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Abstract—Given the detrimental effect of spectral variations
in a hyperspectral image (HSI), this article investigates to re-
cover its discriminative representation to improve the classification
performance. We propose a new method, namely local low-rank
approximation with superpixel-guided locality preserving graph
(LLRA-SLPG), which can reduce the spectral variations and pre-
serve the local manifold structure of an HSI. Specifically, the
LLRA-SLPG method first clusters pixels of an HSI into several
groups (i.e., superpixels). By taking advantage of the local manifold
structure, a Laplacian graph is constructed from the superpixels
to ensure that a typical pixel should be similar to its neighbors
within the same superpixel. The LLRA-SLPG model can increase
the compactness of pixels belonging to the same class by reduc-
ing spectral variations while promoting local consistency via the
Laplacian graph. The objective function of the LLRA-SLPG model
can be solved efficiently in an iterative manner. Experimental
results on four benchmark datasets validate the superiority of the
LLRA-SLPG model over state-of-the-art methods, particularly in
cases where only extremely few training pixels are available.

Index Terms—Hyperspectral image classification, low-rank,
superpixel segmentation, superpixel-guided locality preserving
graph.

I. INTRODUCTION

AHYPERSPECTRAL image (HSI) consists of multiple nar-
row spectral bands, which span from the visible light to

the infrared spectrum [1]. Due to the rich spectral information,
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HSIs have wide applications in various areas, such as mineral
detection [2], agriculture [3], [4], urban planning [5], [6], and
environment monitoring [7], [8]. However, given the noise as-
sociated with complex environmental conditions, the acquired
HSIs often suffer from spectral variations [9], i.e., pixels of the
same material may change considerably and significantly impair
the performance of HSI classification.

Many low-rank-based methods have been proposed to allevi-
ate the impact of spectral variations and accordingly improve
classification accuracy. Particularly, much attention has been
paid to the low-rank approximation (LRA)-based methods [10],
[11], which assume that the pixels of an HSI should be dis-
tributed in one or more low-dimensional space(s) [12], [13].
For example, some methods [14], [15] assume that the data
come from a unified subspace and then employ robust LRA
on a whole HSI. To better capture the data drawn from the
union of multiple subspaces, a multi-subspace-based LRA [16]
is used to model an entire HSI [17], [18], [19], [20], [21],
[22], [23]. All the above methods assume the global low-rank
property, i.e., applying robust LRA or multisubspace-based LRA
to the entire HSI. However, they neglect a fact that pixels
within a homogeneous local region are often from the same
class, i.e., the local low-rank property. To this end, many local
LRA-based methods have been proposed [24], [25], [26], [27],
[28], which first divide an HSI into multiple rectangular patches
and then process each patch individually via robust LRA. As
shape-adaptive regions (i.e., superpixel) are better at capturing
the complex local spatial structure than rectangular patches, the
superpixel-based segmentation has also been used in some local
LRA-based methods [29], [30], [31]. It is worth noting that
all of the above studies conduct LRA on 2D matrices. As an
HSI can be naturally represented as a 3-D tensor, some tensor
LRA-based methods have been proposed [32], [33], [34], [35],
[36]. Additionally, due to the powerful representation ability of
deep neural networks [37], [38], [39], some low-rank-based deep
learning methods [39], [40] have been proposed. Besides, for
other advanced feature extraction methods [41], [42] irrelevant
to low-rank-based methods, the graph preserving is utilized to
enhance the representation of an HSI.

Although some of the existing local LRA-based methods use
superpixels to characterize the complex local spatial structure;
they fail to preserve the local manifold structure, which is
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unfavorable to the discriminative ability of the representation.
In other words, they cannot sufficiently capture the locality of
an HSI, which limits the further improvement of classification
performance.

Considering the above points, we propose a local low-rank
approximation with superpixel-guided locality preserving graph
(LLRA-SLPG) model, which can increase the within-class
compactness by reducing the spectral variations for each su-
perpixel and promote the local consistency via a proposed
superpixel-guided locality preserving graph. Moreover, our pro-
posed LLRA-SLPG method is the first to combine the local
manifold structures with the local LRA into a unified model.
Our targets are to use the local low-rank term with the �1
norm to separate the low-rank part and sparse noise part of an
HSI, and use the superpixel-guided locality preserving graph to
further preserve the local manifold structure of the low-rank part.
Specifically, the proposed graph regularizer in the LLRA-SLPG
method makes the pixel similar to its neighbors within the
same superpixel. We formulate the objective function of the
LLRA-SLPG method as a constrained optimization problem,
which can be solved efficiently in an iterative manner. Extensive
experiments validate the superiority of the LLRA-SLPG model
over state-of-the-art methods, particularly for the cases with few
training samples. The contributions of this article are given as
follows.

