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Abstract—For the automatic target recognition (ATR) based on
synthetic aperture radar (SAR) images, enough training data are
required to effectively characterize target features and obtain good
recognition performance. However, in practical applications, it is
difficult to collect sufficient training data. To tackle the limitation, a
novel end-to-end expansion method, called conditional Wasserstein
deep convolutional generative adversarial network with gradient
penalty (CWDCGAN), is proposed to achieve SAR image expansion
with specified category. To be specific, the CWDCGAN innovatively
designed a generative adversarial network architecture based on
convolutional and deconvolution networks to improve the quality
of generated images. At the same time, conditional information
is introduced to control the categories of generated images, and
Wasserstein distance and gradient penalty are used to modify
the loss function, which makes the network training more sta-
ble. Besides, feature extraction and classifier design in a typical
ATR system often rely heavily on subjective expert knowledge,
which seriously affects its generalization performance. Therefore,
a joint recognition method of Resnet18 and support vector machine
(Renset18-SVM) is adopted to improve the generalization capacity
and the recognition performance. Experimental results with public
measured data show that the CWDCGAN can generate higher
quality SAR images, and by feeding expanded data to Renset18-
SVM, the recognition accuracy is improved under different pro-
portions of training samples.

Index Terms—Automatic target recognition (ATR), generative
adversarial network (GAN), resnet18, SAR image expansion,
support vector machine, synthetic aperture radar (SAR).

I. INTRODUCTION

THE automatic target recognition (ATR) technology is an
important subject in the radar surveillance field, which is

able to automatically determine the attributes and categories of
targets after feature extraction [1]. This technology is mainly ap-
plicated on top of radar echo signals, such as 1-D high-resolution
range profile (HRRP) [2], [3], [4], [5], [6], [7], [8], [9] and 2-D
synthetic aperture radar (SAR) images [10], [11], [12], [13],
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[14], [15], [16], [17], [18], [19], [20]. Compared with HRRP,
SAR images provide the target scattering information along with
both the range and cross range, thus improving the recognition
performance dramatically. Therefore, more and more attention
has been paid to the SAR-based ATR technology, which can be
divided into two stages as follows from the aspect of ATR model
training.

In the first stage, the main task is to collect complete target
SAR image data with labels. Due to the scattering characteristic,
SAR images of targets exhibit certain differences in different
azimuth and elevation angles. In addition, collecting the echo
information of non-cooperative targets is so hard that the de-
mand of ATR technology for data volume cannot be met. Some
researchers try to solve this problem. Feng et al. [21] com-
bined integration parts model and deep learning algorithm, and
achieved SAR target classification under limited training data .
Zhang et al. [22] proposed a method-based domain knowledge-
powered two-stream deep network for few-shot SAR vehicle
recognition. In addition to these efforts, many approaches to
sample limitation problems belong to SAR image augmentation.
In the traditional SAR image expansion methods, SAR image
simulation is accomplished via image simulators or raw signal
simulators [23], [24], [25], [26]. These simulation ways are
capable of acquiring the target SAR images we need, but there
are also several shortcomings. First, the quality of the simulation
image is related to the geometric precision of the computer-aided
design model, especially susceptible to the complex surface
conditions of the target. Second, the electromagnetic approx-
imation used in traditional SAR image simulation only applies
to electrically large objects. The smaller the target structure
is, the lower the computational accuracy becomes. Therefore,
other advanced SAR image data expansion methods need to
be explored. In recent years, generative adversarial network
(GAN) [27] has attracted extensive attention, which generates
samples with the same distribution as the real ones through the
adversarial games of discriminators and generators. Compared
with traditional expansion methods, the GAN method shows
incomparable advantages. For example, it does not require any
prior target information and can directly generate images based
on real samples. However, there are some problems as well,
such as the low quality, the uncontrollability of the generated
image, and the instability of the network training. Many studies
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try to overcome these problems. Deep convolutional generative
adversarial networks (DCGAN) introduce convolution structure
into the model and use multiple discriminators, which can
improve the quality of generated SAR images by optimizing
the GAN structure [28]. Even so, the generated images still
have strong uncertainties and the network model is too complex.
Mirza et al. [29] used the conditional GAN (CGAN) to generate
images of the specified category. However, because of the fully
connected structure and the upsampling operation, the generated
SAR images are sometimes full of noise and difficult to be
understood. Yao [30] attempted to utilize multiple DCGANs to
generate multicategory high-quality SAR images, but resulting
in a very redundant network structure and an increased workload.
Besides, extensive research works have validated that gradient
vanishing commonly occurs during the GAN model training,
which leads to the instability of network training [31]. Noting
the phenomenon, Arjovsky et al. [32] proposed the WGAN. It
not only solves the instability problem of the model training,
but also provides a reliable indicator of training progress. Re-
grettably, in some cases, gradient explosion may be triggered.
Gulrajani et al. [33] exploited the gradient penalty (GP) on the
WGAN to handle this problem, but the generated image was still
uncontrollable. Cui et al. [34] adopted the innovative method to
generate SAR images from the perspective of the loss function.
However, the quality and certainty of SAR images generated
cannot achieve the anticipated effect.

Another stage is to extract effective feature and design pow-
erful classifier. MIT’s Lincoln Lab has two classical SAR ATR
systems: template-based semiautomated image intelligence pro-
cessing system program [35], [36] and model-based moving and
stationary target acquisition and recognition system (MSTAR)
program [37]. These two SAR ATR systems are based on
manual feature extraction, and employ powerful classifiers have
been used to classify the targets. However, they rely on prior
knowledge of strong subjective factors and are applied merely
in specific situations on account of their low generalization
ability. On the contrary, the deep learning methods can ex-
tract the inherent features of targets automatically without prior
information, and achieve desired recognition performance. In
the work of Chen et al. [38], [39], the methods of convolu-
tional neural network and deep convolutional neural network
(CNN) were first applied to SAR image target recognition,
reducing the reliance of recognition systems on professional
knowledge. Unfortunately, as the depth of the network increases,
although the extracted features are more and more favorable
for recognition, the vanishing gradient phenomenon occurs,
which eventually leads to the deterioration of the recognition
performance [40].

To deal with the aforementioned problems, a novel recogni-
tion scheme called conditional Wasserstein DCGAN with a GP
for ATR is proposed in this article. In the SAR image expansion
stage, the label condition information is firstly introduced into
GAN, then a new network architecture is designed, where the
discriminator and generator adopt convolution and deconvolu-
tion networks, respectively. Meanwhile, the Wasserstein dis-
tance and GP are modified by label information. Furthermore,
the quality of generated images is evaluated by qualitative and

Fig. 1. Framework of the original GAN.

quantitative experiments. In the recognition stage, an improved
recognition method based on a combination of Resnet18 [40]
and support vector machine [41] (Resnet18-SVM) is adopted to
elevate recognition performance.

