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Automatic SAR Change Detection Based on Visual
Saliency and Multi-Hierarchical Fuzzy Clustering
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Abstract—Change detection based on multi-temporal synthetic
aperture radar (SAR) images plays a significant role in environ-
mental and earth observations. With the advancement in deep neu-
ral networks, existing work in the literature mainly concentrates
on developing self-supervised methods to generate pseudo-labeled
samples to guide the subsequent deep learning based detection.
However, this way of selecting sample inevitably introduces er-
roneous labels and imbalance between unchanged and changed
classes, thus causing deterioration in change detection perfor-
mance. To mitigate these issues, we have proposed a SAR change
detection network based on visual saliency and multi-hierarchical
fuzzy clustering. Specifically, with multi-dimensional difference
feature representations, a visual saliency based difference map
is constructed for accurate difference feature extraction. By in-
tegrating neighborhood information and hierarchical clustering,
the multi-hierarchical fuzzy local information C-means clustering
algorithm has been developed to identify potential changed regions
for sample selection. A class-balanced adaptive focal loss has fur-
ther been incorporated into the network training to obtain accu-
rate predictions. Extensive experiments and comparisons on five
datasets have been performed. The proposed method has achieved
averaged accuracy of 99.07% and Kappa coefficient of 79.87%,
outperforming other state-of-the-art algorithms both visually and
quantitatively.

Index Terms—Change detection, classed-balanced adaptive focal
loss, fuzzy clustering, synthetic aperture radar (SAR), visual
saliency difference map.
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I. INTRODUCTION

CHANGE detection aims at identifying changes across
multi-temporal remote sensing images of the same

scene [1]. Recent years have witnessed rapid advances in apply-
ing multimodal images in change detection, including optical,
hyperspectral, and synthetic aperture radar (SAR) images. Of
these, SAR images are capable of reflecting backscattering
ground surface information regardless of weather and sunlight
conditions, making them the only available source in extreme
scenarios such as cloud, smoke, haze or other occurring dis-
asters [2], [3]. Additionally, different types of objects in SAR
images often exhibit distinct characteristics that can be em-
ployed to assist subsequent interpretation. Therefore, research
and applications have grown considerably over the last decades,
from flood detection [4], [5], postdisaster assessment [6], [7],
urban planning [8], [9] to ecological surveillance [10], [11], [12].

A large number of supervised and unsupervised methods have
been developed for SAR change detection. Supervised methods
often produce superior performance but highly rely on prior
knowledge and labelled samples [13], [14]. On the contrary,
unsupervised and self-supervising methods can overcome the
dependence of manual intervention, effectively remove or re-
duce the label requirement, and hence have recently become the
mainstream approach. Conventional unsupervised SAR change
detection methods generally consist of three steps: 1) image
preprocessing, 2) difference image generation, and 3) difference
image analysis to determine changed pixel (CP) and unchanged
pixel (UP) [15], [16], [17]. Most research targets the latter two
steps.

Difference image generation aims to calculate the differ-
ences between pairs of SAR images while suppressing inherent
speckle noise, so to highlight potential changed areas. Typical
methods include log-ratio operator [18], Gauss-log ratio opera-
tor [19], neighborhood-based ratio operator [20], and difference
fusion methods [21], [22], [23]. Although still applied, the
existing difference image generation algorithms often suffer
from poor ability of accurately highlighting potential change
areas. The purpose of difference image analysis is to determine
meaningful changed areas and can be considered as an image
segmentation process. Thresholding and clustering are generally
employed. Apart from the classical Ostu algorithm [24], there
are several thresholding algorithms based on the combination
of specific distributions and fitting criteria [15], [25], [26]. In
comparison with the thresholding algorithms, clustering has
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Fig. 1. Framework of the proposed method. Three key steps are: the construction of visual saliency difference map, the MH-FLICM for pre-classification and
sample selection, and the change detection network with class-balanced adaptive focal loss.

better generalization ability and is usually more robust to noise.
Examples include the fuzzy C-means (FCM) algorithm, fuzzy
local information C-means clustering (FLICM) [27], Markov
random field fuzzy C-means clustering [28], and reformulated
fuzzy local information C-means clustering [29].

Recently, deep neural networks have achieved remarkable
successes in remote sensing image analysis, showing superior
performances in SAR image change detection. Self-learning
strategies are commonly adopted to obtain pseudolabels from
unlabeled difference maps. In this direction, many researchers
have devoted to exploiting effective classifiers with better
performance than the conventional approaches. Gong et al.
presented a deep neural network for accomplishing change
detection directly from pairs of SAR images [30]. Geng
et al. developed a saliency-guided SAR change detection
approach based on hierarchical fuzzy C-means (HFCM) and
autoencoders [23]. With transfer learning, a multilevel fusion
network was introduced for sea ice change detection [31].
In [32], generative adversarial learning was incorporated to
classify hard pixels for small area change detection. Saha et al.
employed cycle-consistent generative adversarial networks
to transcode SAR images into optical images to aid change
detection [9]. Despite the remarkable successes achieved, low
sample accuracy, and imbalanced class samples remain two
common issues in deep learning based SAR change detection.

Building a robust deep model for SAR change detection still
poses a great challenge due to the following three issues: 1)
inaccurate difference feature representations, 2) insufficient abil-
ity of selecting high-quality samples, and 3) imbalanced class
samples. To address these issues, we have proposed a robust SAR
change detection framework, shown in Fig. 1, based on visual
saliency and multi-hierarchical fuzzy clustering. In the proposed
method, the visual saliency difference map is first constructed
to give prominence to changed areas, and an unsupervised fuzzy
clustering algorithm is then developed to generate accurate
pseudo-labeled samples. We further incorporate class-balanced
adaptive focal loss into the convolutional neural network (CNN)
to derive final change detection results. Main contributions of
the current work are summarized as follows.

1) In order to enhance the degree of difference information,
a method for generating visual saliency difference map
has been proposed based on multi-dimensional difference
feature representations. Through the difference feature
fusion, the proposed method for difference map generation
is capable of suppressing false alarms and noise while
highlighting real changed regions and providing stronger
visual difference contrast.

2) Inspired by hierarchical clustering, we have developed a
multi-hierarchical fuzzy local information C-means clus-
tering (MH-FLICM) algorithm for pre-classification and
sample selection. The integration of neighborhood infor-
mation and hierarchical clustering can precisely identify
potential CPs, alleviate the imbalance between changed
and unchanged classes, as well as select valid sample for
subsequent change detection.

3) A change detection network with class-balanced adaptive
focal loss has been constructed for generating probability
maps to further tackle the sample imbalance problem.
FLICM algorithm is then utilized as the probabilistic
binary classifier to obtain effective and reliable change
detection result.

The remainder of this article is organized as follows. Section II
introduces the construction of visual saliency difference map.
Section III presents a detailed illustration of the proposed MH-
FLICM algorithm. Architecture of the change detection network
is described in Section IV. Section V presents experimental
results, together with the parameter analysis on several aspects.
Section VI concludes this article.

II. CONSTRUCTION OF VISUAL SALIENCY DIFFERENCE MAP

A. Multi-Dimensional Difference Feature Representations

Conventional methods often use one-dimensional difference
map to reflect difference information in multi-temporal images
between corresponding pixels or neighbors. Although this way
of constructing a difference map can be handcrafted with good
responses for certain types of changes, it may lose or weaken
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general difference information, making it less capable of repre-
senting the global differences. To tackle this issue, we construct a
visual saliency difference map based on multi-dimensional dif-
ference feature representations. Single-dimensional difference
maps are concatenated across the dimensions, each reflecting a
certain type of difference, and their combination shows superior
responses to changes.

