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Cloud-Free Land Surface Temperature
Reconstructions Based on MODIS Measurements

and Numerical Simulations for Characterizing
Surface Urban Heat Islands
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Pengshuai Bi, Lan Yang, Guangchao Li, and Zhe Jia

Abstract—Land surface temperature (LST) data in the thermal
infrared (TIR) band measured by the moderate-resolution imaging
spectroradiometer (MODIS) instrument are critical for studying
surface urban heat islands (SUHIs); however, these acquired TIR
LST data are contaminated by clouds, so it is crucial to develop
a method to generate cloud-free LST products. In this article,
employing Tianjin as the research area, we combined the weather
research and forecasting model with a random forest and a spatial
optimization algorithm to propose a cloud-free MODIS-like model
(WRFFM). The model can reconstruct cloud-free MODIS-like
LSTs and SUHIs are studied. The spatial patterns of the WRFFM
LSTs and the MODIS LSTs are consistent; the correlation coeffi-
cients in July and December range from 0.8 to 0.91 and 0.8 to 0.93,
respectively, and the root mean square errors range from 0.5 to 3.8
K and 0.4 to 1.8 K, respectively, indicating that the modeled results
are accurate. We use these WRFFM LSTs to study SUHIs and
evaluate the deviations between the MODIS SUHIs and WRFFM
SUHIs. When the proportion of clear-sky pixels is below 30%, the
deviation is above 3 K, and when the proportion of clear-sky pixels
is above 80%, the deviation is below 0.6 K. The results indicate that
the developed model can be applied to improve the study of SUHIs
and that the number of clear-sky pixels for a city is an important
factor that affects the bias relative to the actual SUHI .
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I. INTRODUCTION

W ITH the rapid growth of populations and economies, im-
pervious surfaces continue to replace natural surfaces,

thus leading to large-scale urbanization [1]. From 2001 to 2018,
the global urban area expanded by 1.68 times, reaching a total
area of 802 233 km2 [2]. The thermal properties of impervi-
ous surfaces and ground radiation can change significantly in
response to the enhanced heat storage and thermal conductivity
of urban building materials, changes in urban canopy structures,
and the release of heat by human activities [3], [4]. The heat
balance differences between urban and suburban areas lead to
higher surface and atmospheric temperatures in urban areas
than in the surrounding suburbs, resulting in a phenomenon
known as “urban heat sources” [5] or “urban heat islands”
(UHIs). Changes in urban thermal environments can lead to
extremely high temperatures, increase climate risks, affect the
human quality of life and well-being in urban areas [2], [6], [7],
[8], [9], affect the quality of the ecological environment, and alter
ecological functions [10], [11]. Therefore, long-term monitoring
of UHIs is necessary to understand their characteristics and the
urban climatology that underlies them.

Urban land surface temperature (LST) is an essential quan-
titative indicator of UHIs [12]. In remote sensing studies, LST
is often used to define the surface urban heat island (SUHI)
effect [13]. In recent years, LSTs retrieved from satellite thermal
infrared (TIR) sensors have strongly promoted SUHI research
[14], [15], [16], [17], [18]. Although remote sensing data cannot
fully represent surface temperatures, these two metrics are re-
lated [19], [20], and SUHI data can be used to clearly distinguish
between the heat island effects measured by surface models and
those measured by air temperature models [13]. However, in
the remote sensing data retrieval process, the TIR signals from
the surface cannot penetrate the cloud layer; thus, when a pixel
is contaminated by clouds, the resulting satellite observation
information may be mixed with or even completely obscured by
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clouds, resulting in missing values in the obtained data [21]. It is
difficult to obtain spatiotemporally continuous LST data [22]. Li
et al. [23] found that in the contiguous urban areas of the USA,
the valid data in moderate-resolution imaging spectroradiometer
(MODIS) LST products accounted for 28% of the total data.
Thus, the severe absence of valid LST products limits their
scientific application potential.

The retrieval accuracies of remote sensing are high, their
data sources and coverages are wide, and their periods are
relatively stable [24]. Therefore, remote sensing data have great
advantages for studying the spatiotemporal heterogeneity of
surface physical processes. However, the indirect detection of
ground objects by satellites is easily affected by cloud contami-
nation, and the spatial distribution of the obtained data is poorly
continuous. Therefore, the LSTs obtained by remote sensing
depend heavily on the utilized cloud-screening algorithm [25].
For MODIS LST product data, an important cloud-masking
algorithm has been established that uses a series of visible and
infrared thresholds to determine whether the observed region
of the Earth’s surface was obscured by clouds. If a pixel is
covered completely or partly by clouds, its LST is not avail-
able (http://modis-atmos.gsfc.nasa.gov/). For this reason, many
scholars have used a variety of reconstruction techniques to
recover missing LST information resulting from cloud coverage.
These methods can be divided into five categories [26]. One cat-
egory is space-based gap-filling methods; LST has good spatial
correlation and continuous spatial distribution characteristics.
Through some spatial interpolation methods [27], [28], and
geostatistics to fill in cloud-covered pixels, space-based gap-
filling methods can be used to reconstruct surface temperature;
however, as these methods consider only spatial information,
the accuracy is unsatisfactory in cases of concentrated or large
clouds. The second category is time-based gap-filling methods.
These methods fill cloud-contaminated pixels with the data from
valid pixels at adjacent times; examples include linear time
interpolation methods [29], time-series and analysis methods
[30], and harmonic fitting methods [31], [32], [33]. These meth-
ods have high reconstruction performance and are suitable for
large cloud coverage areas, but they ignore adjacent geographic
information and are very sensitive to land cover changes and
sudden changes in natural disaster conditions [34]; the filling
accuracy is susceptible. The third category is gap-filling methods
based on spatiotemporal information. These methods integrate
the spatiotemporal information of TIR remote sensing LST,
and can offer the advantages of both time and space gap-filling
methods. For example, some spatiotemporal fusion techniques
and machine learning models have been introduced to estimate
continuous LST in cloudy conditions [35], [36]. The accuracy
of these methods mainly depends on the quality of the LST data,
and they are suitable for filling large-scale data, but they are still
not fully utilized with regard to the available spatiotemporal
information. The fourth category is multisource fusion-based
gap-filling methods, such as passive microwave measurement
(PMW). Compared with TIR remote sensing measurements,
these methods entail wider orbital scanning gaps and lower
spatial resolutions [37], which create limitations in explaining
the spatiotemporal variation in microwave emissivity [38]. Wu