1) Our proposed LLRA-SLPG method is the first to fuse
the local LRA and the local manifold structures into
a unified model simultaneously. Specifically, existing
local LRA-based methods cannot adequately capture
the complex local spatial structures of the original HSI,
e.g., local manifolds (or local consistencies) are ignored,
which further limits the classification performance. To
address this issue, our proposed LLRA-SLPG method
designs a superpixel-guided locality preserving graph to
enhance preserving the local spatial structure of an HSI,
thus further improving the discriminative ability of the
representation.

2) The proposed LLRA-SLPG method can be solved effi-
ciently in an iterative manner. The experiments demon-
strate its advantage over state-of-the-art methods, espe-
cially when the training samples are extremely few.

3) We organize the remainder of this article as follows. Sec-
tion II gives a brief review of existing LRA-based methods
for HSI. Then, we present the proposed LLRA-SLPG
method in Section III, followed by the comprehensive
experimental results and analyses in Section IV. Finally,
Section V concludes this article.

II. RELATED WORK

This section reviews existing LRA-based methods for mod-
eling HSIs.

Some methods assume that the data are distributed in a single
low-rank subspace and simply apply LRA on a whole HSI
to recover a discriminative representation. For example, Mei
et al. [14] apply �1-based LRA to reduce the spectral variations
and improve the HSI classification. Given the data drawn from

a union of multiple subspaces, multisubspace-based LRA is
introduced to represent the HSI in some methods [17], [18],
[19], [20], [21], [22], [23]. Specifically, Lu et al. [17] proposed
a graph regularized LRA method within multiple subspaces to
remove striping noise of an HSI. Sumarsono and Du used a
multisubspace-based LRA model [18] to preprocess the spectral
feature, which is then used by both supervised and unsuper-
vised learning methods. Wang et al. [19] incorporated the local
geometric structure into a multisubspace-based LRA model to
improve the classification performance. Wang et al. [20] and
Mei et al. [21] used cluster-based regularizers to incorporate
the superpixel information into the multisubspace-based LRA
model, that is, they represent the feature of a superpixel as a
cluster center and make all the pixels in the superpixel close
to the cluster center. Xu et al. [22] integrated a hypergraph-
based regularizer into a multisubspace-based LRA model for
the unsupervised HSI classification, whose graph induces the
spatial-spectral information based on a superpixel segmentation.
Xing et al. [23] incorporated a classwise regularization into
a multisubspace-based LRA model to capture the classwise
block-diagonal structure, which maps pixels from one class into
the same subspace.

All the aforementioned methods adopt the global low-rank
assumption. As the pixels within a small local region are usually
from the same class, some local LRA-based methods have been
proposed. Zhang et al. [24] and Zhu et al. [25] divided an HSI
into regular patches and apply robust LRA patch by patch for
HSI restoration. As the noise level in different bands may change
significantly, He et al. [26] proposed a noise-adjusted iteration
framework that uses a patchwise LRA method for HSI denoising.
Apart from applying the patchwise LRA in the spectral domain,
Mei et al. [27], [28] explored the low-rank property from the
spatial domain (i.e., applying LRA to a whole HSI on each
spectral band). Specifically, Mei et al. [27] applied LRA to
an HSI from the spectral and spatial domains in two distinct
steps. Moreover, Mei et al. [28] also proposed a unified model
to combine the spectral and spatial low-rank property.

Since the patchwise segmentation cannot thoroughly ex-
ploit the complicated local spatial structure of an HSI, some
superpixel-induced local LRA-based methods have been pro-
posed [29], [30], [31], in which each superpixel can be regarded
as a shape-adaptive region. Specifically, Xu et al. [29] first per-
form LRA on all the superpixels to extract the low-rank data, fol-
lowed by a Markov random field to define the local correlation.
Fan et al. [30] first employed PCA to obtain the first component
of an HSI, which is then processed by the superpixel segmenta-
tion method to get the homogeneous regions. Finally, they apply
the LRA to each homogeneous region to remove the noise and
outliers. Yang et al. [31] proposed a discriminative low-rank
model that can increase the intraclass similarity by applying
LRA on each superpixel while promoting the global separability
between classes. Based on such a model, a superpixel-based
classification framework is proposed to utilize the prediction of
a typical classifier to improve the superpixel segmentation.

Due to an HSI can be inherently depicted as a 3-D tensor,
some tensor-based LRA methods have been investigated [32],
[33], [34], [35], [36]. An et al. [32] proposed a tensor-based
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low-rank graph to perform the dimension reduction for an HSI,
and this method characterizes the intraclass compactness and
the interclass separability via a multimanifold regularizer. Deng
et al. [33] developed a tensor low-rank discriminative embedding
model, which utilizes the low-rank reconstruction to uncover
the potential sample relationships and incorporates the label
information to improve the discriminability of features. Deng
et al. [34] proposed a patch tensor-based multigraph embedding
framework, which builds three different types of subgraphs
to capture the intrinsically geometrical structure of HSIs. Sun
et al. [35] proposed a lateral-slice sparse tensor robust principal
component analysis to remove noises or outliers in an HSI to im-
prove the subsequent classification performance. Liu et al. [36]
proposed a local–global balanced tensor LRA method, which
can be viewed as an extension of [31] to the tensor case.