In order to moderate the influence of noise in constructing
pixel-based difference maps, we calculate the log-mean ratios
(LMR) of a neighborhood, which shows tolerance to isolated
noise. The larger the difference, the higher the grey level values
in difference map. LMR is calculated by

ILMR(p) = log

{
max

[
μ(ΩΓp

)

μ(ΩΥp
)
,
μ(ΩΥp

)

μ(ΩΓp
)

]}
(1)

where Γ and Υ, respectively, denote the before and after images,
ΩΓ and ΩΥ denote the neighborhood of pixels in Γ and Υ,
respectively. μ(ΩΓ) and μ(ΩΥ) are the mean values of the
neighborhoods of corresponding pixels, and p represents the
pixel position in the two images.

As the most widely applied change detection algorithm, log-
ratio (LR) extracts good representations in reflecting differences
of corresponding pixels in multi-temporal images. Regions of
large grey level values in difference maps correspond to areas
with large differences between images taken before and after.
LR can be expressed as

ILR(p) = log

(
max

(
Γp

Υp
,
Υp

Γp

))
. (2)

Although being shown not suitable for overcoming the in-
herent multiplicative noise in SAR images, the earliest change
detection algorithm, the absolute subtraction (SUB), intensely
suppresses noise under certain circumstances. For example, low
scattering regions erroneously display high differences due to
the ratio operation. SUB takes the form

ISUB(p) = abs (Γp −Υp) . (3)

To unify these three algorithms into similar scale and magni-
tude, min–max regularisation is processed for ILMR, ILR, and
ISUB, respectively. The multi-dimensional difference feature
representation, Ψ, is then derived through merging the three
difference images across separate channels.

In all the three difference images, the larger the value, the
greater the difference, consistent in difference feature responses.
Therefore, significant differences can be better observed in
changed areas, showing improved robustness than any single-
dimensional difference images. On the contrary, insignificant
differences, which indicate unchanged areas, will incur weaker
difference responses. The multi-dimensional difference map
also has a good tolerance in regions with opposite directions of
difference indications, thus avoiding erroneous representations
generated by a single-dimensional difference map. In summary
multi-dimensional difference map has strong robustness and
reflection ability, and can enhance the contrast between potential
CP and UP for identifying potential changes. Fig. 2(d) shows
multi-dimensional difference feature representations for five

different datasets, in which regions in white denote significant,
potential changed areas, regions in green and purple indicate
areas of notably potential changes in certain dimensions of the
difference map, and black regions represent negligible changes.
Compared to conventional single-dimensional difference map,
the multi-dimensional representation holds stronger capability
to convey the difference information visually and truthfully.

B. Visual Saliency Difference Map Generation

In the previous section, a multi-dimensional difference map
has been constructed to expand the degree of difference between
potential CP and UP. However, it is still necessary to determine
an optimised selection method to digitally express the “visual
difference” so that the difference map has autonomous ability to
focus on areas of potential changes. As an important direction
in computer vision, visual saliency detection helps to automat-
ically identify the region of interest in an image by simulating
the human visual mechanism. For example, when facing a
new image scene, human vision automatically pays attention
to certain regions of interest and ignores uninterested regions.
These detected regions of interest are regarded as visually salient
regions [33].

As a classical and effective saliency detection algorithm,
the luminance contrast (LC) [34] algorithm aims to obtain the
global contrast of single pixels in the entire image. That is,
the saliency value of a single pixel is the sum of grey level
distances to all other pixels. The calculation focuses on seeking
the global contrast but can cause rare pixels to dominate with
higher contrast. In multi-dimensional difference map, potential
CPs hold a small portion of the image and are considered as
rare pixels. This feature can cater for the demand for saliency
region extraction [35]. Therefore, we use the LC algorithm to
extract visual saliency difference map by highlighting potential
change pixels in the multi-dimensional difference map Ψ, so
that the main “attention” of the difference map is focused on the
potential change pixels. The LC-based saliency can be computed
by

Φk =
N∑
i=1

‖Ψk −Ψi‖ (4)

where Φk is the saliency value of pixel t, ‖Ψk −Ψi‖ stands for
the Euclidean distance between Ψk and Ψi, and N denotes the
total number of pixels in the image.

Considering that pixels with the same intensity level have the
same saliency, we further restructure (4) so that pixels with the
same intensity are rearranged together as

Φk =

nL∑
j=1

fj‖Ψk − Lj‖ (5)

where Lj represents jth intensity level in Ψ, fj denotes the
frequency of Lj , and nL is the total number of intensity levels
in the image.

Through the construction of highly responsive multi-
dimensional feature representation and the application of global
visual saliency extraction algorithm, areas with significant
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Fig. 2. Step-wise results of the proposed method on Beijing-I, Beijing-II, Beijing-III, Coast and Yellow River datasets: (a) LMR difference image, (b) LR difference
image, (c) SUB difference image, (d) multi-dimensional difference feature representations, (e) visual saliency difference maps, and (f) predicted probability maps.

changes in the difference map are targeted and highlighted.
This strategy suppresses insignificant areas and expands the
degree of difference between different types of pixels, provid-
ing a basis for selecting as many as possible potential change
pixels with high-confidence in the subsequent process. Fig. 2(e)
shows a constructed difference map based on the extraction of
multi-dimensional difference feature saliency. It can be seen
that potential changed areas possess stronger visual contrast and
show stronger resistance to noise.

III. MULTI-HIERARCHICAL FUZZY LOCAL INFORMATION

C-MEANS CLUSTERING

Coherent speckle noise inherently exists in SAR images and
can greatly affect SAR image processing and interpretation.
Incorporating neighborhood information is the most efficient
and effective way to reduce such noise in SAR images. In this
section, we develop an unsupervised multi-hierarchical cluster-
ing algorithm, namely MH-FLICM, which takes into account

the neighbourhood information in hierarchically segmenting the
difference map. The proposed MH-FLICM algorithm identi-
fies potential change areas as accurately as possible, and at
same time optimizes the distributions of pixel classes in the
pre-classification result for selecting pixels from valid samples.

As an improvement of the classic FCM algorithm, the FLICM
segmentation algorithm incorporates local neighborhood and
grey level information to achieve stronger resistance to speckle
noise [27]. Specifically, the objective function of the FLICM
algorithm is defined as

Jw =
N∑
i=1

M∑
m=1

[
uw
mi‖xi − vm‖2 +Gmi

]
(6)

where xi is the gray level value of pixel i,w = 2 is the weighting
parameter of each fuzzy membership, N denotes the total num-
ber of pixels in the image, M is the desired number of classes
in the final classification, umi is the degree of membership of
ith pixel in mth cluster, vm denotes the center of m-th cluster
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prototype, ‖ · ‖ represents the Euclidean distance, and the fuzzy
factor Gmi is defined as the weighted sum of distances of the
cluster centre from its spatial neighbors by

Gmi =
∑

j∈Ωi,i�=j

1

dij + 1
(1− umj)

w‖xj − vm‖2 (7)

where Ωi is the neighborhood of pixel i, dij denotes the spa-
tial distance between pixels i and j, and umj and vm can be
computed by

umj =
1

∑M
j=1

(‖xi − vm‖2 +Gmi

‖xi − vj‖2 +Gji

) 1
w−1

(8)

vm =

∑N
i=1 u

w
mixi∑N

i=1 u
w
mi

. (9)

When consecutive update of the membership matrix becomes
smaller than the preset threshold, the iteration stops. Therefore,
pixels will be attributed to the categories with the highest degrees
of membership, and the initial segmentation is completed.