et al. [39] proposed to generate gapless all-weather LST by com-
bining PMW and TIR measurements, but this method is more
costly than traditional methods and has limited applicability. The
fifth category is surface energy balance based (SEB) gap-filling
methods, which calculate the difference between clear- and
cloudy-sky pixels based on the land SEB equation to estimate the
actual LST under cloudy conditions [40]. For example, Jin [41]
proposed an SEB-based theory to calculate missing LST infor-
mation by interpolating adjacent pixels; however, this method
does not take into account the terrain, which affects the accuracy
of surface temperature reconstruction in mountainous areas.
Yu et al. [42] introduced satellite radiation products into SEB
theory, reducing the error caused by input variables, and thereby
improving the generality and reliability of the SEB method.
However, this method makes assumptions about environmental
variables and requires specific meteorological and hydrological
observations to calculate the LST difference between clear-sky
and cloudy areas, which introduces errors [43].

The majority of the methods discussed above have a flaw in
that the LST under cloudy conditions is represented by the LST
theoretical value under clear-sky conditions. Although the filling
methods based on multisource fusion can generate the actual
LST, their verification accuracy may not be high. PMW can be
regarded as one of the better methods of this kind, but it needs to
overcome the rough spatial resolution and the differences among
different LST data sources. Therefore, the technology is not quite
mature at present. The weather research and forecasting (WRF)
model can also obtain the LST under cloudy conditions, and
WRF technology is more mature than PMW technology. WRF
has five main modular physical schemes, namely, microphysics,
shortwave radiation, longwave radiation, near-surface layer, and
boundary layer schemes, which can simulate meteorological
values under all weather conditions and surface skin temperature
(TSK) with high temporal and spatial resolution [44], similar to
MODIS. The LST retrieved from remote sensing observation
data characterizes the integrated temperature of the surface skin
with the surface thickness equal to the penetration depth (0.1–10
times the wavelength, detection of thermal radiation at a depth
of several micrometers on the surface of the TIR observation
spectrum) [45], [46]; the values of TSK and LST are very close,
and can even be regarded as the same kind of data (TSK is treated
as WRF LST in this article). Although the LST data simulated by
WRF have spatial continuity and high spatiotemporal resolution,
the simulation accuracy of this method is limited. In this article,
considering that MODIS LST has high retrieval accuracy but is
contaminated by clouds and has poor spatial continuity, numeri-
cal simulation with the WRF model, MODIS retrieval data, and
the random forest (RF) model are integrated to give full play to
the advantages of the WRF model and remote sensing data and
generate a spatiotemporally complete LST. The advantage of the
research method and source data in this article is the simulation
of LST by WRF based on real historical observation data (final
analysis data), which allows the method to simultaneously obtain
LST with high accuracy in both clear-sky and cloudy conditions.
First, to ensure an adequate number of valid pixels entering the
RF model and improve the training accuracy of the model, we
combine Terra/MODIS and AQUA/MODIS data, make full use

http://modis-atmos.gsfc.nasa.gov/
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Fig. 1. Geographic location of Tianjin and the three one-way nested domains (a) in the WRF model used herein to simulate surface temperatures in Tianjin (b);
land use cover map in panel (b) was derived from MODIS (MCD12Q1) product data. The two weather stations identified in the figure were used to verify the
performance of the WRF model.

of the spatiotemporal information of both, and create a “merged”
dataset (Terra-Aqua/MODIS) by filling missing Aqua/MODIS
data on the premise that Terra/MODIS data are available [47].
We then generate as many MODIS pixels as possible and use the
RF model as a bridge to build a model of the relationship between
MODIS LST and WRF LST. This procedure can improve not
only the continuous availability of retrieval data but also the
accuracy of the simulated data. We then obtain the actual LST in
cloudy conditions to study SUHIs in Tianjin at night and during
the day and analyze the deviations between cloudy- and clear-sky
MODIS SUHIs. The purpose of this article is to combine the
advantages of remote sensing and meteorological techniques,
consider the spatial properties of meteorological simulations,
and compensate for the disadvantage of remote sensing data,
i.e., its limitation by cloud contamination, which has hindered
its scientific application.

This article is structured as follows: “Study area and data col-
lection” introduces the study area and data sources; “Methods”
introduces the data processing methods and technical routes;
and the section “Results” presents the WRF model simulation
results, the RF optimization results, and the SUHI results. “Dis-
cussion” describes the strengths of this article, problems with
the model simulation and optimization methods, and potential
future improvements; and the section “Conclusion” presents a
summary of the findings of this article.

II. STUDY AREA AND DATA COLLECTION

A. Study Area

The study area in this article is Tianjin, a provincial adminis-
trative area of China that covers a total area of 11966.45 km2 and
has a population of approximately 13.86 million people (Fig. 1).
Tianjin is located between 116°43′ and 118°04′E longitude
and between 38°34′ and 40°15′N latitude, with flat topography,
a temperate continental monsoon climate, high temperatures,

rainy summers, and cold and dry winters. The annual precipita-
tion in this area is approximately 550 mm, and the annual average
temperature is 13.7 °C. During the urbanization process, great
temperature differences have arisen between urban and suburban
areas of Tianjin, leading to an obvious heat island effect [48].
Studying the UHI effect in the area will help policy-makers
formulate corresponding climate change measures and promote
sustainable urban development.