Given the powerful representation learning capacity of deep
neural networks [37], [38], [39], some deep learning mod-
els [39], [40] were proposed to combine the low-rank property
with deep learning. Specifically, Wang et al. [39] proposed
an unsupervised segmented stacked denoising autoencoder for
extracting features, followed by a low-rank classifier for the
HSI classification. Zhang et al. [40] proposed an end-to-end
low-rank spatial-spectral network for removing noises in HSIs.
By integrating the low-rank property into a deep convolutional
neural network (DCNN), this method benefits from the powerful
feature representation ability of DCNN and the good general-
ization ability of the low-rank property.

III. METHODOLOGY

Y ∈ Rb×n specifies an HIS, which contains n pixels, and
each pixel is represented with b dimensional spectral bands. To
suppress the spectral variations, a straightforward approach is to
adopt the global low-rank approximation of an HSI by solving
the following objective function as

min
[Z,N]

‖Z‖∗ + γ‖N‖1, s.t. Y = Z+N (1)

where ‖ · ‖1 and ‖ · ‖∗ are the �1 norm and nuclear norm opera-
tions, respectively, γ is a nonnegative regularization parameter,
Z ∈ Rb×n is the low-rank part ofY, andN ∈ Rb×n is the sparse
noise part (or called spectral variations). A drawback for this
approach defined in problem (1) is that the local spatial structure
cannot be exploited in such a global manner [24], [29], as pixels
within a homogeneous region often belong to the same category.

To address these problems, we follow the superpixel-induced
local LRA-based methods, i.e., applying the LRA on each super-
pixel. Note that such a way can enhance the data compactness for
each homogeneous region (i.e., superpixel), which increases the
intraclass similarity. However, existing methods cannot preserve
complex local spatial structures of the original HSI, such as
local manifolds (or local consistencies). To address this issue,
we propose a superpixel-guided locality preserving graph-based
regularizer to maintain the local consistency by forcing each
pixel to have a similar spectral feature representation to its
neighbors (i.e., the neighboring pixels located within a squared
window of a homogeneous region). In this manner, the local

manifold structure of the original HSI can be adequately ex-
ploited to improve the discriminative ability of the representation
for the low-rank part Z.

A. Superpixel-Guided Locality Preserving Graph

This section describes how to design a superpixel-guided
locality-preserving graph in detail.

We first adopt the entropy rate superpixel method [43] to
generate superpixels. To define such a graph, we first refer to
(pi, qi) as the pixel location of the ith pixel (i.e., yi). The
neighboring pixels of yi are defined as the pixels within a
squared window with the radius r centered on yi, and these
neighboring pixels that include yi constitute the neighbor set
NBi, that is, the pixel locations in NBi should satisfy {(pj , qj) |
|pi − pj | ≤ r, |qi − qj | ≤ r}. To preserve the local consistency
of the original HSI Y, i.e., to make the discriminative represen-
tation of the ith pixel similar to that of its neighbors within the
same superpixel, the weight Wi,j between the ith and jth pixels
is defined as

Wi,j =

{
exp

(
−γ ‖yi − yj‖22

)
, yj ∈ NBi ∧ Ii = Ij

0, yj /∈ NBi ∨ Ii �= Ij
(2)

where Ii and Ij represent the indices of superpixels that the ith
and jth pixel belong to, respectively.

Finally, the superpixel-guided Laplacian graph regularizer
can then be established based upon W as

1

2

n∑
i=1

n∑
j=1

‖zi − zj‖22 Wi,j

= Tr
(
ZDZT

)− Tr
(
ZWZT

)
= Tr

(
ZGZT

)
(3)

where zi denotes the ith column of Z, Tr(·) computes the trace
of the corresponding matrix, D is a diagonal matrix with the
ith diagonal element defined as Di,i =

∑n
j=1 Wi,j , and G =

D−W is the Laplacian matrix.

B. The Model

The objective function of the proposed LLRA-SLPG model
is formulated as

min
[Z,N]

S∑
i=1

‖Zi‖∗ + λ‖N‖1 + βTr
(
ZGZT

)
s.t. Z = [Z1,Z2, . . . ,ZS ], N = [N1,N2, . . . ,NS ]

Y = [Y1,Y2, . . . ,YS ], Y = Z+N (4)

whereS denotes the number of superpixels,Yi ∈ Rb×ni denotes
the ith superpixel which contains ni pixels, Zi ∈ Rb×ni and
Ni ∈ Rb×ni denote decomposed parts whose sum is Yi, and
λ, β are nonnegative regularization parameters.

In the objective of problem (4), the first term (i.e.,∑S
i=1 ‖Zi‖∗) focuses on the data compactness for each Zi via

employing LRA on each superpixel. The second term (i.e.,
λ‖N‖1) uses �1 norm to make the spectral variations N sparse.
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The third term makes the local manifold of Y consistent with
that of the low-rank representation Z.

