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Dual-Concentrated Network With Morphological
Features for Tree Species Classification Using
Hyperspectral Image

Zhengqi Guo, Mengmeng Zhang ", Wen Jia

Abstract—At present, deep learning is a hot topic in the field of
the classification of hyperspectral image (HSI), and it has aroused
wide attention. However, in fine-grained classification tasks, such
as tree species classification, the uncertain spectrum remains the
major factor restraining the classification performance. In or-
der to solve the dilemma of forest tree species classification, a
dual-concentrated network with morphological features (DNMF)
is proposed. First, mathematical morphology is used to extract the
morphological features of HSI. Then, coarse-grained information
is extracted from the original hyperspectral data, and fine-grained
information is extracted from morphological features. After that,
both morphological representations and spectral inputs are fed
into DNMF, and the overall evaluation index and visual image are
obtained. The advantage of DNMF is that it decouples the spatial
and spectral information, and a multisource information fusion
process is then simulated. Accordingly, DNMF obtains high tree
species classification accuracy. In order to verify the superiority of
DNMF, we choose Gaofeng State-owned Forest Farm in Guangxi
Province and the Belgium dataset, which was collected near the
western part of Belgium as the research area. Related experiments
demonstrate that the DNMF model achieves clearly better classifi-
cation performance over other competitive baselines.

Index Terms—Dual-concentrated network with morphological
features (DNMF), hyperspectral image (HSI), mathematical
morphology, tree species.

1. INTRODUCTION

YPERSPECTRAL remote sensing technology uses hy-

perspectral sensors to image the target area in dozens to
hundreds of continuous bands. At the same time, it contains rich
spatial information and spectral information. With the improve-
ment of sensor technology, high-resolution image has attracted
more and more attention [1], [2]. In recent years, airborne
hyperspectral image (HSI) technology has gradually matured,
and the resolution of HSI has been significantly improved. In
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2016, Pang et al. [3] designed the multisensor airborne system
LiCHy (light detection and ranging, CCD, and hyperspectral).
LiCHy can obtain HSI with a spatial resolution of 0.2 m. With
high-resolution data blocks, HSI enables more accurate land
cover analysis. Ren et al. [4] sliced the HSI data into data blocks
for efficient computation of the covariance matrix and obtained
excellent classification performance in 2014. Azar et al. [5]
used spectral blocks with spatial groups to effectively exploit
spectral and spatial information. In 2017, Zhong et al. [6] used
the residual network to train and classify urban hyperspectral
data with a spatial resolution of 1.3 m and achieved excellent
results. Also, Zhong et al. [6] concluded that hyperspectral
remote sensing earth observation technology is widely used
in different fields, such as environmental monitoring, agricul-
tural survey, mining survey, atmospheric research, and other
fields. Although hyperspectral datasets are widely used, there
are great differences between commonly used hyperspectral
datasets and forestry hyperspectral datasets. To be specific, the
spectral curves of different ground types in the commonly used
public datasets are quite different. For example, Kumar et al. [7]
used the open hyperspectral data (Indian pines data) that contains
16 ground object species, and different classes in this dataset
represent clearly different spectral curves. However, the spectral
reflectance in the same genus of tree species is very similar, and
it is necessary to propose a new classification algorithm to solve
the problem of “different objects with a similar spectrum” in tree
species classification. Based on this classification challenge, the
determination of forest tree species has become a new hotspot
in forest hyperspectral data applications. In forest application,
it can obtain spatial information on tree species composition
and distribution pattern in forest, and establish a foundation
for tree species classification, forest map drawing, and forest
diversity protection. For example, Korpela et al. [8] proposed to
use airborne data to classify tree species in 2010. Marcinkowska
et al. [9] aimed to discover the potential of hyperspectral remote
sensing data for mapping forest vegetation ecosystems in 2014.
On this basis, Marcinkowska et al. [10] identified tree species
in a large area of forest vegetation, which was conducive to the
drawing of forest maps and the protection of forest diversity.
Now many research try to introduce light detection and ranging
(LiDAR) data into spectrum-driven tree species recognition task
to further improve the classification performance [11],[12], [13].
Dalponte et al. [11] analyzed the use of airborne hyperspectral
and LiDAR data for tree species classification in the Southern
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Alps, and the diagnosis spectral resolution can be integrated with
the rich geometrical information together. Matthew et al. [12]
combined the tree crown information (such as the maximum tree
height) in LiDAR data with the spectral reflectance knowledge
of HSI, and final classification process was implemented by
support vector machine. Similar with tree species classification,
many fine-grained recognition tasks rely heavily on the full use
of multivariate data, and some researchers have proposed some
derivative algorithms based on multivariate data fusion. In 2013,
Li et al. [14] proposed convolutional recurrent neural network
(CRNN), which used two ways of the classification rule set
generation for the CRNN evaluation. In 2018, Li et al. [15]
proposed a coupled sparse tensor factorization (CSTF)-based
approach for fusing hyperspectral and multispectral images.
In 2018, Xu et al. [16] developed a two-tunnel convolutional
neural network (CNN) framework to extract spectral-spatial
features from HSI. Dian et al. [17] regulated hyperspectral and
multispectral image fusion by CNN denoiser. In 2020, Hang
et al. [18] proposed an efficient and effective framework to fuse
hyperspectral and LiDAR data using two coupled CNN.