B. Data on LSTs

MODIS is a 36-band sensor onboard the Terra [Earth Ob-
serving System (EOS) AM] and Aqua (EOS PM) satellites,
which cover the Earth’s surface four times a day, twice during
the day (at 10:30 and 13:30 local time) and twice at night
(at approximately 22:30 and 1:30 local time) [24]. Two kinds
of daily satellite-derived MODIS LST products were used in
this article, namely, the MOD11A1 data of the Terra/MODIS
satellite collected in summer and winter from 2013 to 2018 and
the MYD11A1 data of the Aqua/MODIS satellite. The MODIS
dataset was derived from the National Aeronautics and Space
Administration provided EOS data (EOSDIS, https://earthdata.
nasa.gov/) at a spatial resolution of 1 km. The MODIS LSTs
were generated from two TIR bands, bands 31 (10.78–11.28
μm) and 32 (11.77–12.27μm), using a generalized split-window
algorithm [49], [50]; the accuracy of these data on a uniform
surface was above 1 K [25], [50]. The obtained MODIS data
were spliced and reprojected to the world geodetic system-84
coordinate system and resampled to a resolution of 0.01° ×
0.01° using the Arcpy tool.

C. Meteorological Data

The final operational global analysis data used in this article
(http://rda.ucar.edu/datasets/ds083.2/) were reanalysis data pro-
duced and provided by the National Center for Environmental

https://earthdata.nasa.gov/
https://earthdata.nasa.gov/
http://rda.ucar.edu/datasets/ds083.2/
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Prediction (NCEP); these data can be used to initialize the
WRF model. The utilized dataset had the characteristics of
multiple phases, strong continuity, and a high resolution [51];
the temporal resolution was 6 h, the spatial resolution was
1°, and the format was gridded binary (GRIB2). The weather
station-recorded data used to verify the WRF simulation results
were obtained from the National Oceanic and Atmospheric
Administration (NOAA) and National Center for Environmen-
tal Information website (https://www.ncei.noaa.gov/), and the
temporal resolution was 30 min.

D. Data on Land Cover and Regions

Land use/cover changes (LUCCs) are considered to be the
main factor affecting the climate system and are among the key
parameters used in coupled atmosphere–land surface models.
Land–atmosphere interactions are closely related to the regional
climatic environment background, topography, vegetation, and
so on [51], [52]. The built-in MODIS land-use MCD12Q1 data
(2001) in the WRF model with a spatial resolution of 500 m
were used in this article. UHI research requires the division
between urban areas and suburbs. To improve the accuracy of
the division scheme, we used Landsat 8 land use data obtained
from the website of the Resource and Environmental Science
and Data Center of the Chinese Academy of Sciences at a spatial
resolution of 30 m.

III. METHODS

A. Technical Process

The technical process of this article is shown in Fig. 2, and
is divided into the simulation of LST with the WRF model,
the amalgamation of valid MODIS data, and the retrieval of
cloud-free MODIS-like LST by the WRFFM model and char-
acterization of Tianjin’s SUHIs based on the model results. First,
the WRF model was used to simulate the generation of surface
temperature data in Tianjin. For the acquired AQUA/MODIS
data, if there were not enough pixels in the study area due to
cloud contamination, the pixels were filled by Terra/MODIS
data from the same day. The next step was to combine the
WRF model, RF model, and spatial optimization algorithm
to generate cloud-free MODIS-like LST data in the case of
partial cloud contamination in MODIS; if the MODIS image
was completely cloud-contaminated or Terra/MODIS also had
insufficient pixels, the time-adjacent model was used. Finally,
the SUHIs in Tianjin were quantitatively analyzed based on the
cloud-free MODIS-like LST data generated by the above steps.

B. WRF Model and Its Parameter Configuration

In this article, we used version 4.2.1 of the regional WRF
model; this model was developed as a joint effort among sev-
eral agencies, including the National Center for Atmospheric
Research, NCEP, and NOAA. A new generation of small- and
medium-scale weather forecast models has been developed [53].
The main purpose of this model development is to study and
predict weather conditions [54]. The utilized model has many
modular schemes that can be used to describe land surface

TABLE I
PHYSICAL PARAMETERIZATION SCHEME ADOPTED BY THE WRF MODEL

processes during the regional climate simulations [55], [56] and
has been widely used in the meteorological field. The urban
canopy model (UCM) can use the morphology of urban build-
ings to calculate the SEB [57], [58]; this model can accurately
simulate LSTs at spatial resolutions of 1–10 km under cloudy
and clear-sky conditions and surface energy fluxes [59]. In this
article, we combined the WRF and UCM models using three-
layer unidirectional nested domains with spatial resolutions of
9, 3, and 1 km (d01, d02, and d03, respectively, in Fig. 1);
the pixel dimensions of these three domains were 97 × 97,
160 × 160, and 223 × 223, respectively. The WRF model has a
physical scheme containing five modules: cloud, microphysics,
radiation (longwave and shortwave), boundary layer, and surface
modules [43]. Herein, we adopted the physical scheme described
in Table I. According to the data recorded at the two automatic
weather stations listed in Fig. 1(b), the WRF simulation results
were verified, and the modeling performance was evaluated.