C. Optimization

To solve problem (4), we first introduce an auxiliary variable
Q ∈ Rb×n and reformulate it as

min
[Z,N,Q]

S∑
i=1

‖Zi‖∗ + λ‖N‖1 + βTr
(
QGQT

)
s.t. Z = [Z1,Z2, . . . ,ZS ],N = [N1,N2, . . . ,NS ]

Y = [Y1,Y2, . . . ,YS ]

Y = Z+N, Q = Z. (5)

The inexact augmented Lagrangian multiplier (IALM) [44] is
employed to solve problem (5) alternatively. The augmented
Lagrangian of problem (5) is formulated as

min
[Z,N,Q]

S∑
i=1

‖Zi‖∗ + λ‖N‖1 + βTr
(
QGQT

)

+
ρ

2

∥∥∥∥Y − Z−N+
Γ1

ρ

∥∥∥∥
2

F

+
ρ

2

∥∥∥∥Q− Z+
Γ2

ρ

∥∥∥∥
2

F

(6)

where Γ1,Γ2 ∈ Rb×n are two Lagrange multipliers, ρ is a
nonnegative penalty parameter, and ‖ · ‖F denotes the Frobenius
norm of a matrix. We alternatively update the three variables (i.e.,
Z, N, and Q) by solving the three subproblems in each iteration
until convergence. In the following, we give the details of the
three subproblems as well as the update of Lagrange multipliers.

a): By fixing other variables, the subproblem to update
{Zi}Si=1 is formulated as

min
[Z1,Z2,...,ZS ]

S∑
i=1

‖Zi‖∗ +
ρ

2

∥∥∥∥Y − Z−N+
Γ1

ρ

∥∥∥∥
2

F

+
ρ

2

∥∥∥∥Q− Z+
Γ2

ρ

∥∥∥∥
2

F

. (7)

It is easy to see that eachZi can be solved independently through
the following problem as

min
Zi

‖Zi‖∗ +
ρ

2

∥∥∥∥Yi − Zi −Ni +
Γ1,i

ρ

∥∥∥∥
2

F

+
ρ

2

∥∥∥∥Qi − Zi +
Γ2,i

ρ

∥∥∥∥
2

F

(8)

where Γ1,i, Γ2,i, and Qi denote the ith component of Γ1, Γ2,
andQ, respectively. According to [45], problem (8) has a closed-
form solution as

Zi = Udiag
(
S(2ρ)−1 (diag (Σ))

)
VT (9)

where U, Σ, V are derived from the singular value decompo-
sition (SVD): UΣVT = 1

2 (Yi −Ni +Qi +
1
ρ (Γ1,i + Γ2,i)),

diag(·) transforms a diagonal matrix to a vector or transforms
a vector to a diagonal matrix, and Sε(x) is a soft thresholding

operator, i.e., Sε(x) = 0 if |x| ≤ ε and Sε(x) = (1− ε/|x|)x
otherwise.

b): By fixing other variables, the subproblem to update N is
formulated as

min
N

λ‖N‖1 + ρ

2

∥∥∥∥Y − Z−N+
1

ρ
Γ1

∥∥∥∥
2

F

. (10)

It is easy to see that problem (10) has a closed-form solution [46],
[47] as

N = Sλ/ρ

(
Y − Z+

Γ1

ρ

)
. (11)

c): By fixing other variables, the subproblem to update Q is
formulated as

min
Q

βTr
(
QGQT

)
+

ρ

2

∥∥∥∥Q− Z+
Γ2

ρ

∥∥∥∥
2

F

. (12)

By setting its gradient with respect to variableQ to zero, problem
(12) has an analytical solution as

Q = (ρZ− Γ2)[β(G
T +G) + ρI]−1 (13)

where I denotes an identity matrix with appropriate size.
d): The Lagrange multipliers Γ1, Γ2 and the penalty param-

eter ρ are updated as

Γiter+1
1 = Γiter

1 + ρiter(Y − Z−N)

Γiter+1
2 = Γiter

2 + ρiter(Q− Z)

ρiter+1 = min
(
ρmax, μρ

iter
)

(14)

where iter denotes the index of the iteration, and the parameter
μ > 1 improves the convergence rate.

The proposed LLRA-SLPG method is shown in Algorithm 1
of the Appendix, which shows the initial values of the variables
and the convergence condition. After obtaining Z, a classifier
(e.g., SVM) receives it to conduct the classification.

D. Complexity and Convergence of Algorithm 1

The computational complexity of Algorithm 1 in the Ap-
pendix is mainly determined by the steps of updating {Zi}Si=1

and Q. Specifically, the step of updating {Zi}Si=1 needs to solve

the SVD whose complexity is O
(∑S

i=1 bni ×min(b, ni)
)

.