Our contributions can be concluded as follows.
1) An end-to-end intelligent generated model is constructed,

which uses label condition information to generate SAR images
of specified categories, avoiding the use of multiple networks.

2) The proposed method cleverly designs the convolution
and deconvolution network structure, which reduces the loss
of spatial structure caused by the full connection layer and
upsampling layer, and can directly generate better quality images
with specified pixel size.

3) Modified Wasserstein distance and GP by label information
are added to the loss function to ensure the network training is
more stable.

4) A joint recognition method of Resnet18 and support vector
machine (Resnet18-SVM) is adopted to improve the recogni-
tion accuracy and generalization ability when facing different
proportions of training samples.

The rest of this article is organized as follows. Section II
introduces the related work of GAN. Section III introduces the
proposed method in detail, and in Section IV, the results and
performance analysis of the SAR image expansion experiments
and classification experiments are shown. Finally, Section V
concludes this article.

II. RELATED WORKS

GANs have been widely used to generate images with the
same distribution as the real ones through the game between
generator and discriminator [42], [43]. In GAN models, the gen-
erator learns the characteristics of real-world data and generates
fake samples with the same distribution as the training data. The
discriminator is responsible for examining samples to determine
whether real or not.

The basic structure of the GAN is illustrated in Fig. 1. In
general, the model training proceeds in two steps. In the first
step, the discriminator D training is carried out by maximizing
the probability of assigning the correct label to both real samples
and generated samples from the generator G. In the second step,
the generator G is trained by minimizing log(1−D(z)). The
essence of the GAN training is to deal with the minimax problem
of the function V (D,G). This adversarial process between G
and D can be expressed as minimizing the cross-entropy loss

min
G

max
D

V (D,G) = Ex∼pdata(x)
[logD(x)]

+ Ez∼pz
{log[1−D(G(z))]}. (1)
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With the rapid development of the GAN, it has been im-
proved in two aspects: network structure and loss function.
Radford et al. [44] proposed the DCGAN, which improved the
quality of the generated images by modifying the network struc-
ture. The core of the DCGAN is to replace the fully connected
network of the GAN with a CNN. But the loss function is the
same as the original GAN. Wasserstein distance (or earth-mover
distance), which measures the distance between two distribu-
tions, was used to replace the probability measure of the original
GAN to enhance the stability of the network. The formulation
expression of the Wasserstein distance is given as follows [32]:

W (Pr, Pg) = inf
γ∈∏(Pr,Pg)

E(x,y)∼γ [‖x− y‖] (2)

where
∏
(Pr, Pg) represents the set of all joint distributions

γ(x, y) whose marginals are Pr and Pg , respectively. Equa-
tion (2) cannot be calculated directly, thereby the loss function
can be transformed as follows:

L ≈ max
w:‖Dw‖L≤K

Ex∼Pr(x)
[Dw(x)]− Ex∼Pg(x)

[Dw(G(x))]

(3)

where w represents the parameters of D. The optimal solution
of Equation 3 must be obtained on a premise of ‖Dw‖L ≤ K.

The WGAN can easily solve the problem of gradient vanish-
ing during the model training. Unfortunately, the phenomenon
of gradient explosion often occurs [33]. Thus, a GP term is
introduced to modify the loss function. The final loss function
is expressed as follows:

L = Ex∼Pr(x)
[D(x)]− Ex∼Pg(x)

[D(G(x))]

− λ E
x̃∼Px̃

[
(‖∇x̃D(x̃)‖2 − 1)2

]
(4)

where x is calculated by x = εxr + (1− ε)xg .
Since the original GAN cannot control the categories of the

generated images, this will result in the generated images full
of uncertainty. Then, Mirza et al. [29] proposed the CGAN to
control the properties of the generated images. The loss function
of the CGAN is as follows:

min
G

max
D

V (D,G) = Ex∼pdata(x)
[logD(x|y)]

+ Ez∼pz
{log[1−D(G(z|y))]}. (5)

It is worth noting that CGAN only adds condition information
to the inputs of G and D, still using the fully connected network.

III. CWDCGAN FOR ATR

The flowchart of the proposed CWDCGAN expansion
method for ATR is presented in Fig. 2. The original SAR image
set is divided into two disjoint parts. The first part is original
training set, which is used to train the CWDCGAN offline.
Another is original test set, which is used to test the final
recognition performance online. In the data expansion stage, the
well-trained CWDCGAN model comes into being, and the SAR
images with the same distribution as the original training set are
output. The generated images quality is assessed simultaneously
by qualitative and quantitative evaluations. Finally, the generated

Fig. 2. Flowchart of the CWDCGAN for ATR.

Fig. 3. Framework of the CWDCGAN.

images are mixed with the original training set to form the
extended training dataset. In the target recognition stage, the
Resnet18-SVM is trained with the expanded training data, and
then, the classification results of the original test set are output
through the trained Resnet18-SVM. The specific principles are
described in detail in the following.

A. Data Expansion Method Based on the CWDCGAN

The CWDCGAN is made up of a deconvolution network G
and a convolution network D, including the addition of generated
image label information y to control the generated sample cate-
gory. The framework of the CWDCGAN is shown in Fig. 3,
the noise z and the label y are input into G together to get
a fake image G(z|y), and then the real image x or the fake
image G(z|y) is discriminated by D, respectively. The detailed
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Fig. 4. Network structure of the generator G.

Fig. 5. Network structure of the discriminator D.

introduction of G and D components is shown in Figs. 4 and 5
and Tables I and II.

The generator, called G, contains a five-layer deconvolution
structure. In each layer of the network, the noise vector z
with dimension 100 and label vector y with dimension 10 are
deconvoluted, respectively, and their corresponding outputs are
called noise feature map and label feature map. These two
feature maps are integrated as an image feature map, combining
with the label feature map together as the input of the next
layer. The next layer continues to deconvolute and connect the
two feature maps until the fifth layer. After deconvoluting at

each layer, batch normalization and the ReLU [45] activation
function are performed. In particular, the activation function
of the last layer is Tanh [46]. In this way, we finally get a
SAR image with a pixel size of 64× 64. Significantly, the label
information is used in every layer to avoid being forgotten as the
network depth increases. Table I lists more details of G network
architecture.

The discriminator, called D, consists of a five-layer con-
volution structure. In order to realize a better discrimination
performance, in the first layer, the convolution on the label infor-
mation y and the image x (real image or generated fake image)
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TABLE I
ARCHITECTURE OF THE GENERATOR G

TABLE II
ARCHITECTURE OF THE DISCRIMINATOR D

is performed, and then, the convolution results are connected
into an image convolution feature map which is the input of
the next layer. In the following four-layer convolution, the label
information is no longer used. The batch normalization and the
activation function LeakReLU [47] exist in layers 1–4. In order
to establish a better connection after the first layer, we expand
the label vector y to the size of 10× 64× 64 before the first
layer. Finally, we get a scalar discrimination result. The details
of D are given in Table II.