C. Amalgamation of Valid MODIS Data

The overpass times of the Aqua and Terra satellites are tem-
porally close (within approximately 3 h). Assuming that most
of the data are cloud contaminated, the information from these
two data sources can be combined to create a “merged” dataset
that complements the existing Aqua LST product and thereby
reduce data loss. First, an adjustment method was applied to
account for the different overpass times of the two platforms.
Based on multiyear (2013–2020) MODIS LST data, the average
Aqua LST and Terra LST values on Tianjin’s image grid were
determined according to seasons (winter: December, January
and February; summer: June, July, and August). The mean
Aqua-Terra LST differences were added to the daily Terra LSTs
to remove the mean deviations related to the transit times, result-
ing in a merged Terra-Aqua/MODIS dataset. With independent
offsets for each grid cell representing each season, it was possible
to control the first-order statistics for factors, such as land cover,
elevation, terrain slope and aspect, latitude, season, and snow
cover during the diurnal surface temperature cycle [47]. The
specific calculation formula can be expressed as follows:

Mdifference =

∑n
i=1 Ti

n
−

∑n
j = 1 Aj

n
(1)

https://www.ncei.noaa.gov/
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Fig. 2. Technical flow chart of the methodology followed in this article.

(Terra − Aqua)i = Ti +Mdifferencei (2)

where Tiis the summer or winter mean LST of the pixel grid of
Terra/MOD11A1 data, Aj is the summer or winter mean LST
of the pixel grid of the Aqua/MYD11A1 data, n is the number
of years (2013–2020), Mdifference is the 8-year summer or winter
mean bias, and (Terra − Aqua)i is the pixel LST value of the
combined Terra and Aqua datasets.

D. Retrieval and Optimization of LSTs Under Partial Cloud
Conditions

The traditional RF model is a modern and highly flexible ma-
chine learning method that integrates multiple decision trees and
can handle large amounts of missing data to provide high pre-
diction accuracy [60]. In this article, two strategies were used for

MODIS-like LST reconstruction under cloudy conditions based
on the number of effective pixels in MODIS images (including
Aqua/MODIS and the amalgamation Terra-Aqua/MODIS when
cloud contamination was severe).

The reconstruction process when the MODIS LST is partially
cloud contaminated (0% < cloud coverage < 99%) is shown in
Fig. 3. After the simulations with the WRF model were obtained,
the RF model was combined with the WRF model, where the
input variables of the RF model are MODIS LST and WRF
LST, the MODIS LSTs derived in July and December 2020 and
the corresponding WRF LST data were taken as test data, and
the image pixels input into the model were randomly divided
into a training set and verification set at a ratio of 7:3. A model
of the relationship between the MODIS and WRF data under
clear-sky pixels was constructed, and RF LST images were



ZHANG et al.: CLOUD-FREE LAND SURFACE TEMPERATURE RECONSTRUCTIONS 6887

Fig. 3. Reconstruction of MODIS-like LSTs under cloudy conditions.

obtained after the model was trained using the RF model. As
the RF model is affected by the “regression mean” [61], salt
and pepper noise arose; thus, it was necessary to use a spatial
optimization algorithm to reduce this noise and smooth the im-
ages. Here, we combined the image prediction and optimization
methods into a model named the WRFFM model and then used
the root mean square error (RMSE) and Pearson correlation
coefficient (Cor) to evaluate the accuracy of the WRFFM model
outputs. Images with low Pearson correlations (Cor < 0.8) were
regarded as exhibiting complete cloud contamination; in this
way, high-quality cloud-free LSTs similar to those derived by
MODIS could be obtained under cloudy conditions.

E. Retrieval and Optimization of LSTs Under Completely
Cloud Conditions

In the case where the MODIS LST data were completely con-
taminated by clouds or the correlation of RF model training was
low (Cor<0.8), the time-adjacent WRFFM model and the WRF

Fig. 4. Technical process of the method used to obtain cloud-free retrievals
similar to MODIS LSTs when MODIS images were completely cloud contam-
inated; the target day is the date when the MODIS image was completely cloud
contaminated (N = 5), and the solid arrow represents the image input.

image of the day were used to retrieve the LST. Fig. 4 presents
a flowchart of this method. The idea is to incorporate the WRF
simulated images of the current day into the WRFFM model of
adjacent dates and introduce the Cor value of each adjacent date
verified by the WRFFM model to obtain a MODIS-like LST with
weight parameters for the corresponding date. The calculation
formula can be expressed as follows:

LSTc =

N∑

i=1

ωifi (LSTcWRF) + CorLSTcWRF (3)

Mi =

1
(1−Ri)×Ti∑n

j=1
1

(1−Rj)×Tj

(4)

ωi = Mi × (1− cor) (5)

where LSTc is the MODIS-like LST image, fi is the temporal-
neighbor training model, and n is the number of adjacent image
dates used to estimate LST; in this article, n was set to 10. R is
the correlation coefficient between the MODIS LST image and
the simulated image, T is the number of days between image
acquisition dates, LSTcWRF is the WRF image of the current
day, Cor is the Pearson correlation coefficient describing the
relationship between the MODIS image and the LSTcWRF of
the current day, and ω is the weight of the image.