Moreover, the step of updating Q needs to take the inverse of a
matrix with the size of n× n, and calculate the matrix product
between two matrices whose sizes are b× n and n× n, respec-
tively. Therefore, the computational complexity of updatingQ is
O(n3 + bn2). In summary, the total computational complexity
of Algorithm 1 is O(n3 + bn2 +

∑S
i=1 bni ×min(b, ni)) in

each iteration.
Remark: It should be emphasized that as the matrix of

β(GT +G) + ρI in problem (13) is very sparse, its inverse
can be calculated fast in practice.

Moreover, in Algorithm 1, we use IALM to solve the objective
function in an iterative manner, which is similar to the classic
Expectation Maximization (EM) [48] algorithm. Moreover, it is
worth pointing out that IALM has been widely used in many
LRA-based methods [28], [31], [35]. The global convergence of
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Fig. 1. Convergence of Algorithm 1 in the Appendix on all the four benchmark
datasets.

TABLE I
STATISTICS OF THE INDIAN PINES DATASET

IALM has been theoretically proved when the convex problem
has at most two blocks [44], [49]. For the proposed LLRA-
SLPG method, where there are three blocks, to the best of
our knowledge, it is still unsolved to theoretically prove the
global convergence of IALM with three or more blocks [49].
Fortunately, we find that LLRA-SLPG empirically converges
well on all the benchmark datasets (see Fig. 1).

IV. EXPERIMENTS

In this section, we empirically evaluate the proposed method.

A. Datasets and Experiment Settings

We use four widely used benchmark datasets1 to evaluate
the effectiveness of the proposed method. The details of these
datasets are described as follows.

1) Indian Pines Dataset: This scene is acquired by Airborne
Visible and InfraRed Imaging Spectrometer (AVIRIS) sensor
over Indian Pines test site, consisting of 145× 145 pixels with

1http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_
Scenes http://rsidea.whu.edu.cn/resource_WHUHi_sharing.htm

TABLE II
STATISTICS OF THE SALINAS VALLEY DATASET

TABLE III
STATISTICS OF THE PAVIA UNIVERSITY DATASET

TABLE IV
STATISTICS OF THE WHU-HI-LONGKOU DATASET

200 spectral bands after band removal. The ground truth map
contains 10249 pixels that belongs to 16 classes.

2) Salinas Valley Dataset: The AVIRIS sensor collects this
scene over Salinas Valley, consisting of 512× 217 pixels with
204 spectral bands after band removal. The ground truth map
contains 54129 pixels that belongs to 16 classes.

3) Pavia University Dataset: The ROSIS sensor acquires this
scene over Pavia, Italy, which consists of 610× 340 pixels with
103 spectral bands. The ground truth map contains 42776 pixels
that belongs to 9 classes.

4) WHU-Hi-LongKou Dataset: The imaging sensor acquires
this scene over Longkou Town, Hubei province, China, on July
17, 2018, which consists of 550× 400 pixels with 270 bands. A
rectangular part (from 151 to 350 rows and 1 to 400 columns)
suffering from noise heavily is used for testing. The ground truth
map contains 74 474 pixels that belongs to nine classes.

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://rsidea.whu.edu.cn/resource_WHUHi_sharing.htm


7746 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

TABLE V
OA(%) OF THE LLRA-SLPG METHOD WITH DIFFERENT VALUES OF λ AND β ON THE INDIAN PINES DATASET

TABLE VI
OA(%) OF THE LLRA-SLPG METHOD WITH DIFFERENT VALUES OF λ AND β ON THE SALINAS VALLEY DATASET

TABLE VII
OA(%) OF THE LLRA-SLPG METHOD WITH DIFFERENT VALUES OF λ AND β ON THE PAVIA UNIVERSITY DATASET

TABLE VIII
OA(%) OF THE LLRA-SLPG METHOD WITH DIFFERENT VALUES OF λ AND β ON THE WHU-HI-LONGKOU DATASET

TABLE IX
CLASSIFICATION RESULTS OF THE LLRA-SLPG METHOD WITH DIFFERENT VALUES OF r ON ALL THE FOUR DATASETS

TABLE X
CLASSIFICATION RESULTS FOR ABLATION STUDY ON ALL THE FOUR DATASETS
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TABLE XI
COMPARISON AMONG ALL THE METHODS IN TERMS OF THE CLASSIFICATION ACCURACY ON THE INDIAN PINES DATASET, IN WHICH THE TRAINING PERCENTAGE

PER CLASS EQUALS 5%

Fig. 2. Comparison among all the methods in terms of the classification accuracy under different percentages of training samples on the Indian Pines dataset.

More details for all the four benchmark datasets are given in
Tables I–IV. The numbers of superpixels are empirically set as
the suggested values in [31] for the four benchmark datasets, i.e.,
64 (Indian Pines), 50 (Salinas Valley), 50 (Pavia University), and
64 (WHU-Hi-LongKou).

