in selection
classifiers with local classification ability.

2) RoC Definition Based on K-NN: The K-NN method is
another standard partitioning method for RoC in DES. This
method uses the K-NN to construct the k nearest samples
for each instance in the testing set for validation. Unlike the
clustering method, it defines N regions RoC = [rocy, . .., rocy]
with homogeneity. The divided region of validation t and the
RoC through K-NN can be regarded as a region partitioning
method with global information. Because this method constructs
k validation samples for each instance in the testing set. As

Algorithm 1: LWR-DEL.

Input: the pool of CR-based classifiers CIf; the spectral
feature dataset Va and Te; the cluster size n_r;

for each validation sample v in Va, do

Find RoC ,,; as the K-RoC via clustering

for each testing sample ¢ in Te do

Find RoC . as the K-RoC via clustering based on RoC

for each classifier clf; in CIf do

get the local weight matrix LWM from RoC,q;

get the residual of each class from RoCy,

end for

Get local weighted residuals WR according to formula (9)

end for

Obtain the final results C via minimize the WR

end for

Output: Classification results C for each unknown
sample 7 in Te.

shown in Fig. 2, given a testing sample X; = [z}, ..., 2], k
global validation samples can be obtained through the K-NN
method. Similarly, it can be considered that the k validation
sample sets are homogeneous with the testing set. As with
the clustering-based method, the classification accuracy of each
base classifier is obtained the validation set. The difference is
that the K-NN method can get the global prior classification
information of each base classifier in the pool.

III. PROPOSED METHODS

The details of the proposed LWR-DEL and DWR-DEL algo-
rithms are mainly described from three aspects: classifier pool
construction, weight matrices calculation, residual weighting
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Fig. 6. (a) False-color image and (b) ground truth of the Indian Pines data set.

and fusion. The structure of LWR-DEL and DWR-DEL is shown
in Figs. 4 and 5, respectively

Algorithm 2: DWR-DEL

Input: the pool of CR-based classifiers CIf; the spectral
feature dataset Va and Te;the cluster size n_r; the
number neighborhood k

for each validation sample v in Va, do

Find RoC ,q; as the K-RoC via clustering

for each testing sample ¢ in 7e do

Find RoCy, as the K-RoC via clustering based on RoC ,q;

for each classifier clf; in CIf do

get the local weight matrix W! from RoC,according to
formula (4)

get the residual of each class from RoC,

end for

for each testing sample ¢ in 7e do

Find K-validations via K-NN based on Va

for each classifier clf; in CIf do

get the global weight matrix W? from Teaccording to
formula (11)

end for

Obtain double-weighted residuals DWR according to
formula (12)

Obtain the final results C via minimize the DWR

end for

Output: Classification results C for each unknown
sample 7 in Te;

A. Necessity of Weighted Residual Fusion

However, as can be seen from Fig. 3, the normalized residual
results of CRC (A = le—1), ProCRC (A = le—1, v = le—1),
and KCRC (A = le—1) for the same pixel are quite different. For
a single classifier, as shown in Fig. 3(a), the CRC classifier has
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little difference for the residuals of classes 4, 7, and 12. As can be
seen from Fig. 3(b) and (c), the overall residual discrimination
of ProCRC and KCRC is very low. If converted into probability
output, the probabilities of classification results for the pixel
belonging to these 16 classes are similar. Meanwhile, it can be
seen from Fig. 3(d) that the residuals between the three classifiers
are also different. Therefore, the results of residual fusion are
also unreliable if they are simply added. In summary, different
CR-based classifiers are not discriminative for the single classifi-
cation results of certain pixels, and cannot use a simple addition
method for residual fusion. Therefore, we introduce the local
and global prior information obtained by DS and propose the
following two weighted residual fusion algorithms.