F. Calculated Indicators for SUHI and Deviations Between
MODIS and WRFFM SUHIs

1) Calculated Indicators for SUHI: Based on the spatial
analysis capabilities of geographic information systems, in this
study, we used high-spatial-resolution LUCC data from Landsat
8, reclassified the data, and extracted the impervious surface



6888 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

TABLE II
HEAT ISLAND INTENSITY CLASSIFICATION SCHEME

area (ISA) of Tianjin to identify urban areas. We then combined
these data with the established buffer zone, which stratified the
interior of the city according to ISA density; a 25% ISA threshold
was used to define polygons based on thematic Landsat data, as
studies have shown that the 25% ISA threshold can be used as
a suitable boundary to determine the distance between a city
and low-density residential land [62]. In this article, Heping
District, Hedong District, Hexi District, Nankai District, Hebei
District, and Hongqiao District were found to be the main urban
areas in Tianjin with ISA densities >75%; 15- and 20-km buffer
zones were built around these main urban areas [63]. Three
concentric polygons were established, and the ISA density of
the outermost polygon, which included Beichen District, Ninghe
District, Jinnan District, Xiqing District, and Dongli District of
Tianjin, was <25%; this delineation is similar to that utilized
by Zhang et al. [64], who studied the continental USA. The
indicators used to study the SUHI effect were consistent with
the following simple UHI calculation formula:

SUHI = UrbanLST − SuburbanLST (6)

where SUHI is a surface urban heat island, UrbanLST is the mean
value of the urban LST, and SuburbanLST is the mean value of
the suburban LST. If an SUHI was negative, it was considered
to be a surface urban cold island (SUCI). According to Chen
and Wang [65], by using the equal spacing method to define the
intensity grade of a UHI, UHIs were divided into seven grades,
as shown in Table II .

2) Deviation Between MODIS and WRFFM SUHI: Due to
the influence of cloud contamination, the use of MODIS LSTs
causes a lack of clear-sky pixels in the city and suburban areas
in the resulting images. If the number of pixels in the area is
too small, the estimated SUHI is unreliable due to the large
potential deviations from the actual situation [66]. To quantify
the bias (BMS) between the SUHI intensities calculated based
on MODIS LST and WRFFM LST under different weather con-
ditions and its influencing factors, in this article, we calculated
the urban and suburban clear-sky coverage ratio (CSCR) and the
biases of the ratio of urban clear-sky pixels to suburban clear-sky
pixels under cloud contamination conditions and the ratio of
urban pixels to suburban pixels under cloud-free conditions

(BCF)

CSCR =
Pclear−sky

Pall
(7)

BCF =
Pfre−urban

Pfre−suburbans
− Pcon−urban

Pcon−suburbans
(8)

where Pclear−sky is the number of clear-sky pixels in the city
and suburban areas, Pall is the total number of pixels in the
city and suburban areas without cloud contamination, Pfre−urban

and Pfre−suburbans represent cases without cloud contamination,
and Pcon−urban and Pcon−suburbans are the numbers of clear-sky
pixels in cities and suburban areas, respectively, under cloud
contamination conditions.

IV. RESULTS

A. WRF LST Image Results and Validation

Fig. 5 shows the WRF LST images and MODIS LST images
obtained at 13:30 local time on July 6 (a) and 29 (d), and the
nighttime images include WRF LST images and MODIS LST
images taken at 1:30 local time on December 20 (c) and 31 (d),
2020. The high-temperature areas of these WRF LST images
all corresponded to the construction lands in the land use type
data [Fig. 1(b)], and the temperatures around urban areas were
relatively low; that is, the WRF LSTs effectively captured the
characteristics of UHIs, and they exhibited a similar spatial
pattern to the MODIS LSTs of the corresponding date. To verify
the difference between the WRF LSTs and the measured data, we
compared the WRF LSTs obtained on July 6, July 29, Decem-
ber 20, and December 31, 2020, with the hourly temperatures
recorded at the automatic weather stations to obtain the daily
average temperature variation time series (Fig. 6). The daily
maximum temperature occurred at 2:30 pm local time (UTC+8)
and the lowest temperature occurred at approximately 6:00 pm
local time. The Pearson correlation coefficient (Cor) values of
the two data sources on July 6, July 29, December 20, and
December 31, 2020 were above 0.8, with values of 0.818, 0.964,
0.809, and 0.816, respectively, and the corresponding RMSEs
were 1.388, 0.896, 1.637, and 1.658, respectively, indicating that
the WRF model optimally simulated the diurnal variations in air
temperature, which is reasonable to some extent.

B. Generating Aqua-Terra/MODIS LSTs

Due to the influence of cloud contamination, the obtained
Aqua/MODIS LST series had discontinuous data spaces due to
missing pixels. However, sufficient effective pixels are required
when fitting the WRF LSTs and MODIS LSTs using the RF
model. In this article, we used Terra/MODIS clear-sky pixels to
fill in the cloud-polluted pixels of the Aqua/MODIS data. Fig. 7
shows the average summertime 1) and wintertime 2) deviations
in the Terra-Aqua data from 2013 to 2020. In Heping District,
Hedong District, Hexi District, Nankai District, Hebei District,
and Hongqiao District, the summertime surface temperature
deviations were more obvious than those in winter. Taking the
daytime Aqua/MODIS data obtained on July 5, 2020, as an
example (Fig. 8), the pixels that filled the blank areas in the
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Fig. 5. WRF LST images and MODIS LST images on July 6 (a) and 29 (b), 2020 (13:30 pm), and on December 20 (c) and 31 (d), 2020 (1:30 am).

TABLE III
PERCENTAGES OF CLEAR-SKY LST PIXELS BEFORE AND AFTER THE DAYTIME

AND NIGHTTIME TERRA AND AQUA DATA MERGERS IN TIANJIN IN JULY AND

DECEMBER 2020

Aqua data with Terra data were scattered, and the effective pixel
coverage of the Aqua data was subsequently greatly increased,
especially in the main urban area. Table III shows the percent-
ages of clear-sky LST pixels before and after the merging of the
Terra and Aqua data in July and December 2020 in Tianjin.
Generally, there were more clear-sky pixels in the MODIS
data in December than in July. By supplementing with Terra
data obtained at the corresponding times, the effective pixels
in the LST data obtained by the Aqua satellite in daytime and
nighttime in July increased from 25.18% to 29.45% and from
34.44% to 35.56%, respectively, exhibiting effective clear-sky

pixel coverage increases of 4.27% and 3.71%, respectively. In
December, the daytime and nighttime values improved from
46.02% to 49.73% and from 46.46% to 49.59%, respectively,
representing increases of 3.59% and 3.13%, respectively. These
improvements played an important role in improving the fitting
accuracy of the RF model.