Returning to the problem of tree species identification, some-
times it is difficult for us to obtain the same LiDAR/multispectral
image as the HSI shooting location. But we often have unpro-
cessed external information that is underutilized. If the unpro-
cessed external information can be used, the structural relation-
ship of the original spatial information can be maintained. In
2021, Hang et al. [19] proposed a multitask generative adversar-
ial network (MTGAN) to take advantage of the rich information
from unlabeled samples. Another research found that prior in-
formation helps to improve CNN’s learning ability. According
to this, Hang et al. [20] further proposed an attention-aided CNN
model for spectral-spatial classification of HSIs. To weaken the
influence of “different objects with a similar spectrum” in the
new algorithm under small training samples, we plan to use
the fine-grained information (such as morphological features) to
compensate for the ignored characteristics reflecting the classes
differences in the coarse-grained details. Fine-grained image
analysis is a long-standing problem in computer vision and
pattern recognition, and it has been widely used in the real
world [21]. For example, Yin et al. [22] proposed to use fine-
grained image information (two local dynamic pose features) to
solve the problem that people with similar clothes are difficult to
distinguish. Furthermore, there are more fine-grained informa-
tion in images to be mined. In recent years, mathematical mor-
phology has been gradually applied to the mining of fine-grained
spatial information of images and applied in HSI classification.
Many morphological algorithms have proposed some feature
attributes to enhance local geometric information accordingly.
For example, Li et al. [23] proposed to capture the compactness
attribute of circular shape and the elongation attribute of long
strip shape. So, it is feasible to extract fine-grained information
from HSI by the morphological algorithm.

Before mining fine-grained information in HSIs, it is
necessary for us to understand the development of mathematical
morphology algorithm. In the development of mathematical
morphology, based on previous research, Plaza et al. [24]
proposed morphological profiles (MP), which is an adaptive
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mathematical morphology algorithm introducing the concept
of MP into HSI processing. MP can effectively extract the
spatial information of the image and achieve the effective
classification of fuzzy objects. Since then, a series of
mathematical morphology algorithms have been proposed.
For example, Mura et al. [25] proposed attribute profiles (AP)
based on attribute filtering (AF). In 2016, Ghamisi et al. [26]
proposed the extinction profiles (EP) component tree (maximum
or minimum tree) based on extinction filtering, which sheers
the tree nodes based on extinction value to extract features. In
2019, Li et al. [23] proposed the local contain profiles (LCP),
which is designed based on the topology tree. Compared with
the component tree, the topological tree significantly enhances
the stability of the classification process based on regional
contextures in the image. In 2021, Cao et al. [27] creatively
proposed a threshold-based local contain profile (TLCP) on
the basis of EP and LCP. Based on the topology tree, TLCP
flexibly set thresholds according to different physical properties
of objects and retains more spatial information than LCP. In
2021, Hou et al. [28] proposed multiple morphological profiles
(MMPs) to enhance the utilization of HSIs. Aforementioned
morphological features enhance spatial information usage in
HSI and improve the performance of HSI classification.
Although the traditional morphological algorithm has the
advantages of crucial textures extraction and high-efficiency
calculation, the classification performance of these methods is
still limited and strongly subject to manual parameter selection
as investigated by Dalponte et al. [29]. Therefore, a more
efficient and autonomous classification framework is urgently
needed. Deep learning methods, which act more dynamically to
provide automation features, have been extensively employed
for remote sensing image feature extraction and classification.
In particular, Hinton [30] found that CNN is one kind of deep
network that involves fewer parameters than a fully connected
network does. CNN can directly process two-dimensional (2-D)
images and reduce the setting burden of manual parameters. It
mainly consists of three parts: convolution layer, pooling layer,
and fully connection layer. In 2017, Raczko and Zagajewski [31]
applied CNN to tree species classification for the first time,
forming a new HSI classification framework. Based on the
CNN framework, scholars effectively improve the accuracy
of HSI classification and reduce the complexity of the manual
intervention. Chen et al. [32] and Zhao et al. [33] jointly used
dimension reduction and deep learning techniques for spectral
and spatial feature extraction so as to achieve better classification
performance. Wang et al. [34], [35] proposed two kinds of
generic models to solve the classification difficulties caused by
intraclass differences and interclass similarities. Lee et al. [36]
proposed the contextual deep CNN, which can optimally
explore local contextual interactions by jointly exploiting local
spatio-spectral relationships of neighboring pixel. However, as
investigated by Xue et al. [37], the problem of overfitting and in-
formation loss remain the greatest challenges in deep networks.
In view of the characteristics of forest hyperspectral remote
sensing images, a DNMF is proposed, which solves the short-
coming of traditional morphology methods that have low classi-
fication accuracy and are susceptible to the Hughs phenomenon.
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The proposed method realizes the decoupling of spatial-spectral
information from a new perspective and couples it in an appro-
priate way, which significantly improves the performance of HSI
classification. As a morphological feature extraction algorithm,
LCP is applied to utilize the fine-grained spatial information of
the input image. To be specific, in the first step, mathematical
morphological features (LCP) are firstly extracted from the HSI.
The second step is to extract the 1-D vector and 2-D data block
from the original hyperspectral data and the morphological
features. The third step is to acquire the final classification
result based on a cross-converged dual-concentrated network.

The main contributions of this article are as follows.