The loss function of CWDCGAN is modified by introducing
condition information, Wasserstein distance, and GP. The final
formula is as follows:

L = Ex∼preal(x)[D(x|y)]− Ez∼pz(z)[D(G(z|y))]
− λEx̃∼ppenalty(x̃)[(‖∇x̃D(x̃|y)‖ − 1)2] (6)

where x is the input image (the real image or the generated
image), y is the label of the input image, x̃ is calculated by x̃ =
εxr + (1− ε)xg , xr and xg are the real samples and generated
samples with the same label.

Compared with the original GAN, three points are differences,
given as follows.

1) The loss function with the condition information y is
able to calculate the loss of different categories of
targets.

2) Since Wasserstein distance represents the distribution dis-
tance between the generated samples and the real samples,
the log factor is no longer required for the loss function.

3) GP term makes the network training more stable. Note
that the label condition information y is used to modify
the Wasserstein distance and GP simultaneously.
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Algorithm 1: CWDCGAN Training.
Require: The GP coefficient λ, iteration number N1, the

learning rate lr1, smoothing constant β, the initial
generator parameters ωg , and the initial discriminator
parameters ωd. All initial parameters need to have a
mean of 0 and a variance of 0.02. Initialize the generator
G, the discriminator D

1: for i = 1 to N1 do
2: for j = 1 to mbatch do
3: Sample the real samples xreal ∼ Preal(x),

corresponding label y, the noise samples
z ∼ Pz(z)

4: Combine the one-hot coding y with the input of D
and G

5: Sample a random number ε ∼ U [0, 1]
6: xg ← G(z|y)
7: x← εxr + (1− ε)xg

8: Li ←
D(xg|y)−D(xr|y) + λ((‖∂D(x|y)

∂x ‖
2
− 1)

2
)

9: ωd ← RMSPorp

(
1
m

m∑
i=1

∂Li

∂ωd
, ωd, β, lr1

)

10: Sample a batch of prior samples (zi)mi=1 ∼ Pz(z)
11: Combine the one-hot coding y with the input of D

and G

12: ωg ← RMSPorp

(
1
m

m∑
i=1

∂Gloss

∂ωg
, ωg, β, lr1

)

13: end for
14: end for
Return ωg , ωd

In the area of deep learning, almost all deep neural networks
are nonconvex, general optimization algorithms do not perform
well. Therefore, the optimization algorithm selection is very
crucial, which usually affects the network training process and
whether the objective function can converge to the global optimal
value [48]. As is known to all, the root mean square propagation
(RMSProp) [49] algorithm can control the amount of historical
information obtained by adding attenuation coefficients and
ultimately achieve better results. So it is chosen as a suitable
candidate for the CWDCGAN training, and the formula is as
follows:

st ← βst−1 + (1− β)gt 	 gt (7)

xt ← xt−1 − η√
st + ξ

	 gt (8)

where gt is the gradient of variable x at the time t, β is a
hyperparameter between 0 and 1, 	 is Hadamard product, η is
the learning rate, and ξ is a constant added to maintain numerical
stability, such as 10−6.

In the CWDCGAN model, the discriminator and the gener-
ator are alternately trained competitively, requiring no special
training ways. The training step of the CWDCGAN model is
summarized in Algorithm 1.

B. Image Quality Evaluation

In order to verify the quality of the generated images, the qual-
itative and quantitative experiments are designed to evaluate the
performance of CWDCGAN. First of all, we observe the visual
differences between generated images and real images. At the
same time, some metrics are used to evaluate the generated SAR
images quantitatively, including mean value, variance, informa-
tion entropy, linear index of fuzziness (LIF), mean gradient, gray
level difference (GLD), and Fréchet inception distance (FID)
scores [29], [42], [50]. The evaluation metrics are introduced in
the following. Suppose the size of image A is M ×N .

1) Mean value: The mean value of the image represents its
total energy, given by:

MV = 1
M×N

M∑
i=1

N∑
j=1

A(i, j) (9)

2) Variance: The variance of an image symbolizes the devi-
ation degree of the image from the mean, which can be
expressed as

V = 1
M×N

M∑
i=1

N∑
j=1

(A(i, j)−MV ) (10)

3) Information entropy: The information entropy denotes
the amount of information in the image and reflects the
focusing degree of the image. The smaller the information
entropy value is, the more focused the image is. The
calculation method can be expressed as

H = − 1
M×N

M∑
i=1

N∑
j=1

pij logpij (11)

where pij is the probability value of pixels in image
A(i, j).

4) LIF: The LIF is often used to quantitatively evaluate the
enhancement effect of images in spatial domain. It reflects
the blurring degree of an image, and the smaller the value
is, the sharper the image is. It can be defined by

LIF =
2

M ×N

M∑
i=1

N∑
j=1

min(pmn, (1− pmn)) (12)

pmn = sin

(
π

2
×
[
1− A(i, j)

Amax

])
. (13)

5) Average gradient (AG): The AG can reflect the ability of
an image to express details and textures, and is often used
to evaluate the clarity of an image. The larger the AG value
is, the clearer the edge details of the image are. It can be
defined as

AG =
1

4

1

M − 1

1

N − 1

M−1∑
i=1

N−1∑
j=1

×
√

[∂A(i, j)/∂i]2 + [∂A(i, j)/∂j]2 (14)

where ∂A/∂i and ∂A/∂j represent the horizontal and
vertical gradient values of the image, respectively.
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Fig. 6. Resnet18-SVM network structure.

6) GLD: The GLD of the image represents the edge sharpness
of the target area of interest in the image, which is obtained
in the following ways:

GLD =
1

M − 1

1

N − 1

M−1∑
i=1

N−1∑
j=1

(|A(i, j)−A(i+ 1, j)|

+ |A(i, j)−A(i, j + 1)|). (15)

A larger GLD value indicates the image has clearer edge
details.

7) FID: The FID score is often used to evaluate the image
quality of the GAN. FID measures the similarity between
two groups of images from computer vision statistical
features. It is a measure to calculate the feature vector
distance of the real images and the generated images.
This visual feature is extracted and calculated by using the
inception V3 [51] image classification model. The value
of FID in the best case is 0, indicating that the two groups
of images are the same. The lower the value is, the more
similar the two groups of images are, or the more similar
the statistics of the two groups are. In the same way, the
smaller the FID is, the better diversity and quality of the
image are. The FID is defined as

FID(x, g) = ‖MVx −MVg‖22 + Tr

(∑
x

+
∑

g
− 2

(∑
x

∑
g

)1/2
)

(16)

where x and g represent the real image and the generated
image, respectively, ‖ · ‖22 is the square of the L2 norm,
Tr(·) is the trace of the matrix, and

∑
· is the covariance

matrix of the input image features.