B. Local Weighted Residuals Dynamic Ensemble

1) Classifier Pool Generation: Three different CR classi-
fiers, i.e., CRC, KCRC, and ProCRC, are selected to meet the
differences of the models, and various parameters are set to meet
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TABLE IV
CLASSIFICATION ACCURACY (%) FOR THE INDIAN PINES DATA SET

Class SVM RE CRC ProCRC GBDT CatBoost LightGBM XGboost DES-MI DES-Cluster Meta-DES LWR-DEL DWR-DEL

1 100.00 95.45 95.45 100.00 95.45 95.45 95.45 95.45 95.45 95.45 95.45 95.45 95.45

2 51.33 64.55 61.96 65.92 63.83 71.18 80.04 70.68 7522 74.86 71.83 71.47 72.19

3 74.56 86.73 83.82 81.67 83.57 88.24 87.86 81.04 90.64 91.40 88.24 84.58 84.45

4 82.09 83.92 77.39 86.93 82.41 94.97 93.97 95.98 85.93 86.93 88.94 80.40 81.41

5 89.84 87.61 87.16 86.71 77.70 87.61 86.94 84.68 89.86 89.41 90.54 88.29 88.29

6 94.20 88.89 9351 98.56 64.50 94.52 91.77 79.37 92.93 9221 96.97 99.42 99.42

7 100.00 100.00 100.00 100.00 66.67 100.00 100.00 100.00 83.33 100.00 83.33 100.00 100.00

8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.77 100.00 100.00 100.00 100.00

9 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

10 77.47 82.62 84.44 87.77 79.94 79.40 79.72 81.65 83.69 83.26 85.19 86.16 86.80

11 72.38 69.19 90.72 93.13 69.77 76.85 77.47 79.79 74.33 67.37 79.21 92.17 92.46
12 58.81 81.08 71.71 82.16 73.87 92.43 94.23 92.79 75.50 81.26 79.46 79.28 79.46

13 94.19 99.40 99.40 100.00 92.81 99.40 99.40 94.01 97.60 96.41 97.60 100.00 100.00
14 78.78 78.12 99.51 99.92 91.02 92.65 9233 89.14 89.55 80.65 88.98 99.43 99.43

15 92.82 76.66 89.05 75.50 93.08 96.83 98.85 93.37 70.03 74.35 89.91 94.81 94.81
16 93.55 9831 93.22 100.00 94.92 91.53 89.83 100.00 100.00 100.00 98.31 93.22 93.22
OA (%) 75.21 78.07 85.76 87.83 77.02 84.55 85.85 83.05 82.58 80.13 84.52 88.89 89.13
AA (%) 85.00 87.03 89.21 84.89 83.10 91.32 91.74 89.87 87.74 88.35 89.62 91.54 91.70
Kappa 0.52 0.75 0.84 0.86 0.74 0.82 0.84 0.81 0.80 0.78 0.82 0.79 0.88
Fl-score 0.73 0.72 0.77 0.75 0.74 0.79 0.79 0.77 0.75 0.73 0.78 0.87 0.79
Times (s) 0.25 0.46 0.87 0.91 18.29 218.58 0.74 0.69 3.43 3.52 4.95 0.96 6.74
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Fig.9. Classification accuracy comparison of base classifiers versus proposed methods. CIf 1 to clf 9 are base classifiers used in the ensemble. CIf 10 and clf 11
are proposed algorithms in the article. (a) Indian Pines data set. (b) University of Pavia data set. (c) Yellow River data set.

Fig. 10. Classification maps resulting from the classification for the Indian Pines data set using 20 labeled samples per class. (a) SVM. (b) RF. (c¢) CRC. (d)
ProCRC. (e) GBDT. (f) CatBoost. (g) LightGbM. (h) XGboost. (i) DES-MLI. (j) DES-Cluster. (k) Meta-DES. (1) LWR-DEL. (m) DWR-DEL.

the differences of the parameters. Let the resulting CR classifier X, = [z},...,27"]. The validation set X ,is divided into m
pool be denoted as P = {clfy,clfs, ..., clf.}. regions by multiview clustering. Then, the distance from the

2) Local Weight Matrices Calculating: Fig. 4shows the vali-  testing sample ! to the m cluster centers is computed, and the
dation sample set X, = [z},...,27] and testing samples set testing samples into m regions are partitioned according to the
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CLASSIFICATION ACCURACY (%) FOR THE UNIVERSITY OF PAVIA DATA SET