Three widely used evaluation criteria, i.e., overall accuracy
(OA), average accuracy (AA), and Kappa coefficient (κ), are
used to measure the classification results. For all the LRA-based
methods, after learning the recovered representation, the SVM
classifier equipped with a RBF kernel is used as the classifier.
Specifically, our proposed LLRA-SLPG method uses the max
normalization method [50] as a preprocessing.

B. Parameter and Convergence Analysis

In this section, we investigate how the three hyperparameters
of the proposed LLRA-SLPG method, i.e., λ, β, and r, affect
the classification performance. Note that λ depends on the
severity of the noises in an HSI, β controls to preserve the
local manifold structure, and r reflects the number of neighbors
for the locality preserving graph. Following [31], candidate
values of λ are in {0.01, 0.05, 0.1}. β and r are selected from
{0, 0.001, 0.01, 0.1, 1, 2, 5, 10, 20, 50, 70, 100, 1000, 10000}
and {1, 2, 3, 4}, respectively.

1) Tuning of Regularization Parameters λ andβ: In this part,
we study how the parameters λ and β affect the performance of

the proposed LLRA-SLPG method. The radius r of the locality
preserving graph is fixed at 2. Tables V–VIII show the OA of
the LLRA-SLPG method with various values of λ and β on the
four benchmark datasets.

For the Indian Pines dataset, as shown in Table V, the pro-
posed LLRA-SLPG method achieves the highest OA (97.13%)
with λ = 0.1 and β = 5. It can be observed that, with different
values of λ, the corresponding highest OAs may not change too
much, that is, with λ = 0.05 and 0.1, the corresponding highest
OA equals 96.96% and 97.13%, respectively. According to the
results, we can see that values of β that result in OA larger than
96.00% are in the interval [1,50].

For the Salinas Valley dataset, as shown in Table VI,
the LLRA-SLPG method achieves the highest OA (98.10%)
when λ = 0.05 and β = 20. With different values of λ, the
corresponding best OAs are very close, that is, when λ equals
0.05 and 0.1, the best OA is 98.10% and 98.09%, respectively.
Values of β that result in OA larger than 97% are in the interval
[2,100].

For the Pavia University dataset, as shown in Table VII, the
LLRA-SLPG method achieves the highest OA (90.79%) with
λ = 0.01 and β = 0.1. Values of β that result in OA larger than
87% are in the interval [0.1,2].

For the WHU-Hi-LongKou dataset, as shown in Table VIII,
the LLRA-SLPG method achieves the highest OA (98.42%) with
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TABLE XII
COMPARISON AMONG ALL THE METHODS IN TERMS OF THE CLASSIFICATION ACCURACY ON THE SALINAS VALLEY DATASET, IN WHICH THE TRAINING

PERCENTAGE PER CLASS EQUALS 0.5%

Fig. 3. Comparison among all the methods in terms of the classification accuracy under different percentages of training samples on the Salinas Valley dataset.

TABLE XIII
COMPARISON AMONG ALL THE METHODS IN TERMS OF THE CLASSIFICATION ACCURACY ON THE PAVIA UNIVERSITY DATASET, IN WHICH THE TRAINING

PERCENTAGE PER CLASS EQUALS 0.2%

λ = 0.01 and β = 2. Values of β that result in OA larger than
98% are in the interval [0.1,100].

On all four datasets, with a fixed value of λ, the OA first
increases and then decreases as β increases. For example, on the
Indian Pines dataset, with λ = 0.1, the OA steadily increases
from 79.02% to 97.13% as β changes from 0 to 5, and decreases
to 90.01% as β increases from 5 to 10 000. Besides, when β
varies in a specific range on those datasets (e.g., 0.01 ≤ β ≤ 20
on the Indian Pines dataset), the LLRA-SLPG method performs
consistently better than β = 0, which validates the effectiveness

of the third term in problem (4) (i.e., βTr(ZGZT)) to improve
the classification performance.

2) Influence of Radius r of the Superpixel-Guided
Locality Preserving Graph: In this part, we study the
effect of the radius r. Table IX shows the classification
results for the proposed LLRA-SLPG method with different
values of r on the four benchmark datasets. Specifically,
with the value of r fixed, we list the corresponding best
classification result of LLRA-SLPG under different values of λ

and β.
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Fig. 4. Comparison among all the methods in terms of the classification accuracy under different percentages of training samples on the Pavia University dataset.

TABLE XIV
COMPARISON AMONG ALL THE METHODS IN TERMS OF THE CLASSIFICATION ACCURACY ON THE WHU-HI-LONGKOU DATASET, IN WHICH THE TRAINING

PERCENTAGE PER CLASS EQUALS 1%

Fig. 5. Comparison among all the methods in terms of the classification accuracy under different percentages of training samples on the WHU-Hi-LongKou
dataset.