1) In this article, we have creatively proposed a DNMF
for tree-species classification. The spatial information
and spectral information are first decoupled by mor-
phological feature extraction, and the morphological
features and the original data are recoupled in the
collaborative utilization of spectral dimension [one-
dimensional (1-D) vector] and spatial dimension (2-D data
block). It imitates the process of multiple information
fusion.

2) Due to the characteristics of forest vegetation itself, it
is difficult to obtain a large number of samples, which
sets obstacles for obtaining the classification results of
tree species. This method can obtain high classification
accuracy of tree species in the case of small samples, which
is suitable for the present status of forest hyperspectral
data. Also, it has solved the problem of “different objects
with a similar spectrum” in tree species classification.

II. DUAL-CONCENTRATED NETWORK WITH MORPHOLOGICAL
FEATURES

We propose a new HSI classification framework, which is
called DNMF. The proposed framework is mainly composed of
three parts: morphological feature (LCP) extraction of the HSI,
HSI standardization, and multigranularity features cross fusion
based on the dual centralized network. The overall architecture
of the proposed classification framework is shown in Fig. 1.

Features
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Basic structure of the DNMEF, including mathematical morphology for LCP feature extraction, the architecture of the DCN, and data fusion.

Part A introduces the LCP features extraction. Part B explains
the detailed settings of dual-concentrated network (DCN). Part
C describes the feature fusion and HSI normalization.

A. Mathematical Morphology for LCP Feature Extraction

Before deep learning algorithms were applied to HSI, mor-
phological algorithms were relatively common in HSI classifi-
cation, but it does not mean that the traditional morphological
algorithm is backward. In this article, the morphological feature
extraction algorithm (LCP) is used to decouple HSI informa-
tion, which contributes to more significant texture information
acquisition, and effectively improving the utilization of spatial
information.

Among the traditional morphological methods, EP and LCP
are proposed in recent years. Both EP and LCP can effectively
extract spatial information in HSI and have auxiliary functions
for enhancing spatial information in woodland HSI. Specifically,
EP is built on component tree (Max Tree/Min tree). Component
tree is built on the basis of the pixel values between the connected
fields in pixels, so the component tree is susceptible to external
factors. For example, the presence of clouds and shadows affects
the pixel values, the components tree will change accordingly.
Hence, the feature extraction process is affected inevitably.
Compared with EP, LCP is extracted based on the construction of
topological tree, where the topological tree is built based on the
inclusion relationship between connected areas. It is noteworthy
that the inclusion relationship is less sensitive to the external
factors, which significantly improves the stability compared with
the component tree based on pixel values.

The left side of Fig. 1 is a brief illustration of the extrac-
tion process of LCP, while the detailed settings of LCP are
divided into three steps, as shown in Fig. 2. First, the original
hyperspectral data blocks are processed through the principal
component analysis (PCA) algorithm, and corresponding prin-
cipal components are selected according to our demand for
information. Second, topological trees are constructed from the
principal components. Third, we set the same extinction filter
parameters for the topological trees constructed by different
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Fig. 3.

Basic structure of the topology tree.

components. The parameters contain seven extinction values
corresponding to seven pruned topological trees. Fourth, we
reconstruct the seven pruned topological trees corresponding to
each attribute (area, height, volume, etc.) and obtain seven recon-
structed images. Finally, we stack seven images of each attribute
to obtain a 49-dimensional morphological feature block. In order
to better understand the feature extraction and integration of
LCP, we introduce in detail the construction process of the
topological trees and the principle of topological tree extinction
filtering.

The construction of the topological tree can be explained by
a simple image inclusion relationship. In Fig. 3, A represents
the largest connected area that contains all pixels in the whole
image. A is the root node, B, C, and D represent the second
largest connected region, and B, C, and D are also child nodes
of A. B contains regions F and G, so F and G are the child
nodes of B. Following these principles, the topology tree is
constructed.

Extinction filtering is the most critical part of the whole
process of feature extraction and integration based on LCP after
the construction of the topology tree. The extinction value in
the topology tree is defined as follows: assuming that M is the
local minimum connected region in image X, and 1) = (),
is a series of decreasing connected inverse spread transforms.
£, (M) represents the corresponding extinction value associated

with W. If it is the global maximum A value after extinction
filtering, M is still the minimum connected region of ¢, (X).
The definition of extinction value can be given by the following
formula:

Pu(M) = sup{r = 0V < A, M C Min(p,(z))} (1)

where Min(p,(x)) is a set containing all the minimum con-
nected regions of ¢, ().

EF is a connected filter whose principle is to delete or retain
the connected area corresponding to the leaf node and its branch
nodes. Let Max(X) = { My, Ms...My } be the set of minimum
connected regions in the image X, and each M; (i = 1,2...N)
has an extinction value [defined by (1)]. First, M; is sorted in
decreasing order according to w;. Then, according to threshold
n, the first n M; are selected, and the corresponding leaf nodes
are marked; finally, the branches with marked leaf nodes are
retained according to the filtering strategy, while the branches
with unmarked leaf nodes are cut off. This filtering process can
be defined as follows:

EF" = A" )

where EF obtains Ay through reconstruction operation. g is a
function for selecting markers. g can be expressed as follows:

g = Max;_ (M) 3)

where Max is the operation of selecting the minimum connected
area with the largest extinction value, and M, is the smallest
connected area corresponding to the ¢ highest extinction value.