Different from FCM, FLICM algorithm generates fewer iso-
lated pixels and more attention is paid to changed areas in the
difference map, producing smoother effect in the spatial domain.
The incorporation of neighborhood information often results in
blurring of the boundary between changed and unchanged areas,
in which pixels may correspond to intermediate category and are
most likely to be misclassified in conventional difference image
analysis. Therefore, the MH-FLICM algorithm is proposed to
accurately detect the boundary regions (pixels belong to the
intermediate category), as well as precisely identify changed and
unchanged areas of high confidence. The category of pixels in
boundary regions will later be determined by the network well
trained using those selected changed and unchanged samples.
Details of the MH-FLICM algorithm are described as follows.

1) Use FLICM to divide the difference map into two cat-
egories: changed CC and unchanged CU. NC represents
the total number of pixels in class CC, and also assumed
to be the upper limit of number of CPs in MH-FLICM
algorithm. The upper limit of ratio of the number of
intermediate pixels (IPs) to the number of CPs is set to
be T = 2.

2) Use multiclass FLICM to segment the difference map
into seven classes, arranged as C1, C2, . . . , C7, according
to descending sort of cluster centres ξ1, ξ2, . . . , ξ7. We
noticed that if directly dividing pixels into three classes
by FLICM, the intermediate class sometimes occupies a
significant part of the difference image, therefore enough
representative samples cannot be obtained. The numbers
of corresponding pixels in each class are N1, N2, . . . , N7,
respectively.

3) The number of CPs is

NCP =

{∑7
i=1 Ni if NCP � NC

N1 if N1 +N2 > NC

. (10)

The number of classes in CPs is tC.

4) The number of IPs is

NIP =

{∑7−tC
j=1 NtC+j if NC < NIP < NC × T

NtC+1 if NtC+1 +NtC+2 > NC × T
.

(11)
The number of classes in IPs is tI.

5) The number of UPs is

NUP =

7−tC−tI∑
k=1

NtC+tI+k (12)

where k = argmink
∑7−tC−tI

k=1 NtC+tI+k > NCP. The
number of classes in UPs is tU.

6) Determine high-confidence unchanged pixels (HUPs). If
tC + tI + tU < 7, all pixels that have not been assigned
labels will be taken as HUPs; if tC + tI + tU = 7, HUPs
will be merged into UPs.

IV. CHANGE DETECTION NETWORK WITH CLASS-BALANCED

ADAPTIVE FOCAL LOSS

To obtain suitable inputs for subsequent detection, two-
channel patch pairs are extracted from multi-temporal SAR
images by collecting overlapping patches of sizes of n× n× 2,
each of which is assigned a label according to the class of the
center pixel in the segmented patch [36]. Dual-channel patches
centered at UPs and CPs are considered as samples for subse-
quent CNN training, and patches centred at HUPs are discarded.
This way of constructing inputs for training CNN helps identify
CPs with high confidence by decreasing the large gap between
the numbers of CPs and UPs and at the same time enhancing the
training efficiency and effectiveness.

The focal loss [37] was originally proposed to address the
class imbalance problem in computer vision tasks. It extends
the cross entropy loss by introducing a modulating term and a
balanced factor, formulated by

L =

{−α(1− ŷ)γ log(ŷ) y = 1
−(1− α)ŷγ log(1− ŷ) y = 0

(13)

where y and ŷ represent the class label and the output prob-
ability of the network, respectively. α is the balancing factor,
and γ denotes the focusing parameter to reduce the impact
of samples that are easy to be classified in the training and
force the model to pay more attention to those difficult ones
to train. Recently, several adaptive focal loss algorithms have
been developed through either modifying the focusing parameter
γ using decay and scaling strategies, or adding fixed weights
to the loss functions [38], [39], [40]. In this article, instead
of adjusting the focusing parameter, the balancing factor α is
adaptively formulated by the inverse rating of the advantageous
and adverse samples obtained by the MH-FLICM algorithm. The
class-balanced adaptive focal loss is developed as the objective
function in the two-channel network to further handle the sample
imbalance problem, where α is set as the ratio of NCP to NUP

to adaptively adjust the weight of majority class and minority
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class. The loss function then becomes

L =

⎧⎪⎪⎨
⎪⎪⎩

−NCP

NUP
(1− ŷ)γ log(ŷ) y = 1

−
(
1− NCP

NUP

)
ŷγ log(1− ŷ) y = 0

. (14)

For samples centered at CPs, y = 1, the larger the ŷ, the smaller
the loss. Similarly, for samples centered at UPs, y = 0, the
smaller the ŷ, the smaller the loss, corresponding to samples that
are easy to be determined. The calculation of the loss function
for these samples will slow down the iterative process and make
it difficult to reach the optimum.

In the literature, almost all the change detection methods adopt
the classification mechanism of predicting only the patches
centered at IPs, and acquiesce in the assumption that pre-
classification result is 100% correct. To deal with these errors
occurring in the pre-classification, in the proposed classification
mechanism, the trained network reclassifies all the patches and
outputs a probability map [as shown in Fig. 2(f)] with an equal
size of the original image. In addition, considering the corre-
lation between the adjacent pixels of the image, the FLICM
clustering algorithm is further used as a probabilistic graph
binary classifier to obtain the final change detection result.

V. EXPERIMENTS AND ANALYSIS

To validate the effectiveness of the proposed method, experi-
ments were conducted on five datasets. Visual and quantitative
comparisons with several state-of-the-art methods are reported,
including the FCM algorithm based on LR difference map
(LR-FCM), FLICM algorithm based on LR difference map (LR-
FLICM), principal component analysis (PCA) and K-means
algorithm (PCA-KM) [41], extreme learning machine based
on neighborhood ratio (NR-ELM) [42], Gabor PCA network
(GaborPCANet) [43], convolutional-wavelet neural networks
(CWNN) [44], dual-domain network (DDNet) [45], siamese
adaptive fusion network (SAFNet) [46], and robust unsupervised
small area change detection method (RUSACD) [32]. A compre-
hensive investigation of several parameters on the performance
of change detection is also presented.

A. Dataset Description and Evaluation Criteria

The original Beijing image, of sizes of approximately
13 000 × 22 000 pixels, were acquired from Gaofen-3 SAR
in April 2017 and May 2018, respectively. Seasons for the
two acquisition dates are similar, thus vegetation changes
have little effect on the backscattering. Several preprocessing
steps, such as calibration, registration, geocoding, and cropping
were performed. After the following multilook processing of
2 × 3, the azimuth and distance resolution is approximately
7.8 m. Owing to the considerably large size of the entire image,
three representative subregions were selected for evaluation,
denoted as Beijing-I dataset, Beijing-II dataset, and Beijing-III
dataset, respectively. Area A is the Beijing-I dataset of size of
400× 400 pixels, in which urban construction and displacement
of trains are the main changes. Fig. 3 shows exemplar multi-
temporal images and corresponding reference change map. Area

Fig. 3. Beijing-I dataset: (a) image acquired in April 2017, (b) image acquired
in May 2018, and (c) reference image.

Fig. 4. Beijing-II dataset: (a) image acquired in April 2017, (b) image acquired
in May 2018, and (c) reference image.

Fig. 5. Beijing-III dataset: (a) image acquired in April 2017, (b) image
acquired in May 2018, and (c) reference image.