C. Feature Extraction and Classification

In order to extract deep features automatically with good
representation ability and improve the generalization ability
of the recognizer, a Resnet18 and SVM combined recognition
method (Resnet18-SVM) is proposed. The Resnet18-SVM net-
work structure is shown in Fig. 6. Here, the input sample is
grayscale image, so the number of network channels is set to
1. Resnet18 network includes eight basic blocks shown in the
red box. In every block, the input and output are connected
by a shortcut, which is curved solid line or dotted line. The

curved solid line indicates that the output size is the same as the
input, after passing through this basic block, while the curved
dotted line indicates that the size is halved. Because of the
existence of these shortcuts, the model degradation problem that
the gradient disappears due to the excessive number of network
layers is solved. The deep features are extracted by Resnet18
network from SAR images and fed into SVM for classification.
The detailed structure parameter settings of the Resnet18-SVM
network are given in Table III.

Here, an SVM classifier is adopted, whose optimization goal
is to maximize the category interval, so the usual cross-entropy
loss is a little bit limited. Hinge loss [52] is a loss conducive to
max margin classification in the field of machine learning, so
it can be used here to replace cross-entropy loss. In the case of
binary classification, the formula is as follows:

LHinge(y) = max(0, 1− y · ỹ) (17)

where ỹ is the predicted value (between -1 and 1) and y is the
target value (1 or -1).

When the data D(x, y) contain N samples of C categories, ỹ
is the output of the neural network, y is the real category label
(0 ≤ yn ≤ C − 1). The loss value ln−Hinge of the nth sample is
calculated as follows:

ln−Hinge=
1

C

C−1∑
i=0&amp;i�=yn

max (0,maigin− ỹn[yn] + ỹn[i])
p

(18)

where p and maigin are usually 1.
The SGD optimization algorithm with the learning rate lr2

and momentum term γ is utilized to optimize the Resnet18
network. The training step of the Renset18-SVM model are
summarized in Algorithm 2.

IV. EXPERIMENT RESULTS

In this section, the effectiveness of the proposed ATR method
based on SAR image expansion is demonstrated by experiments.
First, the quality of SAR images generated by the CWDCGAN
method and the stability of this model are evaluated. Then,
the recognition performance of the proposed Resnet18-SVM
method is explored in the case of the different number of training
samples. At the same time, the experiments are carried out on
MSTAR to check whether the generated SAR image can improve
the performance of ATR.



7160 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

TABLE III
RESNET18-SVM NETWORK STRUCTURE PARAMETER

Algorithm 2: Resnet18-SVM Training.
Require: iteration number N2, the learning rate lr2, the

hyperparameters β2, the initial Resnet18 parameters and
SVM parameters ωR, ωS

STEP 1 Resnet18 Training
1: for i = 1 to N2 do
2: for j = 1 to mbatch do
3: Sample the training samples

(x, y) ∼ Dtraining(x, y)
4:

ln−Hinge =
1

C

C−1∑
i=0&i �=yn

max (0,maigin− ỹn[yn] + ỹn[i])
p

5: ωR ← SGD

(
1
m

m∑
i=1

∂ln_Hinge

∂ωR
, ωR, γ, lr2

)

6: end for
7: end for

Return ωR

STEP 2 SVM Training
8: for k = 1 to mbatch do
9: Sample the training samples

(x, y) ∼ Dtraining(x, y)
10: F ← Resnet18(x)
11: wS ← Fit SVM use (F, y)
12: end for

Return ωS

Return ωR, ωS

A. Dataset Description

The experiment adopts the measured SAR image data from
the MSTAR program [53]. The sensor collecting the dataset is a
high-resolution spotlight SAR with a resolution of 0.3× 0.3 m.
It contains X-band and HH polarization SAR slice images of
various targets at the 128× 128 pixel size. Most of the SAR slice

images are about stationary vehicles, including various vehicle
target images in various azimuth and depression angles. The
azimuth range is 0◦ to 360◦ with intervals about of 1◦ to 2◦, and
the depression is 15◦ or 17◦.

B. Target SAR Image Expansion Experiment

1) Data Adoption and Parameter Setting: As described in
Section III, we divide the data into the original training set and
the original test set. These two sets are composed of ten different
categories of ground stationary vehicle targets, such as armored
vehicles (BMP2, BRDM2, BTR60, and BTR70), tanks (T62
and T72), rocket launchers (2S1), air defense units (ZSU234),
trucks (ZIL131), and bulldozers (D7). The depression angle
of the original training set is 17◦ and the original test set is
15◦. The optical images of these targets and the corresponding
SAR images are shown in Fig. 7. It is obvious that there are
speckles, shadows, and clutters in the real SAR images, which
cannot be observed in generated images by traditional simulation
methods [54].

In the following experiments, to reduce the influence of
speckle noise and the calculation burden, the images are cropped
to the pixel size of 64× 64 from 128× 128. The details of
various target samples in MSTAR are given in Table IV.

CWDCGAN model training: The model training is performed
with the minibatch 64 and the noise vector z with dimension
100. The label y is converted by one-hot encoding as a vector
with dimension 10. All the experiments are implemented on
the open-source library Pytorch 1.90. The interface is Python
3.8 and the platform is a Dell Precision 5820 workstation with
an Intel i9-10920X CPU, a GeForce GTX 3090, and 64 GB
RAM under Windows 10. In the training procedure, we use an
RMSProp-based optimizer with a learning rate lr1 = 0.0002
and a smoothing constantβ = 0.99. Simultaneously, the training
iteration number is 1000, and the G will be updated once after
each update of the D.

2) Experimental Results of the CWDCGAN: Furthermore, in
order to analyze the advantages of the CWDCGAN, we design
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TABLE IV
IMAGE NUMBER OF EXPERIMENTAL DATASET

Fig. 7. Optical images and the corresponding SAR images of ten targets.
(a) 2S1. (b) BMP2. (c) BRDM2. (d) BTR60. (e) BTR70. (f) D7. (g) T62.
(h) T72.

another two comparison models: the CGAN and the CDC-
GAN. The CGAN is constructed by introducing label condition
information into the original GAN model, which adopts a
five-layer full connection structure. The CDCGAN uses a 5-
layer convolution and deconvolution structure.

Comparison of the generated images with the real images:
As described in Section III-B, we first qualitatively evaluate

Fig. 8. Real SAR images and the generated SAR images with three different
models. (a) Real SAR images. (b) Generated SAR images by CGAN. (c) Gen-
erated SAR images by CDCGAN. (d) Generated SAR images by CWDCGAN.
The column of each subgraph represents the category of the target, the order
from left to right is as follows: 2S1, BMP2, BRDM2, BTR60, BTR70, D7, T62,
T72, ZIL131, ZSU234, and the rows are different sample images of the current
target category.

the generated images by observing the visual differences. As
shown in Fig. 8, the three models can generate SAR images of
corresponding categories, which proves that the introduced label
condition information is effective. Therefore, it avoids training
multiple network models and saves workload.