After determining corresponding extinction value and mini-
mum connection area of each node, we need to set an appro-
priate extinction value for EF to extract features and eliminate
noise areas. The threshold is set as o™, (a =1,2,3...,m =
0,2,3..s — 1), where a is the basic parameter and s is the number
of thresholds.
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B. Architecture and Details of the DCN

CNN-based classification is a hot topic in hyperspectral area
in the recent years. However, inherent nonlinearity between
materials and the corresponding spectral profiles still severely
restrict the performance of existing CNN-based methods. To
change this phenomenon, we have proposed a HSI processing
architecture based on a DNMF.

The right side of the Fig. 1 is a schematic diagram of DCN. In
particular, the DCN can be divided into two parts: fine-grained
information processing branch and coarse-grained information
processing branch. The standardization section will be intro-
duced in Section C.

In the architecture of DCN, we design a new strategy to re-
couple the spectral-spatial information. Morphological features
are extracted by LCP for collecting fine-grained information,
while the normalized HSI retains the coarse-grained hyperspec-
tral input, thus constructing a coarse-to-fine information set. In
order to make the recoupling process in a more stable manner,
the fine-grained information (morphological features) and the
coarse-grained information are separately analyzed from the
spatial and spectral dimension, respectively. Specifically, both
the normalization HSI and the LCP features are divided into
2-D data blocks and 1-D vectors. The processing tunnels of
fine-grained and coarse-grained inputs are consistent with each
other. Further, taking the processing of normalization HSI as an
example, the information feed forward settings are introduced
as follow. The size of the normalized HSIis H x W x D, where
2-D input blocks and 1-D vector are first cropped from the input.
We select based on the target pixel to construct the 1-D vector in
the normalization HSI. In order to maintain the stability and
registration of recoupling, the position of the target pixel of
morphological features is the same as that of the normalization
HSI. The dimension of the 1-D vector is 1 x B. Here, B is the
number of the feature panels in the normalization HSI input,
which is also the same as the bands number in original HSI.
Particularly, Zhang et al. [38] demonstrated that an appropriate
increase in the size of the input data helps to improve classifica-
tion performance. So, the appropriate window size of S x S is
set according to the practical demands. To keep the architecture
robust, the 2-D data block is extracted from the same target pixel
in the 1-D vector, which also contains the same bands number
with original HSI. Taking the target pixel as the center, a cube
with size of S x S x B is selected as the 2-D block.

Finally, we classify according to the dimension of the input
quantity and then fuse related features according to the class. In
1-D fusion channel, the network contains two 1-D convolutional
layers, one batch normalization layer, two ReLU layers, a max-
pooling layer, and the flatten layer. Uezato et al. [39] explained
that the spectral curve is continuous. According to the character-
istics of spectral curves provided by spectral dimensions of HSIs,
1-D vectors are fused in a cascade manner in Fig. 1. To ensure
the consistency of spatial and spectral information of HSI, the
structure of the 2-D fusion channel is also similar to that of the
1-D fusion channel. The difference between the two channels
is that the 2-D fusion channel contains two fusions. Both the
1-D fusion channel and 2-D fusion channel pass through a batch
normalization layer and a ReLU layer. Classification results were
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obtained based on the fused features of 1-D and 2-D fusion
channels.

C. Data Fusion and HSI Normalization

In the architecture of method, morphological features contain
alarge amount of fine-grained texture information, which greatly
enhances spatial information. Spectral information in forest tree
species data shares relatively weak discriminative power, while
the enhanced spatial information strongly improve the whole
model’s performance on tree species classification.

The recoupling of diversified information is embedded in the
DCN branch of the proposed model. First, morphological data
and standardized HSI are preprocessed into 2-D data blocks
as input, and then a 1-D vector is obtained based on 2-D
data blocks. First, morphological features and standardized HSI
are preprocessed into 2-D data blocks as input, and then 1-D
vectors were obtained based on 2-D data blocks. The fusion
method of morphological features and standard HSI 1-D vector
is cascade fusion, which is designed for better utilize the spectral
information. The fusion method of morphological features and
standard HSI 2-D data blocks includes three times fusions, which
effectively enhances the utilization of spatial information.

In the pretreatment step, HSI has been processed by a
standardized process. Due to the influence of weather and
light on HSIs, the spectral intensity will change. To reduce the
differences in spectral curves between the same tree species
and facilitate final classification, we normalize each band of
the input HSI. In practical application, each band is normalized
and the normalization HSI is obtained by feature concatenation
operation. This filtering process can be defined as follows:

Normalization, = HSI; — Mm(I,—ISIi) 4)

*  Max(HSI,;) — Min(HSL,)

where Normalization is obtained by subtracting the difference
between the minimum value of this band and the spectral
intensity of each pixel in the 7 band, and then it is divided by
the difference between the maximum value and the minimum
value. Normalization; is the ith normalization, H.S1; is the
ith band of the HSI. M ax(H SI;) represents the pixel with the
largest spectral intensity among all pixels in the ith band of
HSI, and Min(HSI,) represents the pixel with the smallest
spectral intensity among all pixels in the ith band of HSIL.

III. EXPERIMENTS AND ANALYSIS

For the proposed DNMF framework, all the programs are
implemented using Python language, and the network is con-
structed using Keras' and TensorFlow? deep learning frame-
work. TensorFlow is an open-source software library for nu-
merical computation using data flow graphs, and Keras can be
seen as a simplified interface to Tensorflow.

A. Experimental Data

The performance of the proposed DNMF framework is evalu-
ated on two forestry datasets, the GSFF dataset, and the Belgium

Ihttps://github.com/fchollet/keras
Zhttp://tensorflow.org/
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Fig. 4.