TABLE XV
COMPARISON OF RUNNING TIME (IN SECONDS) FOR ALL THE METHODS ON THE FOUR BENCHMARK DATASETS

As shown in Table IX, the performance of the LLRA-
SLPG method on the Indian Pines, Salinas Valley and WHU-
Hi-LongKou datasets is insensitive to r. For example, on the
Salinas Valley dataset, the highest OA (98.14%) at r = 3 is
only 0.21% larger than the lowest OA (97.93%) at r = 1.
Differently, the performance of the LLRA-SLPG method on
the Pavia University dataset fluctuates as r increases, that
is, the OA values obtained by the LLRA-SLPG method are

89.07%, 90.79%, 89.02%, and 89.90% for r = 1, 2, 3, and 4,
respectively.

Accordingly, in the subsequent experiments, the parameters
r, λ, and β are set to the corresponding values which could
achieve the best performance (i.e., the highest OA) according
to Table IX. Specifically, r is set to 1, 3, 2 and 4 for the Indian
Pines, Salinas Valley, Pavia University, and WHU-Hi-LongKou
datasets, respectively.
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Fig. 6. Classification maps of tested methods on the Indian Pines dataset with P = 5% (the OAs are reported in the parentheses). (a) Groundtruth. (b) Original
(76.65%). (c) RPCA (82.85%). (d) LLRSSTV (83.51%). (e) S3LRR (93.38%). (f) SS-LRR. (90.66%). (g) LSSTRPCA (87.02%). (h) LPGTRPCA (94.17%).
(i) OLRT (79.37%). (j) Proposed (97.04%).

3) Ablation Study for the Superpixel-Guided Locality Pre-
serving Graph: In this part, an ablation study is conducted to
study the effectiveness of the superpixel-guided locality preserv-
ing graph. First, we define the objective function in problem
(15), namely M1, which removes the superpixel-guided locality
preserving graph term (i.e., βTr(ZGZT)) in problem (15). The
candidate values of λ for M1 are the same as the proposed
LLRA-SLPG method. The comparison results on all the four
datasets are shown in Table X, which can be seen that the per-
formance of the proposed LLRA-SLPG method achieves much
better performance than the M1 method on all the evaluation
metrics (i.e., OA, AA, and κ). Such an observation validates
that the superpixel-guided locality preserving graph term (i.e.,
βTr(ZGZT)) can significantly enhance the classification per-
formance

min
[Z,N]

S∑
i=1

‖Zi‖∗ + λ‖N‖1

s.t. Z = [Z1,Z2, . . . ,ZS ], N = [N1,N2, . . . ,NS ]

Y = [Y1,Y2, . . . ,YS ], Y = Z+N. (15)

4) Convergence Analysis: As shown in Fig. 1, we can see
that problem (6) converges after about 150 iterations on the
Indian Pines and Salinas Valley datasets. In addition, on the
Pavia University and WHU-Hi-LongKou datasets, problem (6)
converges faster (i.e., in about 100 iterations). All of those results
validate the convergence of the proposed LLRA-SLPG method.

C. Comparison With State-of-the-Art Methods

We compare the proposed LLRA-SLPG method with state-
of-the-art HSI classification methods, including seven LRA-
based methods for HSIs, i.e., RPCA [51], LLRSSTV [52], S3

LRR [28], SS-LRR [30], LSSTRPCA [35], LPGTRPCA [53],
OLRT [54].

We adopt the suggested settings in the original papers for all
those baseline methods. We repeat the experiments for ten times
with randomly sampled training pixels for all the methods and
report the average results.

According to results on the Indian Pines dataset shown
in Table XI where the training percentage per class equals
5%, we can see that the LLRA-SLPG method significantly
outperforms baseline methods. For example, the proposed
LLRA-SLPG method achieves the highest accuracies (i.e., OA
(97.18%), AA (96.52%), and κ (96.79%)), which is much better
than the second-best one (i.e., OA (93.99%), AA (90.45%),
and κ (93.15%)). Moreover, the proposed LLRA-SLPG method
achieves the best performance in 12 out of 16 classes, especially
for classes 1, 2, 3, 5, 7, 9, 10, 11, 12, 14. For classes with limited
samples, i.e., classes 1, 7, and 9, the LLRA-SLPG method
achieves the best performance and shows a remarkable margin
over the second-best one. We also compare the classification per-
formance for all the methods with various training percentages
per class, i.e.,P = 1%, 3%, 5%, and 7%. As shown in Fig. 2, the
proposed LLRA-SLPG method is consistently better than base-
line methods in OA, AA, and κ. The classification accuracies
of all the methods gradually improve as the training percentage
increases. Moreover, our method performs significantly better
than the compared ones when the number of training pixels is
extremely small, e.g., 1% and 3%.