In order to qualitatively evaluate the quality of the generated
image clearly, the generated images by each model separately
are selected and compared with the real images in various
azimuths. As shown in Figs. 9–11, taking 2S1, D7, and BDRM2
as examples, the first row of each figure is the real SAR images,
and the other three rows are the generated SAR images by
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Fig. 9. Real images and generated SAR images of 2S1.

Fig. 10. Real images and generated SAR images of D7.

Fig. 11. Real images and generated SAR images of BMP2.

the CGAN, CDCGAN, and CWDCGAN models in order. The
images with approximately the same azimuth are put in the same
column.

Obviously, SAR images with different azimuth angles can be
generated by three models, which are beneficial to improve the
diversity of samples. However, compared with the real images,

the SAR images generated by the CGAN model are blurred and
full of random bright spots. In contrast, the images generated
by other methods have almost no bright spots, and the images
are clearer, especially CWDCGAN. At the same time, the back-
ground and target in the image are more similar to the real image.
According to the abovementioned comparison, it can be found
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Fig. 12. Gray histograms of four types of images. Each row represents a category of target: 2S1, D7, or BMP2. The order of the gray histograms in every row
from left to right is: the real images, images generated by CGAN, images generated by CDCGAN, and images generated by CWDCGAN.

that introducing the designed convolution and deconvolution
network structure can make full use of the spatial structure
information of the real images, and generate SAR images closer
to the real ones.

However, due to the poor interpretability of SAR images,
Fig. 12 compares the statistical feature differences of generated
images and real images in the form of a gray histogram. In terms
of the shape, the gray histogram of the CWDCGAN image is
most similar to the one of the real image. It demonstrates that
the CWDCGAN model has mastered the distribution of real
images from statistical characteristics to a greater extent and
generated more realistic images. Moreover, to add credibility
to the experimental results, the histogram similarity index is
adopted to measure the distance between different histograms
of the same target. Table V tabulates the comparison results of
the gray histogram similarity between the generated images and
the real images. By means of comparing the values of these

histogram similarity indexes, it is easy to find evidence that the
images generated by the CWDCGAN most resemble the real
images in terms of statistical characteristics.

It is not enough to compare statistical features between gen-
erated and real images by direct observation alone. In order to
make the experimental results more convincing, a qualitative
evaluation experiment as stated in Section III-B is carried out to
quantitatively evaluate the quality of the generated SAR images.
In terms of the former six indexes, the quality of generated
SAR images can be judged by comparing the similarity between
generated SAR images and real images. The smaller the differ-
ence between the index values, the closer the generated SAR
images are to the real images. As for FID, a smaller value
indicates a higher quality and diversity of the generated images.
It can be seen from Table VI that the generated images of the
CWDCGAN are closest to the real ones, and the quality and
diversity are optimal.
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TABLE V
HISTOGRAM SIMILARITY INDEXES OF GENERATED IMAGES AND REAL IMAGES

TABLE VI
EVALUATION INDEX VALUES FOR THE SAMPLES GENERATED BY THE THREE MODELS

By comparison, it can be concluded that the quality and
diversity of images generated by the CWDCGAN and CDCGAN
are higher than those generated by the CGAN. It further shows
that the convolution and deconvolution structures we designed
can learn the distribution of the real images and extract the spatial
structure information more intelligently.

Loss changes during the model training: In order to verify the
convergence stability of our proposed model, the change curves
of the loss value in the model training process are plotted. Since
the output of discriminator D uses the activation function, the
CGAN and CDCGAN models’ losses refer to the probability
difference between the generated samples and real samples. As
the model training progresses, these losses may converge to a
very small value, indicating that network training has stabilized.
In terms of the CWDCGAN model, the activation function is
removed in the output of discriminator D and the Wasserstein
distance is used. In addition, a GP term is also introduced.
Therefore, the loss of CWDCGAN represents the sum of the
distribution difference (the distribution difference between the
generated images and the real images) and the absolute value
of the GP term. This loss is not going to converge to a very
small value like the others. When this loss value converges to a
stability status, it means that the network training is completed.

According to Fig. 13, D_Loss and G_Loss of the CGAN
model drop rapidly at the beginning, but G_Loss gradually
became unstable with the progress of training. In the CDCGAN
model, G_Loss shows similar changes, which implies the quality
of generated images is getting worse and worse. However, in
CWDCGAN model, it can be observed that G_Loss and D_Loss
converge rapidly and maintain a stable state. It indicates that the
introduced Wasserstein distance and GP do good to the network
training.

In summary, in this section, we can come to several conclu-
sions, given as follows.

1) The introduction of label condition information is ben-
eficial for generating target SAR images of specified
categories, which is beneficial to reduce the number of
required networks and the workload of network training.

2) Introducing convolution and deconvolution structures into
the GAN designed in this article, the quality of the gener-
ated SAR images is significantly improved.

3) The modified Wasserstein distance and GP terms make the
network more stable and easier to train.

C. Classification Experiments

Previous expansion experiments have proved that the im-
ages generated by the proposed method are of high quality
and diversity, but the data expansion is not the final goal.
Therefore, the following experiment will attempt to not only
verify the classification performance of Resnet18-SVM, but also
judge whether the generated SAR images are conducive to
improve the ATR performance.

1) Data Adoption and Parameter Setting: To verify the per-
formance of our proposed recognition method, the different
classifiers are trained with the extended training dataset and then
tested with the original test set. In the proposed method, the loss
function of the classification model is hinge loss, optimization
algorithm is SGD, learning rate is 0.01, momentum is 0.9, and
iteration number is 1000. The SVM parameter is set to the
Gaussian kernel and the experimental equipment is the same
as in Section IV-B.

2) Experimental Results of Resnet18-SVM: In this section,
we conduct the experiments on an original training dataset
and three extended training datasets. Every extended dataset
is a one-to-one blend of the original training samples and the
generated data corresponding by one of the models. The changes
of recognition accuracy of ten different recognition methods are
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Fig. 13. Loss value changes with the training process proceeding in three models. (a) Loss corresponding to the CGAN model. (b) Loss corresponding to the
CDCGAN model. (c) Loss corresponding to the CWDCGAN model. D_Loss and G_Loss represent the loss of discriminator and generator, respectively. (a) CGAN
(b) CDCGAN (c) CWDCGAN.

TABLE VII
RECOGNITION RESULTS (100% OF THE ORIGINAL TRAINING SET)

recorded in Table VII.Δ represents the change in the recognition
accuracy compared to the original training set.