TABLE V

6919

Class SVM RF CRC ProCRC GBDT CatBoost LightGBM XGboost DES-MI DES-Cluster Meta-DES LWR-DEL DWR-DEL
1 90.97 94.72 95.99 96.31 86.18 96.43 96.65 93.92 96.09 97.54 95.43 97.65 97.69
2 73.53 78.45 98.14 99.19 73.97 73.06 8439 69.55 98.90 98.96 98.86 97.72 98.01
3 54.59 92.42 92.52 99.61 84.26 93.88 96.26 87.47 97.18 95.82 96.55 98.54 98.54
4 98.25 98.08 98.88 99.57 86.90 92.06 93.72 85.65 91.83 90.21 95.44 98.97 99.07
5 99.85 99.69 99.92 100.00 100.00 100.00 99.16 95.33 99.77 99.92 99.77 100.00 100.00
6 79.78 99.70 93.25 96.15 88.27 99.76 99.86 97.90 95.93 8439 97.47 99.56 99.52
7 99.84 100.00 99.92 100.00 99.38 99.92 99.53 99.53 99.84 99.22 100.00 100.00 100.00
8 98.79 95.36 96.40 86.19 94.23 96.40 98.43 96.35 90.97 93.82 94.62 98.02 98.05
9 99.89 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
04 (%) 82.16 88.78 97.01 97.39 82.84 86.43 91.81 83.34 96.93 95.87 97.53 98.27 98.41
A4 (%) 88.39 95.38 97.23 97.45 90.36 94.61 96.45 91.74 96.72 95.54 97.57 98.94 98.99
Kappa 0.77 0.86 0.96 0.97 0.78 0.83 0.89 0.79 0.96 0.94 0.97 0.98 0.99
Fl-score 0.87 0.92 0.97 0.97 0.87 0.92 0.94 0.87 0.97 0.96 0.97 0.98 0.98
Times (s) 3.60 2.14 436 6.86 15.66 63.46 1.07 0.54 29.65 36.96 27.21 10.24 12.24

Fig. 11.  Classification maps resulting from the classification for the University of Pavia data set using ten labeled samples per class. (a) SVM. (b) RF. (c) CRC.
(d) ProCRC. (e) GBDT. (f) CatBoost. (g) LightGbM. (h) XGboost. (i) DES-ML. (j) DES-Cluster. (k) Meta-DES. (1) LWR-DEL. (m) DWR-DEL.
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TABLE VI
CLASSIFICATION ACCURACY (%) FOR YELLOW RIVER DATA SET

Class SVM RF CRC ProCRC GBDT CatBoost LightGBM XGboost DES-MI DES-Cluster Meta-DES LWR-DEL DWR-DEL

1 96.90 91.55 78.03 83.38 90.14 96.34 85.92 88.73 94.08 94.37 95.49 84.23 84.23

2 100.00 97.62 100.00 100.00 97.49 98.68 89.55 89.55 98.02 99.74 98.41 100.00 100.00

3 100.00 90.79 97.37 97.37 80.26 93.42 89.47 78.95 92.11 92.11 97.37 98.68 100.00

4 85.71 86.36 78.57 87.66 74.68 88.96 72.73 80.52 85.71 90.91 87.66 87.01 87.66

5 62.96 75.93 90.74 98.15 57.41 81.48 72.22 61.11 75.93 72.22 77.78 94.44 96.30

6 100.00 90.48 100.00 100.00 88.89 85.71 84.13 80.95 92.06 95.24 92.06 100.00 100.00

7 100.00 88.71 88.71 98.39 87.10 100 95.16 100.00 100.00 100.00 96.77 100.00 100.00

8 99.43 98.30 100.00 100.00 93.75 100 97.16 92.61 96.59 96.59 98.30 100.00 100.00

9 98.79 97.58 100.00 100.00 100.00 99.39 100 99.39 98.79 98.79 98.79 100.00 100.00

10 50.45 88.17 83.59 87.95 66.07 88.06 80.92 75.67 84.26 89.06 95.54 88.28 88.39

11 96.12 85.83 99.61 100.00 78.64 86.6 82.72 80.39 85.63 85.63 86.02 100.00 100.00

12 100.00 100.00 100.00 100.00 98.37 100 96.51 96.28 100.00 100.00 100.00 100.00 100.00

13 100.00 93.79 100.00 100.00 72.98 100 81.99 84.16 91.30 94.41 94.10 100.00 100.00

14 85.64 82.67 53.96 37.62 85.64 82.67 80.69 79.70 79.70 84.16 78.22 69.80 71.72

15 100.00 100.00 97.48 99.28 100.00 100 97.84 96.58 100.00 100.00 100.00 100.00 100.00