C. WRFFM Model Results and Validation

In this section, we presented the simulation results of WRFFM
model of this article. To further illustrate the results of our
article, we presented simulations results of RF model, TRIMS
LST proposed by Zhou et al. [67], and MKF-M LST images
generated by Xu et al. [68]. TRIMS LST is generated by the
satellite TIR remote sensing reanalysis data integration method
based on the new surface temperature time decomposition model
[69], [70], [71]. MKF-M LST product is generated based on
MKF fusion TIR and PMW LST. Both TRIMS LST product
and MKF-M LST product were obtained from the National
Qinghai-Tibet Plateau Data Center http://data.tpdc.ac.cn/ [72],
[73], and we compared them in spatial mode and quantitative
accuracy (Fig. 9). First, under the condition that the MODIS data
(collectively referred to as the Aqua and Terra-Aqua merged data
in this article) were partially cloud-contaminated, the MODIS
LST and WRF LST pixels were randomly divided into a training
set and a verification set at a proportion of 7:3 for the RF model
regression to fill in the blank MODIS LST area. Fig. 9(a), (f),

http://data.tpdc.ac.cn/
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Fig. 6. Scatter density map of weather station and WRF simulation data obtained on July 6 (a), July 29 (b), December 20 (c), and December 31 (d), 2020.The
weather station number is 5452732 (117.3462°E, 39.1243°N, and the elevation is 3.04 m).

Fig. 7. Average summertime offset of the Terra-Aqua data collected in Tianjin
from 2013 to 2020 (a) and average wintertime offset of the Terra-Aqua data
collected in Tianjin from 2013–2020 (b).

(k), and (p) shows the MODIS LST images representing July
6, July 22, December 12, and December 18, 2020. Due to
cloud contamination, the pixels in these images are spatially
discontinuous and exhibit blank areas. After the RF model was
regressed, the blank areas were filled in, but a “salt and pepper
noise” phenomenon was apparent; therefore, we used the spatial
optimization algorithm to optimize the results. Fig. 9 shows

Fig. 8. Aqua satellite MYD11A1 data collected over Tianjin on July 5, 2020
(a) and the Terra-Aqua merged data (b).

that the WRFFM LSTs were relatively smooth following this
filtering and exhibited very similar spatial distribution charac-
teristics as the MODIS LSTs. Fig. 9(d), (i), (n), and (t) shows
that MKF-M LST images are relatively “hazy.” Fig. 9(e), (j),
(o), and (u) shows that TRIMS LST images have relatively clear
spatial distribution details which were similar to the MODIS
LST.

In order to quantitatively compare the accuracy of WRFFM
LST, MKF-M LST, and TRIMS LST images, a performance
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Fig. 9. MODIS LST images obtained on July 6 (a), July 22 (f), December 12 (k), and December 18 (p), 2020; RF LST images obtained for the corresponding
dates [(b), (g), (l), and (r)]; WRFFM LST images obtained for the corresponding dates [(c), (h), (m), and (s)]; MKF-M LST images obtained for the corresponding
dates [(d), (i), (n), (t)]; and TRIMS LST images obtained for the corresponding dates [(e), (j), (o), (u)].

measure RMSE and Pearson correlation coefficient Cor were
used to verify them (Fig. 10). The relationship between the
MODIS original images and three product LSTs can be seen
directly from the scatter density map of the numerical. The
correlation coefficients corresponding to July 6, July 22, De-
cember 12, and December 18, 2020 were ∼0.875, ∼0.841, and
∼0.848. The correlation coefficients between TRIMS LST and
MODIS LST are above 0.75, and the correlation coefficients
of MKF-M LST are smaller than the former two. The RMSEs
of WRFFM LSTs were ∼1.82, ∼3.06, ∼0.90, and ∼0.83 K,
respectively. Compared with MKF-M LSTs and TRIMS LSTS,
RMSE is smaller, indicating that the WRFFM LSTs were more
consistent with the MODIS LSTs. The observed deviations can
be explained by the upward sensible heat flux provided by the
WRF model and the offset of solar shortwave radiation [74].

The MODIS images contaminated by clouds in July and
December 2020 were filled, and the numbers of days in which
valid data were input to the WRFFM model during the daytime in
July and December were 22 and 28, respectively. Fig. 11 shows
the changes in the Cor and RMSE values between the LSTs and

MODIS LSTs from before to after the regression and spatial
optimization algorithm were applied. The July RMSEs 1) were
generally higher than those of December 2). The RMSEs of July
were between 0.5 and 3.8 K, while the December RMSEs were
between 0.4 and 1.8 K. The RMSEs of the optimized images
were reduced compared to those obtained before optimization.
The distribution ranges of the Cor values derived for the two
months before and after optimization were similar. The Cor
values derived before optimization were almost entirely below
0.8; after optimization, Cor in July and December ranged from
0.8 to 0.91 and 0.8 to 0.93, respectively, indicating that the model
results were similar to the MODIS LSTs and could thus be used
as MODIS-like cloud-free images to further research the SUHI
effect.

D. SUHI Intensities Under Cloudy Conditions

Based on the cloud-free MODIS-like LST images optimized
by the WRFFM model, the daytime and nighttime SUHIs de-
rived in July (a) and December (b), 2020, were obtained, as
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Fig. 10. Scatter density map of WRFFM LST and MODIS LST (a)–(d). Scatter density map of TRIMS LST and MODIS LST (e)–(h). Scatter density map of
MKF-M LST and MODIS LST (i)–(l).