By observing Table VII, it can be found that the Resnet18-
softmax and Resnet18-SVM recognition methods are better
than the other eight common recognition methods, indicating
that features extracted by Renset18 network are conducive to

recognition. Moreover, by horizontally comparing the classifica-
tion performance of four training sets corresponding to different
methods, it can be checked that the classification performance
of the expanded training data based on the CGAN and the
CDCGAN declines slightly, which is consistent with what we
suspected. Low-quality images generated by these two methods
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TABLE VIII
RECOGNITION RESULTS (80% OF THE ORIGINAL TRAINING SET)

TABLE IX
RECOGNITION RESULTS (60% OF THE ORIGINAL TRAINING SET)

TABLE X
RECOGNITION RESULTS (40% OF THE ORIGINAL TRAINING SET)

are not conducive to the promotion of recognition performance.
Although the augmented training dataset of the CWDCGAN can
improve the classification performance, the impact is very slight.
Moreover, for the original training set, the Resnet18-SVM has
a lower recognition performance than the Resnet18-softmax.
We have considered relevant reasons for this: first, the original
training set is too complete, so the generated samples contribute
little to the diversity of the samples, which leads to a small
improvement in the recognition performance of the proposed
method. Second, the advantage of SVM is to deal with limited
sample data. In the case of a complete original training set, the
effect may be not as good as softmax.

Therefore, a series of classification experiments are designed
by gradually reducing the proportion of the original training
samples for further validation. The experimental results are
shown in Tables VIII–XI.

From Tables VII–XI, we can find that as the original training
samples go down, the performance of each recognition method
continue to decline. However, it is a joy that the recognition
accuracy of the Resnet18-SVM is still optimal. Moreover, the
proposed SAR image expansion method improves the perfor-
mance of almost all classifiers.

To more intuitively compare experimental results, these data
are arranged into a line chart, as shown in Fig. 14. By comprehen-
sively analyzing, it can be seen that the advanced deep learning
models combined with SVM classifier can achieve better recog-
nition results than traditional machine learning methods. More-
over, VGG16-SVM, Resnet18-softmax, and Resnet18-SVM
have the most outstanding recognition performance when using
the original training set, which is much higher than the other
seven recognition methods. The same results are also shown
on the extended datasets, which fully illustrate that the VGG16
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TABLE XI
RECOGNITION RESULTS (20% OF THE ORIGINAL TRAINING SET)

Fig. 14. Recognition accuracy of ten kinds of training sets. (a) Original training set. (b) Dataset expanded by using the CGAN method. (c) Dataset expanded by
using the CDCGAN method. (d) Dataset expanded by using the CWDCGAN method. (a) The original training set. (b) The expended training set (CGAN). (c) The
expended training set (CDCGAN). (d) The expended training set (CWDCGAN).

and Resnet18 networks can extract features with strong repre-
sentation ability and beneficial to classification. As expected,
the advantages of our method become apparent as the training
sample was reduced. This is because SVM has strong general-
ization capacity in the case of limited data, which is its inherent

characteristic. In addition, we found that the comprehensive
application of SVM and Resnet18 network can play a better
effect than the combination of SVM and VGG16 network. More
surprisingly, the proposed recognition method can adapt well to
a wide range of training sample ratio. Especially for the dataset
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Fig. 15. Recognition accuracy of the different expansion methods. “Original”
represents the original training set, “original+CGAN” represents the extended
training set by the CGAN, “original+CDCGAN” represents the extended train-
ing set by the CDCGAN, and “original+CWDCGAN” represents the extended
training set by the CWDCGAN.

expanded by the CWDCGAN, the recognition probability of the
proposed classification method can remain above 95%, which
implies strong robustness.

The aforementioned experiments mainly verify the beneficial
performance of the proposed recognition method on different
datasets and original training sets with different scales, and also
confirm that the proposed expansion method is beneficial to
ATR. In order to alleviate the influence of different recognition
methods, the average recognition accuracy of the abovemen-
tioned six categories of methods under the four datasets are
plotted as a line chart, as shown in Fig. 15.

It can be clearly seen that as the amount of original train-
ing data is reduced, the recognition accuracy of the proposed
expansion method is always in the leading position, while the
CDCGAN is slightly behind. It is disappointing that the extended
training set by the CGAN hold the worst performance among all
the recognition results, even lower than those with the original
training set. When the original training sample ratio is less than
60%, the recognition accuracy is significantly improved on the
expanded data based on the CWDCGAN. This also agrees with
the conclusion in Section IV-B that the SAR image quality and
diversity of our proposed expansion method is better and more
favorable for classification.

V. CONCLUSION

In this article, a SAR image ATR method based on the CWD-
CGAN and Resnet18-SVM is proposed under limited dataset
conditions. In this method, the end-to-end generation model
the CWDCGAN is used to learn the image data distribution
through the confrontation between the generator and discrim-
inator, and multiple types of extended samples are generated
using only one network model. Generated SAR images are able
to enhance the diversity of samples. Furthermore, this article

utilizes the Resnet18 network to extract deep features with strong
representational ability. Finally, the extracted features are sent
to the SVM for classification. The Resnet18-SVM recognition
method improves the generalization of the recognition model
with no need to expert knowledge. According to the experiments
on MSTAR, this article proves the quality of the SAR images
generated by our proposed method is the best, which makes
a great contribution to ATR. Also, a strong advantage of the
Resnet18-SVM recognition method is confirmed in the different
proportions of training data.

This article presents a SAR image ATR method based on
data expansion. In the future work, we will further explore the
target SAR image generation with specified angles and the visual
description of features in the classification stage.

ACKNOWLEDGMENT

The authors would like to thank MIT’s Lincoln Lab for provid-
ing the MSTAR dataset for free downloading. The authors would
also like to thank the anonymous reviewers for their valuable
suggestions.

REFERENCES

[1] C. Alexandrov, A. Draganov, and N. Kolev, “An application of automatic
target recognition in marine navigation,” in Proc. IEEE Int. Radar Conf.,
1995, pp. 250–255.

[2] L. Li and Z. Liu, “Radar high resolution range profile recognition via
dual-SVDD classifier,” in Proc. CIE Int. Conf. Radar, 2016, pp. 1–4.

[3] L. Li, Z. Liu, and T. Li, “Radar high resolution range profile recognition
via multi-SV method,” J. Syst. Eng. Electron., vol. 28, no. 5, pp. 879–889,
2017.

[4] L. Li and Z. Liu, “Noise-robust HRRP target recognition method
via sparse-low-rank representation,” Electron. Lett., vol. 53, no. 24,
pp. 1602–1604, 2017.