16 93.30 90.91 89.71 100.00 84.69 87.56 89.23 87.32 90.19 90.19 91.15 95.93 94.02

17 95.00 91.00 70.00 96.00 74.00 87 89 85.00 91.00 95.00 86.00 88.00 93.00

18 95.86 89.05 82.25 74.26 80.47 91.72 84.62 79.29 80.47 82.25 78.70 84.91 87.57

19 100.00 97.30 100.00 100.00 97.30 97.3 97.3 94.59 97.30 94.59 94.59 97.30 100.00
20 87.80 92.68 58.54 78.05 92.68 82.93 90.24 85.37 75.61 90.24 92.68 90.24 92.68

21 100.00 100.00 100.00 100.00 100.00 100 100 100.00 100.00 100.00 100.00 100.00 100.00
OA (%) 89.51 92.48 90.73 92.67 85.10 93.42 87.63 85.97 91.26 92.99 93.44 94.22 94.71
AA (%) 92.76 91.84 88.98 92.29 85.74 92.75 88.45 86.48 90.89 92.64 92.36 94.23 95.31
Kappa 0.89 0.92 0.90 0.92 0.84 0.93 0.87 0.85 0.90 0.92 0.93 0.94 0.94
Fl-score 0.90 0.89 0.86 0.89 0.80 0.89 0.83 0.81 0.88 0.90 0.89 0.92 0.93
Times (s) 30.43 27.14 152.20 174.29 150.93 650.95 142.95 3.40 29591 274.06 289.46 8.70 7.62

distance. For each classifier in the classifier pool P, their classifi-
cation accuracy in the mregions RoC = [rocy, 10Cs, . . ., T0Cy, | is
computed. The weight matrices are obtained based classification
accuracy and denoted as

1 1
Wip -+ Wiy
w!= . 4)
1 1
Wep -7 Wepy

where w;; represents the weight of the classification accuracy
of the ith classifier in the pool for the jth region.

3) Residuals Weighting and Fusing: According to (1), the
representation coefficient of RoC can be obtained by using the
classifier clf;.

= arg ming|| @, ||, subject to Hamci Xroc; ~Yroc, || <E

(&)

Troc,;

=1,2,..,¢, 7=12,....m

which is solved as
T lor
arOCij = (XrocinTOCij + )‘I> Xrocijyrocij
(6)

Then, the coefficient matrix is

O&l O‘%c
RoC(a) — : (7)
a71n1 : Oé?lnc

The residual matrix is

TRoC; (Y) = ||y — aroc, ||y fori =1,...k

1 1
11 Tlic @)
R = .
1 1
Tm1 " Tme

Finally, using the weight matrix in (4), the LWR is obtained

1 1
c Wiy~ Wiy Tl ccc Tim
WR = § o * . )
7 1 1 1 1
Wey =+ We Tim =" Tem

where w;; represents the weight of the classification accuracy
of the ith classifier in the pool for the jth region and ry; is the
corresponding residual. Then, the final classification result is
obtained according to (3)

class(y) = arg min WR(y). (10)

C. Double-Weighted Residuals Dynamic Ensemble

1) Classifier Pool Generation: The process of classifier pool
construction is the same as the LWR-DEL algorithm.

2) Double-Weight Matrices Calculating: According to the
basic idea of RoC definition based on K-NN, construct k
global validation samples from the testing samples V' = [v1, vg,

,vg|. For each classifier in the classifier pool, compute
their classification accuracy on k validation samples. Similar
to LWR-DEL, a global weight matrix is obtained according to
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Fig. 12.
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Classification maps resulting from the classification for the Yellow River data set using fifteen labeled samples per class. (a) SVM. (b) RF. (c) CRC. (d)

ProCRC. (e) GBDT. (f) CatBoost. (g) LightGbM. (h) XGboost. (i) DES-MI. (j) DES-Cluster. (k) Meta-DES. (1) LWR-DEL. (m) DWR-DEL.
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Fig. 13.  Classification accuracy of three data set versus varying n_r of LWR-DEL. (a) Indian Pines data set. (b) University of Pavia data set. (c) Yellow River
data set.

the classifier accuracy

2 2
w1 Wik
w? = oo (11)
2 2
Wey 0 Wiy

3) Residuals Weighting and Fusing: Similar to LWR-DEL,
using the weight matrix in (4) and (11), the double-weighted
residual is obtained

2 2
c k| Wi Wi

DWR = E E
i j 2 2
‘7 wcl DR wck

W1y Wim 1o Tel
* - * :
1 1 1 1

Wey =+ Wep Tim """ Tem

12)

where w;; represents the weight of the classification accuracy
of the ith classifier in the pool for the jth region and r;; is the
corresponding residual. Finally, the final classification result is
obtained as

class(y) = argmin DW R(y). (13)
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Fig. 14.
River data set.