Fig. 6. Coast dataset: (a) image acquired in June 2008, (b) image acquired in
June 2009, and (c) reference image.

B is the Beijing-II dataset of size of 400 × 400 pixels. Construc-
tion and demolition of artificial structures are the main cause of
changes. Examples of Beijing-II are shown in Fig. 4. Area C,
the Beijing-III dataset, has a size of 248 × 215 pixels, where
changes are primarily caused by the update of construction as
displayed in Fig. 5.

Apart from the above three datasets, the Coast and Yellow
River datasets, derived from Radarsat-2 in the Yellow River
Estuary area in June, 2008 and 2009, were also used. Multi-
temporal and the reference images in the Coast dataset, as shown
in Fig. 6, are of 450 × 280 pixels with areas of relatively small
changes. As shown in Fig. 7, the Yellow River dataset contains
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Fig. 7. Yellow River dataset: (a) image acquired in June 2008, (b) image
acquired in June 2009, and (c) reference image.

TABLE I
CHANGE DETECTION RESULTS OF VARIOUS METHODS ON BEIJING-I DATASET

changes occurred mainly along the boundaries of the river with
the image size of 291 × 444 pixels.

Several evaluation criteria were used for assessing accuracy
of the detection including, false positives (FP), false nega-
tives (FN), overall error (OE), percentage correct classification
(PCC), and Kappa coefficient (κ). Among these, FP is the
number of UPs that have been incorrectly detected as changed.
FN denotes the number of CPs that have not been detected.
OE represents the total number of pixels that were erroneously
classified, and is the sum of FP and FN. Detection accuracy is
the ratio between the number of pixels detected correctly and
the total number of pixels, and κ is the Kappa coefficient.

B. Results on Beijing-I Dataset

Detecting changes in Beijing-I images has been of great
difficulty due to complex types of ground objects and their
various forms of change, especially in water areas. Visual results
of various methods on Beijing-I dataset are shown in Fig. 8,
while quantitative results presented in Table I. LR-FCM, LR-
FLICM, PCA-KM, NR-ELM, GaborPCANet, CWNN, DDNet,
and SAFNet all suffered severely from speckle noise, leading
to significantly high FPs and low kappa coefficients. With the
incorporation of neighborhood information, the detection result
of LR-FLICM was much better than that of LR-FCM algorithm.
Despite the noise interference was suppressed in the RUSACD
algorithm, many important changes were wrongly classified,
resulting in a relatively high FP value. Fig. 8(j) and (k) dis-
plays reprediction results of the proposed method on merely the

TABLE II
CHANGE DETECTION RESULTS OF VARIOUS METHODS ON BEIJING-II DATASET

intermediate class and all the patches, respectively. Although
the floating objects on the water and changes in the growing
plants resulted in some false detections, it is visually apparent
that almost all the change areas have been detected completely,
demonstrating strong antinoise ability and high detection accu-
racy of the method. Meanwhile, it is worth noting that with the
incorporation of subtraction operator in the multi-dimensional
difference representation, the false alarm problem caused by the
low scattering area in the water area has been effectively avoided.

C. Results on Beijing-II Dataset

In Beijing-II dataset, in addition to construction and demoli-
tion of buildings, there existed changes between bare land and
vegetation. Compared with changes of buildings, differences
between bare land and vegetation are less obvious and more
scattered, increasing the difficulty of their accurate detection.
Visual and quantitative results of Beijing-II dataset are presented
in Fig. 9 and Table II, respectively. Reference image is given
in Fig. 9(l). Similar to the Beijing-I dataset, CWNN algorithm
was significantly affected by noise, producing large amount of
false detection and trivial plaques. Detection results of CWNN
algorithm is shown in Fig. 9(f) with the lowest κ of 15.56%.
As shown in Fig. 9(b), LR-FLICM detected most of the change
areas with some resistance to noise. Compared to the above
two algorithms, there were fewer trivial plaques in the results
of PCA-KM, CWNN, NR-ELM, GaborPCANet, DDNet, and
SAFNet algorithms, shown in Fig. 9(c)–(e), with moderate
detection rates. In contrast, the proposed method showed strong
resistance to noise, though some missed detection occurred. On
the quantitative evaluations in Table II, predicting all patches
using the proposed algorithm obtained a slightly lower detec-
tion accuracy but a higher κ than that of only patches centred
at IPs. Among all the methods, RUSACD exhibited the best
performance with the highest accuracy and Kappa coefficients,
probably due to the usage of generative models for increasing
the training samples. It can also be observed that majority of
the detection errors was located at the left side of the image
due to low backscattering of varying vegetations. Such a small
degree of difference may merely be perceptible to LR based
algorithms, which are highly sensitive to difference informa-
tion. Meanwhile, the utilization of neighborhood information in
the change detection network help to suppress noise, but may
cause false detections and missed detections in boundaries of
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Fig. 8. Visualization of various change detection methods on Beijing-I dataset: (a) LR-FCM, (b) LR-FLICM, (c) PCA-KM, (d) NR-ELM, (e) GaborPCANet, (f)
CWNN, (g) DDNet, (h) SAFNet, (i) RUSACD, (j) proposed (IPs only), (k) proposed, and (l) ground truth.

Fig. 9. Visualization of various change detection methods on Beijing-II dataset: (a) LR-FCM, (b) LR-FLICM, (c) PCA-KM, (d) NR-ELM, (e) GaborPCANet,
(f) CWNN, (g) DDNet, (h) SAFNet, (i) RUSACD, (j) proposed (IPs only), (k) proposed, and (l) ground truth.

small change areas, leading to possible deterioration of change
detection accuracy.

D. Results on Beijing-III Dataset

Fig. 10 and Table III, respectively, show the visual and quan-
titative results on the Beijing-III dataset. Compared with the
previous two datasets, types of changes in Beijing-III area are
less complex and more obvious, mainly caused by transitions
between buildings and bare land. Therefore, all the algorithms
except for LR-FCM achieved good detection results with accura-
cies over 85%. The reference image is shown in Fig. 10(l). Differ-
ent from the previous results, on this dataset, the detection results
of CWNN and NR-ELM were superior to those of LR-FLICM,
PCA-KM, and GaborPCANet. Due to the uneven backscattering
in the building area, many subtle change regions were eliminated
as noise, leading to a large number of holes in the detection

TABLE III
CHANGE DETECTION RESULTS OF VARIOUS METHODS ON BEIJING-III DATASET

results and high FN values in LR-FCM, LR-FLICM, PCA-KM,
and RUSACD. It is also worth noting that CWNN, DDNet and
SAFNet produced many false detections with high FP values,
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Fig. 10. Visualization of various change detection methods on Beijing-III dataset: ((a) LR-FCM, (b) LR-FLICM, (c) PCA-KM, (d) NR-ELM, (e) GaborPCANet,
(f) CWNN, (g) DDNet, (h) SAFNet, (i) RUSACD, (j) proposed (IPs only), (k) proposed, and (l) ground truth.

Fig. 11. Visualization of various change detection methods on Coast dataset: (a) LR-FCM, (b) LR-FLICM, (c) PCA-KM, (d) NR-ELM, (e) GaborPCANet, (f)
CWNN, (g) DDNet, (h) SAFNet, (i) RUSACD, (j) proposed (IPs only), (k) proposed, and (l) ground truth.

confirming its sensitivity to subtle changes. In comparison to test
results of only the intermediate patches in Fig. 10(j), repredic-
tions of all patches [displayed in Fig. 10(k)] produced less noisy
and more complete detection in the main change area. Highest
κ value of 93.22% was achieved with the proposed method. In
particular, unlike the Beijing-II dataset, although the degree of
difference between bare ground and vegetation is small, due to
the large area of occurrence, the proposed method could still
detect all the change areas with a relatively high accuracy.