(a)

(a) False-color image of the Belgium data, (b) Ground truth of the Belgium data.

Fig. 5.

dataset. The GSFF dataset is illustrated in Fig. 4, and Belgium
dataset is illustrated in Fig. 5. There are few sample points
in the ground truth of Belgium data, and the overall display
effect is unsatisfactory, so some sample points are enlarged for
display.

1) GSFF Dataset: In2019, Zhang et al. [40] proposed GSFF
data for the first time in the study of tree species classification
using 3-D-CNN model to process HSI. Considering that it is
often difficult to obtain enough samples for model training in
actual remote sensing image classification tasks, in order to make
the model usable in practical applications, randomly selecting
2.5% labeled pixels per class for training and all the other pixels
in the ground-truth map for testing. Zhang et al. [40] proposed
the GSFF dataset, which consists of 906 x 572 pixels, and it
was gathered by the AISA Eagle II sensor in GSFF in Guangxi
province in South China. There are 125 spectral channels cover-
ing the range from 400 to 990 nm with a spatial resolution of 1
m [41]. The GSFF dataset originally has 12 different land-cover
classes, containing 9 forest vegetation categories.

2) Belgium Dataset: Considering that it is often difficult
to obtain enough samples for model training in actual remote
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sensing image classification tasks, in order to make the model
usable in practical applications, randomly selecting 19.8% la-
beled pixels per class for training and all the other pixels in
the ground-truth map for testing. Liao et al. [42] proposed the
Belgium dataset, which consists of 649 x 1079 pixels, and it
was gathered by the airborne prism experiment (APEX) near
the western part of Belgium. There are 286 spectral channels
covering the range from 400 to 1000 nm with a spatial resolution
of 1.5 m. The Belgium dataset originally has 7 forest vegetation
categories, containing 1450 trees.

B. Parameters Tuning

The numbers of training and testing samples of the GSFF
dataset are listed in Table I, and the numbers of training and
testing samples of the Belgium dataset are listed in Table II. Pa-
rameter setting can greatly affects the classification performance
of the proposed framework, so the performance with different
parameter setting is first evaluated.

1) The Patch Size: The performance of different sizes of
the image patch is tested. Each experiment is evaluated by
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TABLE I
NUMBERS OF TRAINING AND TESTING SAMPLES FOR THE GSFF DATASET

No. Class Training Test
1 Cunninghamia Lanceolata 2019 78723
2 Pinus massoniana 134 5206
3 Pinus elliottii 104 3803
4 Eucalyptus grandis x urophylla 373 14558
5 Eucalypyus urophylla 1007 39267
6 Castanopsis hystrix 637 24824
7 Camellia oleifera 75 2925
8 Mytilaria laosensis Lec. 208 8115
9 Other broadleaf forest 269 10472
10 Road 262 10210
11 Cutting blank 254 9916
12 Building land 2 66
- Total 5342 208350

TABLE II

NUMBERS OF TRAINING AND TESTING SAMPLES FOR THE BELGIUM DATASET

No. Class Training  Test
1 Beech 80 321
2 Ash 13 54
3 Larch 23 93
4 Poplar 83 333
5 Copper beech 16 64
6 Chestnut 13 54
7 Oak 60 243
- Total 288 1162

TABLE III

CLASSIFICATION PERFORMANCE (%) OF THE PROPOSED DNMF FRAMEWORK
‘WITH DIFFERENT WINDOW SIZES USING THE GSFF DATASET AND THE
BELGIUM DATASET

Dataset Metrics OA AA Kappa
11 x11 9739 97.60 96.17

GSFF 13 x 13 97.86 9748  97.30

15x 15 9795 9722  97.40

5x5 83.81 83.67 79.27

Belgium TxT 86.48 86.36  82.86
9x9 75.11  74.17  68.11

the overall accuracy (OA), the average accuracy (AA), and the
Kappa coefficient. Experimental results demonstrate that the
size of the image block has a certain impact on the classification
performance of different datasets.

Table III lists that the window size of 15 x 15 offers bet-
ter performance than others on the GSFF data. However, the
Kappa coefficient of 15 x 15 is almost the same as the Kappa
coefficient of 13 x 13, indicating that increasing the size of the
input window could not continue to improve the consistency
of classification. At the same time for improving computing
efficiency and save computing resources. To sum up, we choose
the window size of 15 x 15 for the following experiment with
the GSFF dataset.

Table III concludes that the window size of 7 x 7 offers better
performance than others on the Belgium dataset. To sum up, we
choose the window size of 7 x 7 for the following experiment
with the Belgium dataset.

2) The Learning Rate: The learning rate controls the con-
vergence of the model by determining how far the weights
move in the gradient direction in a mini-batch. Because the
initial random weights are far away from the optimal value, a
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TABLE IV
CLASSIFICATION PERFORMANCE (OA %) OF THE PROPOSED DNMF WITH
VARYING LEARNING RATES

Dataset ~ Stage  Learning rate OA
0.01 85.46
1 0.001 91.55
0.0001 88.99
GSFE 0.001 95.42
2 0.0001 97.31
0.00001 92.59
0.01 61.43
1 0.001 77.86
0.0001 57.14
Belgium 0.001 63.57
2 0.0001 82.14
0.00001 80.00

dual-concentrate network of HSI is trained with a large learn-
ing rate during the first stage. When the training of the HSI
network is completed, the weights of the HSI branches are
fixed. Mathematical morphology features are transmitted phase
by phase, and the network is fine-tuned with a small learning
rate. Adam optimizer is selected to derive the optimal learning
rate combination. Specifically, Table IV further lists the optimal
learning rate of two training stages with the GSFF dataset and
the Belgium dataset.