Classification accuracy of Indian Pines Data set versus varying n_k of DWR-DEL. (a) Indian Pines data set. (b) University of Pavia data set. (c) Yellow
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Fig. 15.  Classification accuracy of three data sets versus varying n_r of DWR-DEL. (a) Indian Pines data set. (b) University of Pavia data set. (c) Yellow River
data set.

IV. EXPERIMENTS
A. Experiment Setup

All experiments are implemented using the platform of
Python 3.6.13. To ensure comparability and fairness, the com-
pared and proposed algorithms use the same training, validation,
and testing samples.

1) Pool of Classifiers: To evaluate the proposed LWR-DEL
and DWR-DEL, three CR classifiers from different types in the
classifier pool are applied, i.e., CRC, KCRC, and ProCRC. The
range of regularization parameters A in the three classifiers are
all set as {le-2, le-4, le-6}. The regularization parameters -y in
PoCRC are {le-1}. The classifier pool finally contains 15 base
classifiers.

2) Parameter Settings: The range of cluster numbers n_r in
LWR-DEL and DWR-DEL is set {2, 3, 4, 5}. The range of k
numbers n_k in DWR-DEL is set {1, 2, 3, 4, 5}. It is worth
noting that the method of repeated replacement sampling for the
selection of training and testing samples is used in the article.
This method can increase the randomness of samples and avoid
the impact of sample importance on classification accuracy.

3) Comparison Algorithms: To evaluate the performance of
the proposed algorithm, multiple classification algorithms were
used for comparison. For example, the classic machine learning
algorithms support vector machine (SVM) and random forest

(RF) are the baselines. Moreover, the advanced ensemble al-
gorithm GBDT, CatBoost [28], LightGBM [50], and XGboost
[51] are also used as comparison algorithms. In addition, the two
state-of-the-art DES algorithms, namely DES-MI and META-
DES algorithms, are used as comparative algorithms in the
article.

B. Hyperspectral Data Sets

The performance of the LWR-DEL and DWR-DEL is evalu-
ated by three real HSI data sets.

The first data set is the Indian Pines data set, collected by the
AVIRIS senor. This data set contains 224 spectral bands with
wavelengths ranging from 0.4 to 2.5 pm. There are 200 effective
bands remaining in the data after removing water absorption
bands. The spatial size is 145 x 145. The details of 16 classes
in this HST are described in Table I, and the images are shown
in Fig. 6.

The second image used in this article is the University of Pavia
data set, acquired by the ROSIS sensor. This image contains 103
spectral bands with wavelengths ranging from 0.43 to 0.86 pm.
The scene consists of nine classes, containing 512 x 614 pixels,
and the spatial resolution is 20 m. The descriptions of classes in
this data are listed in Table II, and images are shown in Fig. 7.
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Fig. 16. Scaled Residuals of LWR-DEL versus scaled residuals of multiple CR.

The third is the real HSI Yellow River, which is collected
on January 7, 2019, by Gaofen-5 senor [52], [53]. This image
contains 285 spectral bands. The spatial size of the Yellow River
is 1185 x 1324. There are 21 classes in this data, as shown in
Table III, and the false-color image and ground truth image are
shown in Fig. 8.