[5] J. Wang, Z. Liu, L. Ran, and R. Xie, “Feature extraction method for
DCP HRRP-based radar target recognition via m− χ decomposition and
sparsity-preserving discriminant correlation analysis,” IEEE Sens., vol. 20,
no. 8, pp. 4321–4332, Apr. 2020.

[6] J. Wang, Z. Liu, R. Xie, and L. Ran, “Radar HRRP target recognition based
on dynamic learning with limited training data,” Remote Sens., vol. 13,
no. 4, 2021, Art. no. 750.

[7] J. Wang, Z. Liu, T. Li, L. Ran, and R. Xie, “Radar HRRP target recognition
via statistics-based scattering centre set registration,” IET Radar Sonar
Navigation, vol. 13, no. 8, pp. 1264–1271, 2019.

[8] P. Guo, Z. Liu, and J. Wang, “HRRP multi-target recognition in a beam
using prior-independent DBSCAN clustering algorithm,” IET Radar Sonar
Navigation, vol. 13, no. 8, pp. 1366–1372, 2019.

[9] G. Pengcheng, L. Zheng, and W. Jingjing, “Radar group target recognition
based on HRRPs and weighted mean shift clustering,” J. Syst. Eng.
Electron., vol. 31, no. 6, pp. 1152–1159, 2020.

[10] S. K. Chaturvedi, “Study of synthetic aperture radar and automatic identi-
fication system for ship target detection,” J. Ocean. Eng. Sci., vol. 4, no. 2,
pp. 173–182, 2019.

[11] Y. Sun, Z. Liu, S. Todorovic, and J. Li, “Adaptive boosting for SAR
automatic target recognition,” IEEE Trans. Aerosp. Electron. Syst., vol. 43,
no. 1, pp. 112–125, Jan. 2007.

[12] H. Liu and S. Li, “Decision fusion of sparse representation and support
vector machine for SAR image target recognition,” Neurocomputing,
vol. 113, pp. 97–104, 2013.

[13] T. Zhang and X. Zhang, “A polarization fusion network with geometric fea-
ture embedding for SAR ship classification,” Pattern Recognit., vol. 123,
2022, Art. no. 108365.

[14] Y. Zhang, X. Guo, H. Ren, and L. Li, “Multi-view classification with
semi-supervised learning for SAR target recognition,” Signal Process.,
vol. 183, 2021, Art. no. 108030.

[15] G. Dong, G. Kuang, N. Wang, L. Zhao, and J. Lu, “SAR target recognition
via joint sparse representation of monogenic signal,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 8, no. 7, pp. 3316–3328, Jul. 2015.



QIN et al.: TARGET SAR IMAGE EXPANSION METHOD BASED ON CONDITIONAL WASSERSTEIN DEEP CONVOLUTIONAL 7169

[16] U. Srinivas, V. Monga, and R. G. Raj, “SAR automatic target recognition
using discriminative graphical models,” IEEE Trans. Aerosp. Electron.
Syst., vol. 50, no. 1, pp. 591–606, Jan. 2014.

[17] F. Gao, F. Ma, J. Wang, J. Sun, E. Yang, and H. Zhou, “Semi-supervised
generative adversarial nets with multiple generators for SAR image recog-
nition,” Sensors, vol. 18, no. 8, 2018, Art. no. 2706.

[18] Y. Li, J. Chen, M. Ke, L. Li, Z. Ding, and Y. Wang, “Small targets
recognition in SAR ship image based on improved SSD,” in Proc. IEEE
Int. Conf. Signal, Inf. Data Process., 2019, pp. 1–6.

[19] Y. Tian, J. Sun, P. Qi, G. Yin, and L. Zhang, “Multi-block mixed sam-
ple semi-supervised learning for SAR target recognition,” Remote Sens.,
vol. 13, no. 3, 2021, Art. no. 361.

[20] Y. Wang, Z. Ding, P. Xu, K. Chen, T. Zeng, and T. Long, “Strip lay-
ering diagram-based optimum continuously varying pulse interval se-
quence design for extremely high-resolution spaceborne sliding spotlight
SAR,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 8, pp. 6751–6770,
Aug. 2021.

[21] S. Feng, K. Ji, L. Zhang, X. Ma, and G. Kuang, “SAR target clas-
sification based on integration of ASC parts model and deep learning
algorithm,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14,
pp. 10213–10225, Oct. 2021, doi: 10.1109/JSTARS.2021.3116979.

[22] L. Zhang et al., “Domain knowledge powered two-stream deep network
for few-shot SAR vehicle recognition,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, 2021, Art no. 5215315.

[23] G. Franceschetti, M. Migliaccio, and D. Riccio, “The SAR simulation: An
overview,” in Proc. Int. Geos. Remote Sens. Symp., Quan. Remote Sens.
Sci. Appl., 1995, vol. 3, pp. 2283–2285.

[24] T. Balz, H. Hammer, and S. Auer, “Potentials and limitations of SAR
image simulators–A comparative study of three simulation approaches,”
ISPRS J. Photogramm. Remote Sens., vol. 101, pp. 102–109, 2015.

[25] S. Auer, S. Hinz, and R. Bamler, “Ray-tracing simulation techniques for
understanding high-resolution SAR images,” IEEE Trans. Geosci. Remote
Sens., vol. 48, no. 3, pp. 1445–1456, Mar. 2010.

[26] T. Balz and U. Stilla, “Hybrid GPU-based single-and double-bounce
SAR simulation,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 10,
pp. 3519–3529, Oct. 2009.

[27] I. Goodfellow, “NIPS 2016 tutorial: Generative adversarial networks,”
2016, arXiv:1701.00160. [Online]. Available: https://arxiv.org/abs/1411.
1784

[28] F. Gao, Y. Yang, J. Wang, J. Sun, E. Yang, and H. Zhou, “A deep convolu-
tional generative adversarial networks (DCGANs)-based semi-supervised
method for object recognition in synthetic aperture radar (SAR) images,”
Remote Sens., vol. 10, no. 6, 2018, Art. no. 846.

[29] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” 2014,
arXiv:1411.1784. [Online]. Available: https://arxiv.org/abs/1411.1784

[30] X. Yao et al., “GMT-WGAN: An adversarial sample expansion method for
ground moving targets classification,” Remote Sens., vol. 14, no. 1, 2021,
Art. no. 123.

[31] M. Arjovsky and L. Bottou, “Towards principled methods for train-
ing generative adversarial networks,” 2017, arXiv:1701.04862. [Online].
Available: https://arxiv.org/abs/1411.1784

[32] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 214–223.

[33] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of Wasserstein GANs,” Adv. Neural Inf. Process. Syst.,
vol. 30, 2017.

[34] Z. Cui, M. Zhang, Z. Cao, and C. Cao, “Image data augmentation
for SAR sensor via generative adversarial nets,” IEEE Access, vol. 7,
pp. 42255–42268, 2019.