E. Results on Coast Dataset

Change maps generated by various methods on the Coast
dataset are shown in Fig. 11, while the corresponding evaluation
results are listed in Table IV. Types of changes in the Coast
dataset are relatively simple, all of which are located in the small
area in water. Judging from the visual results, LR-FCM, PCA-
KM, GaborPCANet, CWNN, and SAFNet were all seriously
influenced by speckle noise. Large numbers of false detections
exhibited not only in the land area, but also in the water, resulting
in extremely high FP values and kappa coefficient lower than
20%. For LR-FLICM, NR-ELM, and DDNet, the FP values

TABLE IV
CHANGE DETECTION RESULTS OF VARIOUS METHODS ON COAST DATASET

were also relatively high, and hence the detection accuracies
were all below 50%. Among all the methods, RUSACD had the
best PCC value of 99.74% and the highest κ of 87.34%, and
yielded a clean change map similar to the ground truth. With
the integration of LMR, LR, and SUB difference operators,
the proposed method could make full use of various types of
difference information to alleviate the impact of noise to a
great extent, effectively detecting changed areas and producing
a competitive performance to RUSACD.
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Fig. 12. Visualization of various change detection methods on Yellow River dataset: (a) LR-FCM, (b) LR-FLICM, (c) PCA-KM, (d) NR-ELM, (e) GaborPCANet,
(f) CWNN, (g) DDNet, (h) SAFNet, (i) RUSACD, (j) proposed (IPs only), (k) proposed, and (l) ground truth.

TABLE V
CHANGE DETECTION RESULTS OF VARIOUS METHODS ON YELLOW

RIVER DATASET

F. Results on Yellow River Dataset

Fig. 12 and Table V show the detected change maps and
their quantitative evaluation metrics of various state-of-the-art
methods. In this Yellow River dataset, most of changes occur
in the water area, making the change detection relatively
straightforward. Therefore, except for LR-FCM, which had
almost no resistance to noise, all methods exhibited some
noise resilient capability in the detected change maps with
Kappa coefficients higher than 70%. From visual comparisons,
LR-FLICM, CWNN, DDNet, and SAFNet produced some noisy
regions along the river boundary, and hence suffered from high
FPs. On the contrary, for PCA-KM, NR-ELM, GaborPCANet,
and RUSACD, many subtle change areas were eliminated, and
FNs values were relatively high. Especially, CWNN, which was
sensitive to changing differences, achieved the least number of
missed detections of 496, and RUSACD with the strongest anti-
noise ability yielded the least number of false detections of 640.
The proposed method outperformed all these methods on both

accuracy and Kappa coefficient, and generated balanced FP and
FN values, further demonstrating its effectiveness and usefulness
in suppressing the influence of speckle noise in change detection.

G. Ablation Studies

Several aspects are explored and discussed in this section:
1) impact of number of training samples; 2) analysis of pre-
classification performance; 3) analysis of different types of
difference maps and clustering algorithms; 4) impact of input
patch size; 5) analysis of different classification strategies; 6)
analysis of different types of loss functions; and 7) analysis on
different types of classifiers.

1) Impact of Number of Training Samples: The number of
training samples greatly affects the change detection perfor-
mance and thus is a critical parameter for model training. In
this article, we have developed the MH-FLICM algorithm based
on visual saliency difference map for change detection. To test
its effectiveness, the Beijing-I dataset was chosen to evalu-
ate the number of training samples, and the proposed method
was compared to 15 combinations of various difference maps
and clustering algorithms, including three-class FCM based
on neighborhood-ratio difference map (NR-FCM3), three-class
FCM based on LMR difference map (LMR-FCM3), three-class
FCM based on LR difference map (LR-FCM3), three-class FCM
based on the visual saliency difference map (VSDM-FCM3),
H-FCM based on NR difference map (NR-HFCM), H-FCM
based on LMR difference map (LMR-HFCM), and H-FCM
based on LR difference map (LR-HFCM), H-FCM based on
the visual saliency difference map (VSDM-HFCM), three-class
FLICM based on neighborhood ratio difference map (NR-
FLICM3), three-class FLICM based on LMR difference map
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Fig. 13. Pre-classification results of (a) NR-FCM3, (b) LMR-FCM3, (c) LR-FCM3, (d) VSDM-FCM3, (e) NR-HFCM, (f) LMR-HFCM, (g) LR-HFCM, (h)
VSDM-HFCM, (i) NR-FLICM3, (j) LMR-FLICM3, (k) LR-FLICM3, (l) VSDM-FLICM3, (m) NR-MHFLICM, (n) LMR-MHFLICM, (o) LR-MHFLICM, (p)
proposed after merging HUPs into UPs, and (q) proposed before merging HUPs into UPs.

(LMR-FLICM3), three-class FLICM based on LR difference
map (LR-FLICM3), three-class FLICM based on the visual
saliency difference map (VSDM-FLICM3), MH-FLICM based
on NR difference map (NR-MHFLICM), MH-FLICM based
on LMR difference map (LMR-MHFLICM), and MH-FLICM
based on LR difference map (LR-MHFLICM). As displayed
in Fig. 13, the proposed method produced stable and accurate
pre-classification results both before and after merging HUPs
with UPs. In Fig. 13(a)–(p), the black, grey, and white pixels
represent UPs, IPs, and CPs, respectively. In Fig. 13(q), the
black, red, green, and white pixels represent HUPs, UPs, IPs,
and CPs, respectively. Parameters UU, UI, UC, CU, CI, and
CC were calculated for comparison, where the first character
represents the class in the reference image (“C” is the changed
class, “I” represents intermediate class and “U” denotes the
unchanged class), and the second character denotes the pixel
class in selected samples. These quantitative results of various
methods are presented in Table VI. The proportion of different
classes in the pre-classification result is visualized in Fig. 14.
UU values below 40% were omitted. It can be observed that
among all the methods, largest numbers of samples have been
obtained using the proposed method.

2) Analysis of Pre-classification Performance: Apart from
the number of training samples, selecting samples that would
achieve as many correctly classified pixels as possible is also
a significant factor. The proportion of pixels that have been

Fig. 14. Visualization of volume proportion (%) in pre-classification on
Beijing-I dataset.
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TABLE VI
PROPORTION (%) OF DIFFERENT CLASSES IN PRE-CLASSIFICATION RESULTS ON

BEIJING-I DATASET

TABLE VII
PRE-CLASSIFICATION PERFORMANCE WITH VARIOUS DIFFERENCE MAPS AND

CLUSTERING ALGORITHMS ON BEIJING-I DATASET

correctly classified in the pre-classification results (initial correct
volume, ICV) and the sample accuracy (SA) are used to evaluate
the accuracy of the selected pixels, given as

ICV = CC + UU (15)

SA =
CC + UU

CC + UU + CU + UC
. (16)

From Table VII, it can be seen that 97.51% of the pixels have
been correctly classified in the pre-classification. While the
accuracy of the selected samples reached 98.78%. Although
the VSDM-FLICM algorithm was comparable with other sam-
ple selection algorithms, the visual saliency difference map
based MH-FLICM algorithm achieved the best overall pre-
classification result, further verifying the superior ability of the
proposed sample selection method for selecting valid samples
in terms of the number of samples and classification accuracy.