3) Analysis of the Number of Training Samples: Labeled
samples are very crucial in machine learning. However, data
labeling is time-consuming and laborious in remote sensing data.
In particular, it is difficult for forest surveys to mark the samples
of HSIs, including remote locations, large forest areas, and other
issues. Therefore, it is very important to use a small amount of
labeled data to constract tree species classification model.

Here, we randomly select [10%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, 90%, 100%] samples from training set. The
experiments are conducted ten times; then, the average results
are reported. As shown in Fig. 6, the OA values tend to de-
crease as the number of training samples decreases. Especially,
significant effect deterioration occurs in the result of 3DCNN in
Fig. 6. This is because fewer training samples tend to overfitting.
In particular, the total sample of the Belgium dataset is only
1450, which is far less than the total sample of GSFF. DNMF
framework has the best stability on the Belgium dataset and
the GSFF dataset. In the case of small samples, DNMF is
the best for tree species identification. On the GSFF dataset,
DNMF achieves 98.66% accuracy in the case of 10% training
samples, which is significantly better than other deep learning
algorithms. Besides, on the Belgium dataset, DNMF achieves
70.63% accuracy with 10% training samples, which is superior
to other deep learning algorithms. To be concluded, DNMF
obtains more representative morphological features by decou-
pling spatial-spectral information and recouples them during
the training process in DCN, so as to maintain the stability of
the algorithm and the accuracy of tree species recognition in
the case of small samples.

4) The Normalization Module: In the DNMF framework,
HSIs are normalized according to bands to obtain normalization
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Fig. 6. Relationship between OA and the number of training samples on

different dataset, (a) GSFF dataset, (b) Belgium dataset.

TABLE V
CLASSIFICATION PERFORMANCE (%) OF THE PROPOSED DNMF FRAMEWORK
WITH OR WITHOUT NORMALIZATION OPERATOR USING THE GSFF DATASET
AND THE BELGIUM DATASET

Dataset ~ Normalization OA AA Kappa
GSFF v 97.86 9748  97.30
X 97.34 9733  96.64

Belgium v 86.48 86.36  82.86
X 82.52  82.15  77.71

HSI, which plays a vital role in the final fusion classification.
However, it is difficult to know to what extent the normalization
HSI plays a role in the final classification results. Therefore,
we test the experimental results of the DNMF framework on
the GSFF dataset and the Belgium dataset with or without
normalization operation. Table V concludes that the DNMF
framework with the normalization operator offers better per-
formance than the DNMF framework without the normalization
operator on the GSFF dataset and the Belgium dataset.

On the GSFF dataset, the overall accuracy (OA), the average
accuracy (AA), and the Kappa coefficient are significantly
improved by 0.15%-0.76% in Table V. This result shows that
the spectral curves of the same ground object in the GSFF
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dataset have little difference, and the normalization operation
has little impact on the DNMF framework.

On the Belgium dataset, the overall accuracy (OA), the aver-
age accuracy (AA), and the Kappa coefficient are significantly
improved by 3.96%-5.15% in Table V. This result shows that the
spectral curves of the same ground object in the Belgium dataset
are quite different. The normalization operation significantly
improves the classification results of the DNMF framework and
has a great impact on the DNMF framework.

C. Classification Performance

To demonstrate the performance of the proposed DNMF
framework preprocessed remote sensing data, some traditional
and state-of-the-art methods are compared, such as SVM, ex-
treme deep learning, CRNN [14], Two-Branch CNN [16], Con-
text CNN [36] and 3DCNN [40].

1) Comparison of Classification Performance: For a fair
comparison, all the training and testing samples are set the same
as in Tables I, III, and IV. OA, AA, Kappa coefficients, and
classification accuracy are used to evaluate each model before
and after LCP feature extraction branches is incorporated.

Table VI lists classification results of GSFF data. Compared
with other methods before the fusion of morphological features
branch in all methods, the proposed framework DNMF
has a significant improvement in overall results, the overall
accuracy is 97.68%. The kappa coefficient is also significantly
improved, indicating that the consistency of the proposed
DNMF framework in the GSFF dataset is improved without the
morphological feature extraction branches. After the fusion of
the morphological feature extraction branch in all methods, each
method has improved the classification results of each category.
DNMF framework still has the highest classification accuracy
among the nine categories of tree species, indicating that the
proposed network is relatively suitable for forest vegetation
classification. Within each model, the OA, AA, and Kappa
coefficient have increased significantly after proper fusion of
the mathematical morphological feature extraction branch. As a
traditional feature extraction method, mathematical morphology
has improved the classification accuracy of SVM the most,
reaching 14.49%. In the deep learning network, the lifting accu-
racy of each model is 3.18% for CRNN, 1.63% for Two-Branch
CNN, 0.43% for 3DCNN, 2.76% for Context CNN, and 0.91%
for Context CNN. Morphological features are useful for species
classification.