[35] L. M. Novak, G. J. Owirka, W. S. Brower, and A. L. Weaver, “The
automatic target-recognition system in SAIP,” Lincoln Lab. J., vol. 10,
no. 2, pp. 187–202, 1997.

[36] L. Novak, “State-of-the-art of SAR automatic target recognition,” in Proc.
IEEE Int. Radar Conf., 2000, pp. 836–843.

[37] J. Wissinger, R. Ristroph, J. R. Diemunsch, W. E. Severson, and E. Frue-
denthal, “MSTAR’s extensible search engine and model-based inferencing
toolkit,” Proc. SPIE, vol. 3721, pp. 554–570, 1999.

[38] S. Chen and H. Wang, “SAR target recognition based on deep learning,”
in Proc. IEEE Int. Conf. Data Sci. Adv. Anal., 2014, pp. 541–547.

[39] S. Chen, H. Wang, F. Xu, and Y.-Q. Jin, “Target classification using the deep
convolutional networks for SAR images,” IEEE Trans. Geosci. Remote
Sens., vol. 54, no. 8, pp. 4806–4817, Aug. 2016.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[41] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20,
no. 3, pp. 273–297, 1995.

[42] T. Wang, M. Liu, J. Zhu, A. Tao, J. Kautz, and B. Catanzaro, “High-
resolution image synthesis and semantic manipulation with conditional
GANs,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 8798–8807.

[43] C. Ledig et al., “Photo-realistic single image super-resolution using a
generative adversarial network,” in Pro. IEEE Conf. Comput. Vis. Pattern
Recognit., 2017, pp. 4681–4690.

[44] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” 2015,
arXiv:1511.06434. [Online]. Available: https://arxiv.org/abs/1411.1784

[45] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“GANs trained by a two time-scale update rule converge to a local Nash
equilibrium,” Adv. Neural Inf. Process. Syst., vol. 30, 2017.

[46] W. Malfliet and W. Hereman, “The tanh method: I exact solutions of
nonlinear evolution and wave equations,” Phys. Scripta, vol. 54, no. 6,
pp. 563–568, 1996.

[47] A. Salam, A. El Hibaoui, and A. Saif, “A comparison of activation
functions in multilayer neural network for predicting the production and
consumption of electricity power,” Int. J. Elect. Comput. Eng., vol. 11,
no. 1, pp. 163–170, 2021.

[48] E. P. Wigner, “On the distribution of the roots of certain symmetric
matrices,” Ann. Math., vol. 67, pp. 325–327, 1958.

[49] T. Tieleman et al., “Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude,” COURSERA: Neural Netw. Mach. Learn.,
vol. 4, no. 2, pp. 26–31, 2012.

[50] W. Fan, F. Zhou, Z. Zhang, X. Bai, and T. Tian, “Deceptive jamming
template synthesis for SAR based on generative adversarial nets,” Signal
Process., vol. 172, 2020, Art. no. 107528.

[51] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 2818–2826.

[52] J. Luo, H. Qiao, and B. Zhang, “Learning with smooth Hinge losses,”
Neurocomputing, vol. 463, pp. 379–387, 2021.

[53] “MSTAR public targets dataset,” Accessed: Nov. 23, 2016. [Online].
Available: https://www.sdms.afrl.af.mil/index.php?collection=mstar

[54] A. Kusk, A. Abulaitijiang, and J. Dall, “Synthetic SAR image generation
using sensor, terrain and target models,” in Proc. IEEE 11th Eur. Conf.
Synthetic Aperture Radar, 2016, pp. 1–5.

Jikai Qin (Student Member, IEEE) was born in 1994.
He received the B.S. degree in agricultural electrifi-
cation and automation from the Henan University of
Science and Technology, Luoyang, China, in 2016.
He is currently working toward the Ph.D. degree
in information and communication engineering with
the National Laboratory of Radar Signal Processing,
Xidian University, Xi’an, China.

His research interests include automatic target
recognition based on high-resolution range profile
and SAR image.

Zheng Liu was born in 1964. He received the B.S.
degree in radio technology from the Shaanxi Institute
of Technology, Xian, China, in 1985, and the M.S. and
Ph.D. degrees in signal and information processing
from Xidian University, Xi’an, in 1991 and 2000,
respectively.

He is currently a Professor, the Doctoral Director,
and the Vice Director of the National Laboratory
of Radar Signal Processing, Xidian University. His
research interests include the theory and system de-
sign of radar signal processing, precision guiding

technology, and multisensor data fusion.

https://dx.doi.org/10.1109/JSTARS.2021.3116979
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://www.sdms.afrl.af.mil/index.php{?}collection=mstar


7170 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Lei Ran was born in Shandong, China, in 1989. He
received the B.S. degree in electronic information
science and technology from the Qingdao University
of Technology, Qingdao, China, in 2012, and the
Ph.D. degree in pattern recognition and intelligent
system from Xidian University, Xi’an, China, in 2018.

In 2018, he was selected into the National Postdoc-
toral Innovative Talent Support Program. In 2019, he
went to the University of Birmingham as a Visiting
Scholar. He is currently an Associate Professor with
the National Laboratory of Radar Signal Processing,

Xidian University. He has presided over six projects including the National Natu-
ral Science Foundation of China (NSFC) Equipment Pre-Research Postdoctoral
Fund, participated in a number of vertical and horizontal projects as the backbone
of scientific research, authored or coauthored more than ten academic papers, and
applied for many invention patents. His research interests include radar imaging
on high-speed platforms, multistation radar imaging, multichannel/array radar
imaging and target detection.

Dr. Ran was awarded the Excellent Doctoral Dissertation of Shaanxi Province
in 2020.

Rong Xie received the B.S. degree in electronic and
information engineering, the M.S. degree in signal
and information processing, and the Ph.D. degree
in pattern recognition and intelligent system from
Xidian University, Xi’an, China, in 2003, 2006, and
2011, respectively.

He is currently an Associate Professor with the
National Laboratory of Radar Signal Processing,
Xidian University. His research interests include
multiple-input multiple-output radar signal process-
ing, target motion parameter estimation, and real-time
implementation.

Junkui Tang received the B.S. degree in commu-
nication engineering from Henan University, Henan,
China, in 2017. He is currently working toward the
Ph.D. degree in pattern recognition and intelligent
system with the National Laboratory of Radar Signal
Processing, Xidian University, Xi’an, China.

His research interests include array radar signal
processing and multichannel forward-looking radar
imaging.

Zekun Guo (Student Member, IEEE) received the
M.S. degree in mechanical engineering in 2020 from
Xidian University, Xi’an, China,where he is currently
working toward the Ph.D. degree in information and
communication engineering with the National Labo-
ratory of Radar Signal Processing.

His research interests include pattern recognition
and radar intelligent information processing.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