3) Analysis of Different Types of Difference Maps and Clus-
tering Algorithms: In a change detection framework, sample
selection performance depends on how well the difference map
extracts and highlights difference information, as well as how
well the clustering algorithm identifies potential changed ar-
eas for pre-classification. Also the sample selection and pre-
classification accuracies would directly influence the final de-
tection results. Therefore, to analyze the usefulness of proposed

TABLE VIII
CHANGE DETECTION RESULTS WITH VARIOUS DIFFERENCE MAPS AND

CLUSTERING ALGORITHMS ON BEIJING-I DATASET

visual saliency difference map and MH-FLICM algorithm, we
conducted additional experiments, in which different types of
difference maps and various clustering algorithms were uti-
lized and compared, while the subsequent processes stayed the
same. Final change detection results on the Beijing-I dataset
are reported in Table VIII. The proposed visual saliency differ-
ence map based MH-FLICM algorithm outperformed all other
methods, obtaining the highest accuracy of 99.00% and Kappa
coefficient of 68.74%. It is worth mentioning that compared
with the NR, LMR, and LR difference maps, the proposed
visual saliency difference map achieved superior results no
matter what clustering algorithm was adopted. We can also
observe that although certain types of difference maps (NR
and LMR) worked well with HFCM and FLICM, the proposed
MH-FLICM clustering algorithm produced considerably good
results on all types of difference maps, especially the visual
saliency difference map, confirming the effectiveness of both the
visual saliency difference map and the MH-FLICM clustering
algorithm.

4) Impact of Input Patch Size: For shallow CNNs, the size
of input patch has an important impact on feature extraction and
learning. The proposed dual-channel network was constructed
to learn the mapping relationship from input patches to labels
of center pixels, and in this case, when the input patch is too
large, too much interference may be brought into the feature
extraction. While if the input patch is too small, along the
network the feature maps would reduce in size or fill with too
many zeros, hence extracting meaningless and useless feature
maps. To determine its optimal size, we varied the input patch
size from 9 × 9 to 17 × 17 on all five datasets. As displayed in
Fig. 15 and Table IX, with increase in patch size, false positive
rate showed a tendency of gradually increasing, while false
negative rate decreases. On the Beijing-III, Coast and Yellow
River datasets, a moderate patch size seemed more suitable.

5) Analysis of Different Classification Strategies: To confirm
the efficacy of reclassifying all the patches, we adopted two clas-
sification strategies and compared their subsequent performance
in terms of Kappa coefficients. The first mechanism supposed
that there were no errors in the pre-classification, and then a
suitable threshold was chosen to predict patches centred at IPs. In
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Fig. 15. Comparisons of Kappa coefficients with varying patch sizes.

TABLE IX
CHANGE DETECTION RESULTS WITH VARYING PATCH SIZES

Fig. 16. Comparisons of Kappa coefficients with different classification strate-
gies.

the second mechanism, patches corresponding of all pixels were
re-classified to obtain a probability map, and FLICM clustering
algorithm was then used to distinguish between unchanged and
changed categories. Kappa coefficient κ was chosen as the
evaluation criterion and results were compared on the Beijing-I,
Beijing-II, Beijing-III, Coast, and Yellow River datasets. As
shown in Fig. 16, the mechanism of repredicting all the patches
produced higher κ values on all five datasets, confirming its
effectiveness.

TABLE X
CHANGE DETECTION RESULTS WITH DIFFERENT TYPES OF LOSS FUNCTIONS

6) Analysis of Different Types of Loss Functions: In the
change detection network, class-balanced adaptive focal loss is
employed to address the class imbalance issue during training.
According to the number of samples in each class, it applies
an adaptive balancing factor and a modulating term to the cross
entropy loss in order to focus training on misclassified examples.
To evaluate its efficacy, change detection results of binary cross
entropy loss, nonadaptive focal loss and class-balanced adaptive
focal loss were compared, terms as BCEL, NAWL, and CBAWL,
respectively. As presented in Table X, with class-balanced adap-
tive focal loss, higher accuracies and Kappa coefficients were
obtained on all datasets. It can be observed that the model trained
using the binary cross entropy loss produced large false negatives
in most cases, indicating the network biased toward learning
more representations of the disadvantaged class and neglecting
the advantaged class. The nonadaptive focal loss extends the bi-
nary cross entropy by introducing an additional modulating term
to avoid producing large gaps between numbers of false negative
and false positives. The proposed class-balanced adaptive focal
loss further incorporates a class-balanced weight factor, pushing
the network to adapt to imbalanced classes.

7) Analysis of Different Types of Classifiers: Deep learning
based change detection methods commonly use the softmax
function as the final classifier to determine the predictions
from the probability map. In this article, we proposed to adopt
FLICM algorithm to produce satisfactory change detection re-
sults. To validate the usefulness of the FLICM, experiments
were performed by comparing three different types of classifiers:
softmax, FCM and FLICM. Quantitative results on the five
datasets are given in Table XI. Compared with softmax, by
employing the FLICM algorithm to cluster pixels according to
the neighborhood information, the proposed method achieved
higher accuracies and Kappa coefficients on four dataset. In
Beijing-II dataset, although the detection accuracy of FLICM
was marginally worse than that of softmax, higher κ was ob-
tained with more balanced FP and FN values. Furthermore, fus-
ing with local neighborhood information, FLICM yields stable
and appreciable results with stronger capability of suppressing
noise, illustrating its usefulness in distinguishing changed, and
unchanged regions.
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TABLE XI
CHANGE DETECTION RESULTS WITH DIFFERENT TYPES OF CLASSIFIERS

VI. CONCLUSION

In this article, we have developed an approach to extract
difference map based on visual saliency, capable of highlighting
authentic change areas with robust suppression of false alarms.
An unsupervised multi-hierarchical clustering algorithm, MH-
FLICM, is then proposed to effectively detect potential changed
areas and select high-quality samples with accurate pseudola-
bels. These pre-classified samples can be constructed as inputs to
the change detection network, in which class-balanced adaptive
focal loss is incorporated for diminishing the gap between
numbers of samples in unchanged and changed classes. FLICM
clustering algorithm is employed to yield satisfactory predic-
tions from the network output with strong resistance to noise.

Experimental results and comparisons with state-of-the-art
algorithms on various datasets have verified the advantages
of the proposed SAR change detection framework, reaching
averaged accuracy of 99.07% and Kappa coefficient of 79.87%
over five benchmark datasets. The proposed method combines
the respective strengths of multi-hierarchical clustering and deep
models to produce training samples of high-confidence in an
unsupervised way, and to yield stable and exceeding change
detection performances, particularly in images with changes in
small areas. It is worth mentioning that in spite of complex types
of changes involved, improved performances over the existing
methods have been achieved both visually and quantitatively.

REFERENCES

[1] A. Singh, “Review article digital change detection techniques using
remotely-sensed data,” Int. J. Remote Sens., vol. 10, no. 6, pp. 989–1003,
1989.

[2] A. Reigber et al., “Very-high-resolution airborne synthetic aperture radar
imaging: Signal processing and applications,” Proc. IEEE, vol. 101, no. 3,
pp. 759–783, Mar. 2013.

[3] A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P.
Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geosci.
Remote Sens. Mag., vol. 1, no. 1, pp. 6–43, Mar. 2013.

[4] J. Lu, J. Li, G. Chen, L. Zhao, B. Xiong, and G. Kuang, “Improving
pixel-based change detection accuracy using an object-based approach in
multitemporal SAR flood images,” IEEE J. Sel. Top. Appl. Earth Observ.
Remote Sens., vol. 8, no. 7, pp. 3486–3496, Jul. 2015.