Fig. 11. Comparison of RMSE errors and Pearson correlation coefficients derived before and after the image optimization process.

shown in Fig. 12. According to the grades of the SUHI effect
on surface cities listed in Table II, on most days in July, SUHIs
were more intense during the day than at night, and half of the
days exhibited “weak SUHIs.” From July 28 to 31, the daytime
heat island effect was weaker than the nighttime effect. Even on
July 19 and 30, “weak SUCI” phenomena appeared, and among

nighttime observations, the number of days with “no SUHI”
effect was highest, followed by the number of days with “weak
SUHI” effects. On the whole, in December, nighttime UHIs
were more intense than daytime SUHIs, and most identified
SUHIs were nighttime “weak SUHIs”; almost no heat islands
were observed in the daytime, with only one daytime “weak
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Fig. 12. UHI effects (a) and (b) during the daytime and nighttime in July and December 2020.

Fig. 13. Relationship between the urban and suburban clear-sky pixel coverage ratio (CSCR) and the deviations in SUHI intensity between MODIS LSTs and
WRFFM LSTs under different weather conditions (BMS) (a); biases of the ratio of urban clear-sky pixels to suburban clear-sky pixels under cloud-contamination
conditions and the same ratio under cloud-free conditions (BCF) and BMS (b).

SUHI” appearing, on December 8. In July, the average heat
island temperature in daytime was 0.43 K higher than that at
night, and in December, the average heat island temperature at
night was 1.76 K higher than that in the daytime, indicating that
the SUHI effect in Tianjin undergoes great seasonal differences.

To the best of our knowledge, current SUHI research that
is based on LSTs obtained by MODIS is limited to clear-sky
conditions, so the results cannot accurately reflect the actual
SUHI intensities on certain days. To quantify the biases caused
by performing MODIS-guided SUHI research only under clear-
sky conditions, we investigated the relationship between the
CSCR and SUHI intensity bias (BMS); the results are shown
in Fig. 13(a). As the number of filled clear-sky pixels increases,
the overall SUHI intensity bias decreases, when the proportion
of clear-sky pixels is below 30%, the deviation is above 3 K,
and when the proportion of clear-sky pixels is above 80%,
the deviation is below 0.6 K. When the pixel percentage is
between 45% and 65%, the BMS value does not vary extensively.

According to the SUHI calculation index utilized in this article,
if no cloud contamination is present in a city or suburbs, the ratio
of the number of pixels representing cities and suburbs must be
approximately 1:19; that is, each urban pixel needs to correspond
to 19 suburban pixels. Under these conditions, the bias of the
derived SUHI will not be excessively large. However, because
the locations of cloud-contaminated MODIS LSTs are random,
this ratio cannot be fixed, so researching the bias between
the urban-to-suburban-pixel ratio under cloud-free and cloudy
(BCF) conditions and the corresponding SUHI intensity bias
(BMS) is necessary. Fig. 13(b) shows that as the BCF increases,
according to formula (8), the proportion of clear-sky pixels in
suburbs becomes smaller than that in urban areas; that is, when
the ratio of urban pixels to suburban pixels exceeds 1:19, the
BMS increases accordingly, with a maximum difference of 7.41
K. In summary, the BMS is greater under cloudy conditions
than under cloud-free conditions, indicating that the MODIS
SUHI has a large deviation from the actual SUHI under cloudy
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conditions, and that the number of clear-sky pixels in a city is
an important factor influencing the bias relative to the actual
SUHI.

V. DISCUSSION

A. Comparisons With Other Studies on LST Reconstruction
Methods

When MODIS data were used to study the SUHI effect,
spatial discontinuities caused by cloud contamination arose in
the image data when the sensor obtained surface information,
and blank areas appeared when pixels were missing. Such con-
ditions can greatly affect research on the SUHI effect. Several
studies [75], [76], [77] have addressed this issue by quanti-
fying only nighttime heat islands, as daytime solar radiation
increases the instability of the boundary layer and makes cloud
formation more likely [13]. In addition, in some studies, only
cloud-free LST images [78], [79], [80] have been selected for
short-term case studies, or the mean has been used for long-term
series studies; however, these approaches are not suitable for
monitoring large areas. In this article, we combined remote
sensing and meteorological methods to give full play to the
advantages of both. By introducing WRF LSTs and MODIS
LSTs into the RF model-fitting and subsequent optimization
processes, clear-sky MODIS-like LST images with high spatial
continuity and high accuracy were obtained. We then researched
the nighttime and daytime SUHIs in Tianjin city. Like the WRFF
model established by Fu et al. [43], the LSTs under cloudy
conditions were reconstructed based on the WRF model and
the RF model, but in the case of complete cloud contamination,
LSTs were retrieved by using temporally adjacent images, which
may not hold when the search for temporally adjacent images
of the target date is extended over a longer period of time. In
this article, the WRFFM model integrated the information of the
two satellite MODIS images of the day to ensure the validity of
the independent variables entering the RF model. Second, in the
case of complete cloud contamination, we used the time-adjacent
model for weighted calculation, while instead of temporally
adjacent images, the results are more plausible. Compared with
other filling methods, the model in this article has an advantage
in filling pixels contaminated by clouds in that it considers land
surface and atmospheric conditions when forming a coupled
WRF/UCM simulation framework [81]. Furthermore, Terra and
Aqua satellite-derived data were used to ensure that a sufficient
number of effective pixels were available to input into the RF
model for fitting, thus greatly improving the accuracy of the
model retrieval results, and the WRFFM model can obtain LST
under cloudless and cloudy conditions at the same time with
high accuracy. In model verification (Fig. 10), the optimized
RMSEs in July 2020 were found to be in the range of 0.5–4 K,
while the December RMSEs ranged from 0.4 to 1.8 K. Compared
with LST reconstruction algorithms of previous articles, such as
PMW (yielding RMSEs between 2 and 5 K), and SEB model to
infer LST under cloudy conditions (yielding RMSEs between
3 and 5 K), and the gap-filling method (yielding RMSEs of
approximately 3.35 K) [82], [83], [84], [85], which mostly rely
on spatiotemporal information [82], [86], the WRFFM model

has strong overall performance, and the RMSEs are within an
acceptable range.