C. Ensemble Classification Performance Analysis

For the ensemble learning method, the key is that the final
classification result is better than all base classifiers in the
pool. Traditional ensemble learning methods often have higher
requirements for the base classifier used. For example, the
classification accuracy should be higher than 50%. To verify
whether the ensemble performance of the proposed method is
effective, we compare the accuracy of the base classifier and
the classification accuracy of the proposed methods. As shown
in Fig. 9(a), for the first data set, the accuracy of the two
proposed algorithms is higher than that of all base classifiers.
For the second data set, the same conclusion can be drawn, but
the final classification performance is better than the former.
For the Yellow River data set, LWR-DEL and DWR-DEL
classification accuracy are much higher than that of most base
classifiers. Overall, the ensemble results of the two proposed
models are higher than those of the base classifier for the Indian
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Pines and HSI the University of Pavia data. Meanwhile, for
the last data set, the proposed methods also can obtain great
performance. According to Fig. 9, the proposed models can
still achieve high accuracy even if the base classifier accuracy
is low. Even when the base classifier accuracy is lower than
85%, the final ensemble accuracy is still higher than 95%
[see Fig. 9(c)]. The results show that two ensemble models
can fully utilize each base classifier’s advantages in different
regions. That is, the prior information effectively constrains
the behavior of each base classifier. For the Indian Pines data
set, the OA, average accuracy (AA), per-class accuracy, kappa
statistic, Fl-score, and running time (s) of different models
are shown in Table IV. The classification maps are shown in
Fig. 10(a)-(j).

For the first experiments, the OA of LWR-DEL and DWR-
DEL reached 88.89% and 89.13%. Two proposed algorithms
have better classification performance than other comparative
models. Moreover, the proposed methods are superior to the
state-of-the-art DES methods DES-MI and Meta-DES, whereas
the LWR-DEL and DWR-DEL do not take too much running
time. Compared with CatBoost and LightGBM, the OA of the
proposed algorithm is higher, but the AA is not significantly
improved. The time complexity of the proposed algorithm is
much lower than that of LightGBM. The classification accuracy
of LWR-DEL and DWR-DEL is also much higher than that of the
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XGboost algorithm. From the F1-score index, the performance
of several ensemble algorithms is relatively similar. Therefore,
the proposed two dynamic ensemble algorithms outperform
the existing baselines and state-of-the-art ensemble learning
methods.

To evaluate the performance of the two new DEL models, the
University of Pavia data set was used in the second experiment.
The best parameters are described in Table V, and the thematic
maps of various models are displayed in Fig. 11(a)—(j). Similar to
the Indian Pines data set, LWR-DEL and DWR-DEL obtain the
best classification performance compared with other methods.
The best OA and AA for the ROSIS data set are obtained by
the DWR-DEL algorithm, which can reach 98.41%. Compared
with the classic ensemble learning method GBDT, LWR-DEL
and DWR-DEL yield 15.43% and 15.57% improvements. More-
over, compared with the three DES methods, the two proposed
algorithms also have great performance.

For the Yellow River data set, the classification performance
of all classifiers is the list in Table VI. The thematic maps
are shown in Fig. 12(a)—(j). Compared with other classic ma-
chine learning classifiers such as SVM and RF, our methods
yield nearly 5% and 3% improvements. Compared with the
CatBoost and LightGBM algorithms, the classification accuracy
of LWR-DEL and DWR-DEL did not significantly improve but
the required running time is greatly reduced. Meanwhile, the
classification accuracy of LWR-DEL and DWR-DEL is much
better than the XGboost algorithm. Experiments on the Yellow
River data set demonstrate that the time cost and classification
accuracy of LWR-DEL and DWR-DEL are superior to that of
other comparison algorithms.

To verify that weak classifiers contribute to the proposed
method, a set of comparative experiments is set up in the article.
As shown in Fig. 18(a)—(c), the classification accuracy with no
weak classifier is better than all classifiers” ensemble results for
the three real HSI data sets. It can be seen from the experimental
results that the accuracy of the classifier is lower than using
all the classifiers when some weak classifiers are removed.
Therefore, this result indicates that the proposed method does
take advantage of the classification advantages of the weak
classifiers to a certain extent.

D. Discussion

1) Sensitivity in Relation to Region Size for LWR-DEL: For
the LWR-DEL, the number of ROC (cluster) n_r significantly
impacts the classification performance. To evaluate the influence
of various n_r. Fig. 13(a)—(c) shows the accuracy of LWR-DEL
when n_r changes in range.

For the first dataset, the classification accuracy increases first
and then decreases as n_r increases. The best classification
accuracy can be obtained when n_r = 3. For the University of
Pavia data set, when n_r is gradually increased, the classification
performance of LWR improved, and the optimal classification
accuracy is reached when n_r = 4. Unlike the other two datasets,
for the Yellow River dataset, the effect of n_r on the classification
accuracy has no apparent regularity. The best results are obtained
when n_r =5.
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In summary, the experimental results show that when the
parameter n_r is set to different values, the accuracy of other
datasets is affected differently. However, with the change of n_r,
the accuracy of the three data sets does not change much. This
result shows that this algorithm is sensitive to the parameter
n_r in a limited range but has little effect on classification
performance. So, the proposed method has strong robustness
as the parameter does not need to be tuned carefully in practical
applications.