[5] Y. Li, S. Martinis, S. Plank, and R. Ludwig, “An automatic change
detection approach for rapid flood mapping in sentinel-1 SAR data,” Int.
J. Appl. Earth Observ. Geoinf., vol. 73, pp. 123–135, 2018.

[6] H. Gokon et al., “A method for detecting buildings destroyed by the 2011
tohoku earthquake and tsunami using multitemporal terraSAR-X data,”
IEEE Geosci. Remote Sens. Lett., vol. 12, no. 6, pp. 1277–1281, Jun. 2015.

[7] M. Wieland, W. Liu, and F. Yamazaki, “Learning change from synthetic
aperture radar images: Performance evaluation of a support vector machine
to detect earthquake and tsunami-induced changes,” Remote Sens., vol. 8,
no. 10, 2016, Art. no. 729.

[8] L. Li, C. Wang, H. Zhang, B. Zhang, and F. Wu, “Urban building change
detection in SAR images using combined differential image and residual
U-Net network,” Remote Sens., vol. 11, no. 9, 2019, Art. no. 1091.

[9] S. Saha, F. Bovolo, and L. Bruzzone, “Building change detection in VHR
SAR images via unsupervised deep transcoding,” IEEE Trans. Geosci.
Remote Sens., vol. 59, no. 3, pp. 1917–1929, Mar. 2021.

[10] R. S. Lunetta, J. F. Knight, J. Ediriwickrema, J. G. Lyon, and L. D. Worthy,
“Land-cover change detection using multi-temporal MODIS NDVI data,”
Remote Sens. Environ., vol. 105, no. 2, pp. 142–154, 2006.

[11] D. C. Zanotta and V. Haertel, “Gradual land cover change detection
based on multitemporal fraction images,” Pattern Recognit., vol. 45, no. 8,
pp. 2927–2937, 2012.

[12] S. H. Khan, X. He, F. Porikli, and M. Bennamoun, “Forest change
detection in incomplete satellite images with deep neural networks,”
IEEE Trans. Geosci. Remote Sens., vol. 55, no. 9, pp. 5407–5423,
Sep. 2017.

[13] L. Bruzzone and S. B. Serpico, “An iterative technique for the detection
of land-cover transitions in multitemporal remote-sensing images,” IEEE
Trans. Geosci. Remote Sens., vol. 35, no. 4, pp. 858–867, Jul. 1997.

[14] M. Roy, S. Ghosh, and A. Ghosh, “A neural approach under active learning
mode for change detection in remotely sensed images,” IEEE J. Sel.
Top. Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1200–1206,
Apr. 2014.

[15] Y. Bazi, L. Bruzzone, and F. Melgani, “An unsupervised approach based
on the generalized Gaussian model to automatic change detection in
multitemporal SAR images,” IEEE Trans. Geosci. Remote Sens., vol. 43,
no. 4, pp. 874–887, Apr. 2005.

[16] H.-C. Li, H.-C. Li, G. Yang, W. Yang, Q. Du, and W. J. Emery, “Deep non-
smooth nonnegative matrix factorization network with semi-supervised
learning for SAR image change detection,” ISPRS J. Photogramm. Remote
Sens., vol. 160, pp. 167–179, 2020.

[17] J. Wang, X. Yang, L. Jia, and S. Fang, “Unsupervised change detection
between SAR images based on hypergraphs,” ISPRS J. Photogramm.
Remote Sens., vol. 164, pp. 61–72, 2020.

[18] Y. Bazi, L. Bruzzone, and F. Melgani, “Automatic identification of the
number and values of decision thresholds in the log-ratio image for change
detection in SAR images,” IEEE Geosci. Remote Sens. Lett., vol. 3, no. 3,
pp. 349–353, Jul. 2006.

[19] B. Hou, Q. Wei, Y. Zheng, and S. Wang, “Unsupervised change detection
in SAR image based on gauss-log ratio image fusion and compressed
projection,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 7,
no. 8, pp. 3297–3317, Aug. 2014.

[20] M. Gong, Y. Cao, and Q. Wu, “A neighborhood-based ratio approach for
change detection in SAR images,” IEEE Geosci. Remote Sens. Lett., vol. 9,
no. 2, pp. 307–311, Mar. 2012.

[21] Y. Zheng, X. Zhang, B. Hou, and G. Liu, “Using combined difference
image and k-means clustering for SAR image change detection,” IEEE
Geosci. Remote Sens. Lett., vol. 11, no. 3, pp. 691–695, Mar. 2014.

[22] B. Cui, Y. Zhang, L. Yan, J. Wei, and Q. Huang, “A SAR change detection
method based on the consistency of single-pixel difference and neighbour-
hood difference,” Remote Sens. Lett., vol. 10, no. 5, pp. 488–495, 2019.

[23] J. Geng, X. Ma, X. Zhou, and H. Wang, “Saliency-guided deep neural
networks for SAR image change detection,” IEEE Trans. Geosci. Remote
Sens., vol. 57, no. 10, pp. 7365–7377, Oct. 2019.

[24] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE
Trans. Syst., Man, Cybern., vol. 9, no. 1, pp. 62–66, Jan. 1979.

[25] C. Gao, H. Zhang, C. Wang, and F. Wu, “SAR change detection based on
generalized gamma distribution divergence and auto-threshold segmenta-
tion,” J. Remote Sens., vol. 14, no. 4, pp. 710–724, 2010.

[26] Y. Bazi, L. Bruzzone, and F. Melgani, “Image thresholding based on the em
algorithm and the generalized Gaussian distribution,” Pattern Recognit.,
vol. 40, no. 2, pp. 619–634, 2007.

[27] S. Krinidis and V. Chatzis, “A robust fuzzy local information C-means
clustering algorithm,” IEEE Trans. Image Process., vol. 19, no. 5,
pp. 1328–1337, May 2010.

[28] M. Gong, L. Su, M. Jia, and W. Chen, “Fuzzy clustering with a modified
MRF energy function for change detection in synthetic aperture radar
images,” IEEE Trans. Fuzzy Syst., vol. 22, no. 1, pp. 98–109, Feb. 2014.

[29] M. Gong, Z. Zhou, and J. Ma, “Change detection in synthetic aperture
radar images based on image fusion and fuzzy clustering,” IEEE Trans.
Image Process., vol. 21, no. 4, pp. 2141–2151, Apr. 2012.



PENG et al.: AUTOMATIC SAR CHANGE DETECTION BASED ON VISUAL SALIENCY AND MULTI-HIERARCHICAL FUZZY CLUSTERING 7769

[30] M. Gong, J. Zhao, J. Liu, Q. Miao, and L. Jia, “Change detection in
synthetic aperture radar images based on deep neural networks,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 27, no. 1, pp. 125–138, Jan. 2016.

[31] Y. Gao, F. Gao, J. Dong, and S. Wang, “Transferred deep learning for Sea
Ice change detection from synthetic-aperture radar images,” IEEE Geosci.
Remote Sens. Lett., vol. 16, no. 10, pp. 1655–1659, Oct. 2019.

[32] X. Zhang, H. Su, C. Zhang, X. Gu, X. Tan, and P. M. Atkinson, “Robust
unsupervised small area change detection from SAR imagery using deep
learning,” ISPRS J. Photogramm. Remote Sens., vol. 173, pp. 79–94, 2021.

[33] Y. Zheng, L. Jiao, H. Liu, X. Zhang, B. Hou, and S. Wang, “Unsupervised
saliency-guided SAR image change detection,” Pattern Recognit., vol. 61,
pp. 309–326, 2017.