Besides, in each classification algorithm, we separately use
the morphological features for training, and the results are shown
in Table VI. The results show that the DNMF framework has the
best classification results. However, the classification results of
different deep learning algorithms show that the simple use of
morphological features will affect the tree species recognition
results. The joint utilization of original HSI and morphological
features can obtain the best tree species classification perfor-
mance.

Table VII lists classification results of Belgium data. Unlike
the GSFF dataset, the seven types of features in the Belgium
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TABLE VI

COMPARISON OF THE CLASSIFICATION ACCURACY (%) AMONG THE

PROPOSED METHOD AND THE BASELINES USING THE GSFF DATA

Performance
No. Class(train/test) SVM CRNN [14] Two-branch CNN [16]| Context CNN [36] 3D-CNN [40] Proposed "DNMF”
HSI | MF [HSI+MF| HSI | MF [HSI+MF| HSI | MF | HSI+MF | HSI | MF [HSI+MF| HSI | MF [HSI+MF| HSI | MF [HSI+MF

1 | Cunninghamia Lanceolata(2019/78723) [70.18|71.93| 75.51 [94.46|90.50] 96.37 [95.7889.72| 96.59 [94.54(94.50| 95.00 [94.34(91.92| 94.27 [97.06]6.10| 97.41
2 Pinus massoniana(134/5206) 38.22|41.69| 23.97 |73.32|65.46| 92.02 (89.57(58.48| 92.51 [89.64]61.39| 91.28 |77.69|27.80| 80.38 |93.94/81.02| 93.69
3 Pinus elliottii(104/4070) 31.06|42.22| 51.49 |77.95|64.39| 90.37 [90.39(57.59| 92.35 ]96.67|60.89| 85.50 |81.47|46.03| 82.16 |97.60|78.68| 97.90

4 |Eucalyptus grandis X urophylla(373/14558)|63.86|98.55| 98.46 (98.06/99.90| 99.94 [97.16]99.87| 99.98 [98.04(99.94| 98.49 [90.92(95.40| 92.06 |[99.87| 100 | 100
5 Eucalypyus urophylla(1007/39267)  |54.48|76.84| 83.49 |97.87|99.35| 98.90 [98.00(98.80| 99.51 {96.19]98.25| 98.91 [96.19/96.92| 96.42 |99.69|98.88| 99.86
6 Castanopsis hystrix(637/24824) 42.76|79.58| 77.77 |81.96|91.42| 89.80 [86.62(85.85] 90.40 |79.66|91.33| 87.77 |85.04/90.26| 85.62 [90.78(92.14| 93.06
7 Mytilaria laosensis Lec.(75/2925) 45.17|72.63| 83.07 |94.51|87.41| 89.96 [93.71]93.50| 94.58 |88.08|89.76| 97.72 |90.15|86.84| 92.54 (99.34(95.37| 99.16
8 Camellia oleifera(208/8115) 67.63(85.87| 77.60 |97.36|45.37| 98.57 [96.97|96.56| 98.80 [92.85(96.76| 97.89 [94.87(93.71| 96.62 |99.56|98.17| 99.55
9 Other broadleaf forest(269/10372) 56.49(84.83| 85.16 [85.57|81.93| 94.74 (91.35|94.33| 95.21 |78.74|94.73| 93.68 |88.44]92.95| 88.75 [94.22(96.47| 97.77
10 Road(262/10246) 98.94/70.69| 96.55 [98.99(95.79| 98.86 (99.08/91.59| 99.07 |98.31|86.73| 98.82 [97.92]79.59| 98.17 [98.89(93.97| 99.02
11 Cutting blank(254/9916) 90.04|47.18| 72.06 [99.48|75.78| 99.62 [98.90(79.48| 99.60 [99.39(93.83| 99.79 [98.25(88.60| 99.37 |99.84|98.63| 99.83
12 Building land(2/68) 25.00[ 0 0 |51.16] 0 6.06 |52.27| 0 17.14 [82.26/2.90 | 99.21 [44.71| 0 | 26.32 |30.00/43.68| 18.67
OA 65.64(75.70] 80.13 [93.04[87.05] 96.22 [95.06[90.86| 96.69 [92.52(93.55| 95.28 [91.81|89.50[ 92.24 [97.15[95.83| 97.75

AA 56.99|64.33| 79.97 |87.56|74.78| 87.93 [90.82|78.81| 89.65 [91.20(80.92| 95.34 |(86.67|74.17| 86.06 |91.73|89.43| 91.33

Kappa 54.62|67.59| 73.87 [91.29|83.68| 95.24 (93.76/|88.40| 95.83 [90.69|91.80| 94.10 [89.71/86.67| 90.24 [96.39(94.73| 97.16

TABLE VII

COMPARISON OF THE CLASSIFICATION ACCURACY (%) AMONG THE PROPOSED METHOD AND THE BASELINES USING THE BELGIUM DATA

Performance

No Class(train/test) SVM CRNN [14] Two-branch CNN [16] Context CNN [36] 3D-CNN [40] Proposed "DNMF”
HSI | MF |HSI+MF | HSI | MF |HSI+MF | HSI | MF |HSI+MF | HSI | MF |[HSI+MF | HSI | MF |HSI+MF | HSI | MF | HSI+MF