2) Sensitivity in Relation to Region and k Size for DWR-DEL:
Since the proposed DWR-DEL adds a global weight constraint
based on K-NN. The combined effect of the parameters n_r and
n_k on the classification accuracy is investigated in the article.
First, it can be seen from Figs. 14(a)—(c) and 15 that after adding
the prior global information, the variation trend of the classifier
accuracy with the parameters change has changed significantly,
which is different from that of LWR-DEL (see Fig. 13). Si-
multaneously, the classification accuracy of three datasets have
been significantly improved. It shows that the double-weight
constrained method proposed in DWR-DEL effectively changes
the behavior of the classifier in different regions.

For the Indian Pines dataset, when the parameter n_r = 2, the
classification accuracy is generally lower, and when n_r = 5,
the classification accuracy is overall higher. Notably, this trend
should be a combined effect of n_k and n_r. Whenn_k = 1 and
n_r =5, Algorithm 2 can get the highest accuracy. The results
fully illustrate the impact of DWR-DEL on the behavior of the
classifier.

Similar to the first dataset, when the parameter n_r = 2, the
classification accuracy of the University of Pavia data set is
overall lower. The difference is that when the parameter n_k =2,
DWR performs better for classifying the University of Pavia data
set. When n_k =2 and n_r =5, Algorithm 2 can get the highest
accuracy.

As with the first two datasets, the parameters n_r and n_k have
aminor impact on the classification accuracy of the Yellow River
dataset. The classifier accuracy has a slight trend of change.
When n_k = 5 and n_r = 4, Algorithm 2 can get the highest
accuracy.

To sum up, compared with LWR-DEL, the new method im-
proves the classification accuracy of images, but the influence
of parameter changes on the accuracy is not apparent. Overall,
when the same parameters are selected for the three data sets,
the variation in accuracy is not very large. Experimental results
on this data set present the high robustness of the DWR-DEL
algorithm.

3) Comparison of Original and Weighted Residuals: Since
the two algorithms proposed in this article are based on the
conclusion that the residual discrimination of multiple CR-based
classifiers is not obvious enough. Therefore, it is very important
to show whether the proposed residual fusion algorithm can
effectively increase the final residual discrimination. To validate
the effectiveness of the proposed weighted residual ensemble
methods, the article compares the difference between the resid-
ual distribution of the base classifiers and the final ensemble
result. As shown in Fig. 16, it is obvious that the residual
distribution of LWR-DEL is more discriminative than the base
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classifier. Meanwhile, it should be noted that the range of residu-
als after local weighting is also wider than of all base classifiers.
Similar conclusions can be drawn from Fig. 17 , the DWR-DEL
method can also increase the discrimination of residuals. The
experimental results fully demonstrate the effectiveness of the
proposed LWR-DEL and DWR-DEL algorithms.

V. CONCLUSION

In this article, two new weighted residuals ensemble learning
strategies with CR are proposed, which introduces the idea of

DES. First, a locally weighted dynamic ensemble algorithm is
proposed, which uses the prior accuracy information of the clas-
sifier for different clusters as constraints. Residual weighting is
then performed on different CR-based classifiers. Furthermore,
the article uses the nearest neighbors of the testing samples to
obtain the prior global information. Then, a dynamic ensemble
method with local and global double-weighting constraints
is proposed. Unlike traditional static and dynamic ensemble
methods, the two algorithms weigh the residuals to obtain more
distinguishable classification results. The experiments show that
both the LWR-DEL and DWR-DEL algorithms provide better
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classification performance compared to the state-of-the-art
classifiers. Compared with the base classifiers in the classifier
pool, the ensemble results of the two proposed models also have
better accuracy. The experimental results fully demonstrate
the feasibility and effectiveness of the proposed algorithms.
However, only the Euclidean distance between samples is used
in the LWR-DEL and DWR-DEL algorithms. The relationship
between the spectral features is not fully considered in the
article. Future research will focus on designing more suitable
distance metrics that consider both spatial and spectral features.
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