[34] Y. Zhai and M. Shah, “Visual attention detection in video sequences
using spatiotemporal cues,” in Proc. ACM Int. Conf. Multimedia, 2006,
pp. 815–824.

[35] R. Cong, J. Lei, H. Fu, M. M. Cheng, W. Lin, and Q. Huang, “Review of
visual saliency detection with comprehensive information,” IEEE Trans.
Circuits Syst. Video Technol., vol. 29, no. 10, pp. 2941–2959, Oct. 2019.

[36] S. Zagoruyko and N. Komodakis, “Learning to compare image patches via
convolutional neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2015, pp. 4353–4361.

[37] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense
object detection,” in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 2980–
2988.

[38] Y. Zhao, M. Jiang, J. Kong and S. Li, “Paralleled attention modules and
adaptive focal loss for siamese visual tracking,” IET Image Process.,
vol. 15, no. 6, pp. 1345–1358, 2021.

[39] Y. Liang, Y. Long, Y. Li, J. Liang and Y. Wang, “Joint framework with deep
feature distillation and adaptive focal loss for weakly supervised audio
tagging and acoustic event detection,” Digit. Signal Process., vol. 123,
pp. 103446–103455, 2022.

[40] X. Zhao, J. Yao, W. Deng, M. Jia and Z. Liu, “Normalized conditional
variational auto-encoder with adaptive focal loss for imbalanced fault
diagnosis of bearing-rotor system,” Mech. Syst. Signal Process., vol. 170,
2022, Art. no. 108826.

[41] T. Celik, “Unsupervised change detection in satellite images using prin-
cipal component analysis and k-means clustering,” IEEE Geosci. Remote
Sens. Lett., vol. 6, no. 4, pp. 772–776, Oct. 2009.

[42] F. Gao, J. Dong, B. Li, Q. Xu and C. Xie, “Change detection from
synthetic aperture radar images based on neighborhood-based ratio and
extreme learning machine,” J. Appl. Remote Sens., vol. 10, no. 4, 2016,
Art. no. 046019.

[43] F. Gao, J. Dong, B. Li, and Q. Xu, “Automatic change detection in synthetic
aperture radar images based on PCANet,” IEEE Geosci. Remote Sens. Lett.,
vol. 13, no. 12, pp. 1792–1796, Dec. 2016.

[44] F. Gao, X. Wang, Y. Gao, J. Dong, and S. Wan, “Sea Ice change detection
in SAR images based on convolutional-wavelet neural networks,” IEEE
Geosci. Remote Sens. Lett., vol. 16, no. 8, pp. 1240–1244, Aug. 2019.

[45] X. Qu, F. Gao, J. Dong, Q. Du, and H.-C. Li, “Change detection in synthetic
aperture radar images using a dual-domain network,” IEEE Geosci. Remote
Sens. Lett., vol. 19, pp. 1–5, 2021, Art no. 4013405.

[46] Y. Gao, F. Gao, J. Dong, Q. Du, H.-C. Li, “Synthetic aperture radar image
change detection via siamese adaptive fusion network,” IEEE J. Sel. Top.
Appl. Earth Observ. Remote Sens., vol. 14, pp. 10748–10760, 2021.

Yao Peng (Member, IEEE) received the B.Eng. de-
gree in detection guidance and control techniques
from the Nanjing University of Science and Tech-
nology, Nanjing, China, in 2013, the M.Sc. degree
in digital image and signal processing from the Uni-
versity of Manchester, Manchester, U.K., in 2014,
and the Ph.D. degree in electrical and electronic en-
gineering from the University of Manchester, U.K.,
in 2019.

She is currently enrolled as a Lecturer with the
School of Geographic and Biologic Information,

Nanjing University of Posts and Telecommunications, Nanjing, China. Her cur-
rent research interests include generative adversarial learning, data-independent
feature leaning, self-organizing and unsupervised learning, and their applications
to face recognition, image generation, hyperspectral image analysis, remote
sensing image processing.

Bin Cui received the B.Eng. degree in geomat-
ics engineering from Henan Polytechnic University,
Jiaozuo, China, in 2011, the M.Eng. degree in ge-
omatics engineering from the Beijing University of
Civil Engineering and Architecture, Beijing, China,
in 2015, and the Ph.D. degree in photogrammetry
and remote sensing from Wuhan University, Wuhan,
China, in 2020.

He is currently a Lecturer with the School of
Geographic and Biologic Information, Nanjing Uni-
versity of Posts and Telecommunications, Nanjing,

China. And he is also enrolled as a Postdoctoral Researcher with the School of
Geography and Ocean Science, Nanjing University. His current research inter-
ests include remote sensing image processing, change detection, multimodality
image fusion and their applications in remote sensing.

Hujun Yin (Senior Member, IEEE) received the
B.Eng. degree in electronic engineering and the M.Sc.
degree in signal processing, both from Southeast Uni-
versity, Nanjing, China, in 1983 and 1986, respec-
tively, and the Ph.D. degree in neural networks from
the University of York, Heslington, U.K., in 1997.

Since 1996, he has been with the Department of
Electrical and Electronic Engineering, The Univer-
sity of Manchester, Manchester, U.K., where he is
currently a Professor of artificial intelligence. He has
supervised more than 25 Ph.D. students and authored

or coauthored more than 200 peer-reviewed articles. His main research interests
include neural networks, self-organizing and unsupervised learning, deep learn-
ing, image classification and hyperspectral image processing, face recognition,
data analytics, time series modelling and prediction, bio-/neuro-informatics, and
interdisciplinary applications.

Prof. Yin was a recipient of more than £4 million research funding from
UK research councils, EPSRC, BBSRC, Innovate UK and industries across 25
funded projects. Many of his projects involve industries in developing cutting
edge AI solutions. He had served as an Associate Editor for the IEEE TRANS-
ACTIONS ON NEURAL NETWORKS, 2006–2010 and the International Journal of
Neural Systems 2005–2020. Since 2015, he has been serving as an Associate
Editor for the IEEE TRANSACTIONS ON CYBERNETICS. He has also served as the
General Chair or Programme Chair for a number of international conferences
in AI, machine learning and data analytics. He is a member of the EPSRC Peer
Review College (since 2006), a senior member of the IEEE (since 2003) and a
Turing Fellow of the Alan Turing Institute (since 2018).

Yonghong Zhang received the bachelor’s degree in
mathematics from Wuhan University, Wuhan, China,
in 1994, and the Ph.D degree in photogrammetry
and remote sensing from Wuhan University, Wuhan,
China, in 2001.

He is with the Chinese Academy of Surveying
and Mapping, Beijing, China. He has authored more
than 120 publications. His research interests include
algorithm development and applications associated
with SAR, SAR interferometry, and SAR polarimetry.

Peijun Du (Senior Member, IEEE) received the Ph.D.
degree in geodesy and survey engineering from the
China University of Mining and Technology, Xuzhou,
China, in 2001.

He is currently a Professor of remote sensing and
geographic information science with Nanjing Univer-
sity, Nanjing, China. He has authored or coauthored
more than 150 articles in international peer-reviewed
journals, and more than 220 papers in international
conferences and Chinese journals. His research in-
terests focus on remote sensing image intelligent

processing and geographic analysis, urban remote sensing for smart cities, and
integrated applications of geospatial information technologies.

Dr. Du was an Associate Editor for the IEEE GEOSCIENCE AND REMOTE

SENSING LETTERS from 2009 to 2019.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