Table XII shows the performance comparison on the Salinas
Valley dataset, where the training percentage per class is set to
0.5%. We can observe that the proposed LLRA-SLPG method
also achieves the highest values in all the accuracy metrics.
Specifically, the proposed LLRA-SLPG method achieves the
best performance in most categories, i.e., the best performance
for 14 out of 16 classes. Especially for the classes 1, 2, 3,
8, 10, 11, 14, 15, and 16, the proposed LLRA-SLPG method
shows remarkable margins over baseline methods. Furthermore,
as illustrated in Fig. 3, the proposed LLRA-SLPG method per-
forms well under various training percentages, which shows its
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Fig. 7. Classification maps of tested methods on the Salinas Valley dataset with P = 0.5% (the OAs are reported in the parentheses).(a) Groundtruth. (b) Original
(87.79%). (c) RPCA (88.21%). (d) LLRSSTV (94.03%). (e) S3LRR (92.98%). (f) SS-LRR (89.49%). (g) LSSTRPCA (94.64%). (h) LPGTRPCA (94.10%). (i)
OLRT (94.36%). (j) Proposed (98.79%).

superiority. It can be observed that the classification performance
of all the methods gradually improves with the training percent-
age increasing.

Table XIII shows the performance of all the methods in
comparison on the Pavia University dataset, in which the training
percentage per class equals 0.2%. According to the results, we
can see that the proposed LLRA-SLPG method achieves better
performance. Specifically, the proposed LLRA-SLPG method
performs remarkably better than baseline methods, especially
in classes 1, 2, 3, 6, and 8. In addition, as shown in Fig. 4,
the proposed LLRA-SLPG method consistently performs bet-
ter than baseline methods under different training percentages,
especially for small training percentages, e.g., 0.2%.

Table XIV shows the performance comparison on the WHU-
Hi-LongKou dataset, in which the training percentage per class
is 1%. We can observe that the proposed LLRA-SLPG method

outperforms the other methods in OA, AA, and κ. Specifically,
the proposed LLRA-SLPG method achieves the best perfor-
mance in 7 out of 9 classes, especially for classes 3, 5, 8.
Moreover, as shown in Fig. 5, the proposed LLRA-SLPG method
shows significant superiority over other methods on different
training percentages, especially for small training percentages,
e.g., 0.3% and 0.5%.

The classification maps of all the methods on the four bench-
mark datasets are given in Figs. 6–9, which further manifest the
advantage of the proposed LLRA-SLPG method.

D. Comparison of Running Time

Table XV shows the running time of all methods on the four
datasets, where all the methods are running on a laptop with
i5-8500 CPU @ 3.00GHz. Specifically, the training percentages
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Fig. 8. Classification maps of tested methods on the Pavia University dataset with P = 0.2% (the OAs are reported in the parentheses). (a) Groundtruth. (b)
Original (79.75%). (c) RPCA (79.84%). (d) LLRSSTV (86.22%). (e) S3LRR (80.49%). (f) SS-LRR (80.98%). g) LSSTRPCA (83.65%). (h) LPGTRPCA (84.87%).
(i) OLRT (80.39%). (j) Proposed (92.64%).

Fig. 9. Classification maps of tested methods on the WHU-Hi-LongKou dataset with P = 1% (the OAs are reported in the parentheses). (a) Groundtruth. (b)
Original (93.13%). (c) RPCA (93.14%). (d) LLRSSTV (94.20%). (e) S3LRR (97.20%) (f) SS-LRR (94.28%). (g) LSSTRPCA (94.85%). (h) LPGTRPCA (97.71%).
(i) OLRT (93.90%). (j) Proposed (99.06%).

per class of the four datasets (i.e., Indian Pines, Salinas Valley,
Pavia University, and WHU-Hi-LongKou) are 5%, 0.5%, 0.2%,
and 1%, respectively. It can be seen that the proposed LLRA-
SLPG method has a reasonable running time compared with
baseline methods.

V. CONCLUSION

In this article, we propose the LLRA-SLPG method to im-
prove the discriminative representation of pixels in an HSI.
The LLRA-SLPG method can reduce the spectral variations

and promote the local manifold structure to improve the dis-
criminability of features in the low-rank component. Experi-
ments on four benchmark datasets demonstrate that the proposed
LLRA-SLPG method outperforms state-of-the-art methods. In
addition, the proposed LLRA-SLPG method shows remarkable
performance improvement with extremely few training samples.
In the future, we would like to improve the efficiency of the
proposed LLRA-SLPG method by using Anderson accelera-
tion [55], and adaptively determine the value of parameters, e.g.
using maximum a posteriori (MAP) to estimate them [56], [57],
[58], [59] according to the characteristic of input samples.
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APPENDIX

A. Pseudocode of the Algorithm for the Proposed
LLRA-SLPG Method

Algorithm 1: Algorithm for the LLRA-SLPG Model.
Input: Y, Yi, Laplacian graph G, and parameters λ, β, S.
Output: Z, N.
1: Initialize: Z = N = Q = Γ1 = Γ2 = 0, ρ = 10−4,

ρmax = 1012, ε = 10−6, μ = 1.1;
2: while not converged do
3: Update {Zi}Si=1 via (9);
4: Update N via (11);
5: Update Q via (13);
6: Update Γ1, Γ2, and ρ via (14);
7: Check the convergence condition:

‖Y − Z−N‖∞ ≤ ε and ‖Z−Q‖∞ ≤ ε
8: end while
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