B. Applications in SUHI Researches

The WRFFM model simulation results show that the daytime
and nighttime SUHIs derived in Tianjin in July and December
of 2020 exhibit obvious seasonal characteristics. Wang et al.
[87] pointed out that urban–suburban surface thermal differ-
ences, which result in daytime UHIs, are driven by the seasonal
solar heat radiation driver. In July, which is in summertime,
the daytime solar thermal radiation of the Sun is intense, and
heat is emitted from buildings and via transportation and the
daily activities of residents throughout the city; in contrast, in
suburban areas, the vegetation is denser and has a larger surface
heat capacity, which can reduce the LSTs [88]. In winter, sunset
occurs early, sunrise occurs late, the days are short, and the
nights are long; these conditions are conducive to the formation
of inversion layers [89]. In addition, in wintertime, there is no
solar radiation at night, the suburban vegetation coverage is low,
and the heat capacity of the land surface is relatively small
[90], [91]; thus, the nighttime heat islands are more intense
than the daytime heat islands in wintertime. A comparison
of the WRFFM SUHIs with the cloud-contaminated MODIS
SUHIs revealed that, the number of urban/suburban clear-sky
pixels was not significantly negatively correlated with the SUHI
deviation bias; this result was observed because cloud layers
have a mitigating effect on SUHI intensity [92] and because
the strength of this effect differs between day and night. Due
to the randomness of the spatial distribution of clouds, the ratio
of the number of urban pixels to the number of suburban pixels
is greater than 1:19, so high numbers of urban and suburban
clear-sky pixels can be observed. However, the calculated SUHI
BMS deviations were large. Romanov [93] studied the influence
of cloud cover on UHIs and found that cloud cover was more
expansive in summer than in winter, which is consistent with our
findings (Fig. 10). The height of the boundary layer is generally
higher in urban regions than in suburban areas due to the higher
surface temperatures of urban areas; thus, low-level coupling
on the urban surface can affect the formation and location of
clouds [94]. Cloudy urban environments affect SUHI research
[95], and remote sensing can play an optimal role only under
clear and cloudless conditions; thus, the results obtained with
the model developed in this article can provide a reference for
long-term SUHI monitoring.

C. Limitations and Future Perspectives

Because MODIS does not yield the correct LST under clouds,
our model predicted the LST under clouds based on clear-sky
pixels. However, as neither the validation set nor the pixels
under clouds participated in the model training, the validation
set can be regarded as the pixels under clouds. The accuracy
attained with the two sets is the same, and the accuracy of the
validation set is included in the overall accuracy, so the LST
filled by this model can be regarded as the LST under clouds.
This article has some limitations. The LSTs simulated by the
WRF model developed in this article were more sensitive to
the utilized physical scheme than the results obtained using
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traditional models [96], although a complete analysis of the
WRF parameter changes was computationally expensive [97].
However, as cloud computing resources become available, the
proposed WRFFM model has high application potential. In
future article, data assimilation techniques can be introduced to
use multisource remote sensing data to drive the WRFFM model
and thereby estimate LST under cloudy conditions with greater
accuracy. In addition, in this article, we used the results of the
WRFFM model to quantify SUHIs in July and December 2020.
In our future article, we will continue to investigate in detail
the changes in derived long-term SUHI series and the driving
factors.

VI. CONCLUSION

In this article, we took Tianjin as the research area, and
by combining remote sensing and meteorological methods for
application under cloudy conditions, merged the WRF model
and RF method to construct a highly practical model (WRFFM)
for generating high-quality MODIS-like LST data to research
SUHIs. This article shows that the WRF simulation results
are consistent with the hourly temperature data monitored by
local automatic weather stations, and the extracted four-day
verification results show that the correlation coefficients were
above 0.8 and the RMSEs were between 0.8 and 1.7 K. To
use Terra/MODIS-derived surface temperatures to fill gaps in
Aqua/MODIS data caused by cloud contamination, we adjusted
for the different overpass times of the two satellite platforms
at different overpass times. The effective pixel coverage of
the Terra-Aqua/MODIS data was compared with that of the
Aqua/MODIS data, and the coverage of the Terra-Aqua/MODIS
results during the daytime and nighttime were increased by
4.27% and 3.71%, respectively, in July and by 3.59% and
3.13%, respectively, in December. The WRFFM model results
show that the WRFFM LSTs and MODIS LSTs exhibit very
similar spatial patterns and can capture the UHI effect well;
the correlation coefficients describing the relationship between
these two datasets were above 0.8. The RMSE ranges were
0.5–3.8 K and 0.4–1.8 K in July and December, respectively;
thus, the model accuracy was high. The SUHIs identified in
Tianjin in July and December based on the WRFFM model
results suggested that July was characterized as “high in the
day and low in the night” SUHIs, and the average daytime heat
island was 0.73 K warmer than the average nighttime heat island.
December was characterized “low in the day and high in the
night” SUHIs, and the average nighttime heat island was 1.81 K
warmer than the average daytime heat island, revealing obvious
seasonal differences. When the clear-sky pixel percentage was
below 30%, the bias was above 3 K; when the clear-sky pixel
percentage was above 80%, the bias was below 0.6 K. Thus,
filled city pixels are an important factor affecting the measured
SUHI intensity.
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