1 Beech(80/321) 41.4840.35| 49.89 [66.77|53.05| 68.58 |74.80|56.11| 74.07 |59.47|50.81| 72.55 [59.08|51.64| 57.78 |[80.72|56.58 | 83.25
2 Ash(13/54) 0 |3438| 61.54 [56.07| O 5510 [7273| O 7527 |48.65|25.58| 60.55 [28.57| O 43.68 |77.67(42.22| 87.13
3 Larch(23/93) 5493 162.16| 72.09 |6294| 1.94 | 69.14 |84.26| O 8571 |[81.14]61.08| 84.85 |30.67|18.69| 60.67 |89.12|78.45| 88.65
4 Poplar(83/333) 47.97|48.20| 70.44 |[85.12|48.31| 84.18 |87.81|56.32| 89.46 |88.19(5543| 8523 |79.53|51.63| 86.38 [92.80|70.94| 91.30
5 | Copper beech(16/64) | 0 0 81.40 [80.50| O 81.67 [99.22| 920 | 99.22 [88.89|18.18| 96.92 |54.17[10.67| 59.50 |93.43(32.76| 98.46
6 Chestnut(13/54) 0 0 25.00 [48.19] O 43.68 |6136| O 61.54 |25.81] 9.09 | 58.06 |[18.39| O 43.01 |77.42(25.81| 80.00
7 0ak(61/243) 28.97(29.38 | 42.35 |56.97| 3.92 | 59.88 |67.67|34.22| 67.46 |62.14|32.88| 45.03 [39.24|28.05| 51.36 |77.17|46.81| 80.87
OA 43.15|42.55| 57.80 [69.94(39.53| 70.80 |78.98|44.53| 79.15 |70.80[45.65| 72.61 |57.41|41.90| 64.05 |84.75|58.05| 86.48

AA 2476 |17.87 | 57.53 |65.22|1532| 7022 |78.43(22.26| 7890 |69.55|36.15| 71.55 |44.24|2295| 5748 |84.52|50.51| 86.36

Kappa 2323|2250 4438 |61.33]16.69| 6222 |7294(2520| 7321 |62.30|28.86| 65.07 [44.06|21.00| 53.67 |80.54|45.71| 82.69

dataset are completely tree species. Compared with other meth-
ods before the fusion of morphological features branch in all
methods, the proposed framework DNMF has a significant
improvement in overall results, the overall accuracy is 86.48%.
The kappa coefficient is also significantly improved, indicating
that the consistency of the proposed DNMF framework in the
Belgium dataset is improved without the morphological feature
extraction branch. After the fusion of the morphological feature
extraction branches in all methods, each method has improved
the classification results of each category. DNMF framework
still has the highest classification accuracy among the seven
categories of tree species. Within each model, the OA, AA,
and Kappa coefficient have increased significantly after proper
fusion of the mathematical morphological feature extraction
branch. As a traditional feature extraction method, mathematical
morphology has improved the classification accuracy of SVM
the most, reaching 14.65%. In the deep learning network, the
lifting accuracy of each model is 0.86% for CRNN, 0.17% for
Two-Branch CNN, 6.63% for 3DCNN, 1.89% for Context CNN,
and 1.73% for Context CNN. Morphological features are useful
for species classification.

Besides, in each classification algorithm, we separately use
the morphological features after feature extraction for training,
and the results are shown in Table VII. The results show that the
DNMF framework has the best classification results. However,
the classification results of different deep learning algorithms
show that the simple use of morphological features will affect the
tree species recognition results. The joint utilization of original
HSI and morphological features can obtain the best tree species
classification performance.

2) Visual Comparison: For visual evaluation of the proposed
DNMF framework, the visual map of each aforementioned
method for the GSFF data is illustrated in Fig. 7. In Fig. 7, it can
be seen that in different models, the visual images obtained by
the fusion of the mathematical morphology feature extraction
branch are closer to the ground truth map than before the fusion
with less noise. Among all the visual images, the proposed
DNMF framework is closest to the true value and has the least
noise.

IV. CONCLUSION

In this article, a framework based on DNMF processing
channel has been proposed. Compared with the existing pro-
cessing methods, DNMF framework creatively integrates the
morphological feature extraction branch into the HSI processing
process, decouples the spatial information from HSI and obtains
richer and refined spatial information. In different HSI process-
ing frameworks, the integration of LCP morphological feature
extraction branches improved the experimental results to varying
degrees, which fully demonstrated that the morphological fea-
tures strongly enhance the spatial information utilization in the
process of forest HSI processing. DNMF framework performed
best among all baselines because both spectral, fine-grained
spatial, and coarse-grained spatial information have been fully
utilized in the proposed method. Thus, DNMF achieved superior
classification performance even with small training samples of
forest HSIs.
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Fig. 7. Classification maps from the proposed DNMF and the baselines on the GSFF Data, (a) SVM: 65.64%, (b) SVM(HSI+MF): 80.13%, (c¢) SVM(MF):
75.70%, (d) CRNN: 93.04%, (¢) CRNN(HSI+MF): 96.22%, (f) CRNN(MF): 87.05%, (g) Two-branch CNN: 95.06%, (h) Two-branch CNN(HSI+MF): 96.69%,
(i) Two-branch CNN(MF): 90.86%, (j) Context CNN: 92.52%, (k) Context CNN(HSI+MF): 95.28%, (1) Context CNN(MF): 93.55%, (m) 3DCNN: 91.81%, (n)

3DCNN(HSI+MF): 92.24%, (0) 3ADCNN(MF): 89.50%, (p) Proposed “DNMF": 97.15%, (q) Proposed “DNMF"’(HSI+MF): 97.75%, (r) Proposed “DNMF”(MF):
95.83%.
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