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T3SR: Texture Transfer Transformer for Remote
Sensing Image Superresolution

Durong Cai and Peng Zhang

Abstract—Remote sensing image superresolution has made sig-
nificant progress in recent years, aiming to restore natural and real-
istic high-resolution images from low-resolution images. However,
most image superresolution remote sensing methods are improved
only by deepening their network and expanding the network size,
consuming substantial computing resources and imposing a bot-
tleneck in development. Here, we propose an end-to-end image
superresolution network called texture transfer transformer for
remote sensing image superresolution (T3SR). For the first time,
T3SR introduces image texture transfer into remote sensing, which
achieves the most advanced results. Specifically, T3SR divides im-
age superresolution into two stages: texture transfer and feature
fusion. First, to solve the problems of missing textures, artifacts,
and blurring in a single image superresolution approach, we design
a texture transfer module to serve the shallow texture transfer.
Second, to further reduce the dependence of the model on the
reference image, we propose a U-Transformer-based feature fusion
scheme to reduce the dependence on the reference image. Finally,
we conduct numerous experiments on standard public datasets to
fully evaluate our approach. In addition to verifying the method’s
superiority based on the reference image paradigm, we also test
the performance without the reference image. All results show that
our method yields an abundant texture and finish with better visual
results. Moreover, the best score is also obtained in the quantitative
parameters of PSNR and SSIM. Compared with the best available
approach, T3SR has an improved performance by 0.79 dB and
0.33 dB in the datasets of WHU-RS19 and RSSCN7, respectively.

Index Terms—Image superresolution, reference image, self-
reference, texture transfer.

I. INTRODUCTION

IMAGE superresolution (SR) refers to the process of obtain-
ing a natural and realistic high-resolution (HR) image from a

low-resolution (LR) image. It is a basic task of image processing
and computer vision. Likewise, image superresolution is also
known by more common names, such as scaling, interpolation,
and magnification. More broadly, generating the HR image
from an LR image is considered as superresolution as long as
technical means are used. In general, HR images have higher
pixel density, higher definition, and more detailed textures than

Manuscript received 12 April 2022; revised 20 June 2022 and 30 July 2022;
accepted 9 August 2022. Date of publication 16 August 2022; date of current
version 9 September 2022. This work was supported in part by the Science
and Technology Planning Project of Guangdong Science and Technology
Department Guangdong Key Laboratory of Advanced IntelliSense Technology
under Grant 2019B121203006, and Shenzhen Science and Technology Program
under Grant KQTD20190929172704911. (Corresponding author: Peng Zhang.)

The authors are with the School of Electronics and Communication
Engineering, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
(e-mail: 1750826167@qq.com; zhangpeng5@mail.sysu.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2022.3198557

Fig. 1. Architecture of camera imaging.

LR images. Therefore, HR images have a wider application in
various fields than LR images. However, due to the sensor and
high-cost constraints, most real-world images are dominated
by low resolution. Especially in remote sensing, owing to the
equipment limitation, remote sensing images are generically
low resolution. If the LR image observed from the satellite can
be recovered from the HR image, it is of great significance for
various applications such as environmental monitoring, resource
exploration, and surveillance. Therefore, superresolution in re-
mote sensing [1], [2], [3] has become one of the most essential
scientific areas in recent years.

Image superresolution in remote sensing has attracted more
and more attention in the industry, mainly concerning the follow-
ing aspects: First, the resulting image is mainly low resolution
due to the sensor’s limited physical parameters. As shown in
Fig. 1, the charge coupled device (CCD) generates and stores
the corresponding charges according to the difference in the
light coming from the lens. However, due to the difficulty of the
process and the rising production cost, the size of the CCD is
often small. Therefore, when the size of the CCD is constant,
the larger the distance from the objective to the lens WD, the
lower the imaging resolution of the device. In remote sensing,
imaging equipment is generically located on orbiting satellites in
units of 10 000 m, and the lower ones are also carried by drone
in 100 m. Therefore, the image captured is often lower than
0.5 m resolution in remote sensing, limiting the development of
computer vision remote sensing.

Furthermore, as a member of low-level vision tasks, image
superresolution determines the image quality and affects other
vision tasks. For example, in the object detection task, an HR
image has clearer texture details, better representing the target
features so that the model can better capture and locate the target.
This demonstrates that applying image superresolution to target
detection tasks is appropriate for detecting dense small targets
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Fig. 2. Overall architecture of SRCNN.

and improving the overall performance. Similarly, combining
image superresolution with other high-level vision tasks such
as classification, localization, and segmentation can also bring
certain benefits to itself [4], [5].

Convolutional neural networks (CNNs) have led to significant
improvements in the performance of superresolution. Never-
theless, most methods are developed for the generic scene,
while techniques specifically designed for remote sensing scenes
are relatively scarce. Unlike the generic scene, remote sensing
images have a lower resolution, i.e., one pixel in the picture
corresponds to several square meters of ground. A remote sens-
ing image of 5000 × 5000 pixels cannot be used directly, as
it needs to be used after cropping. Due to the properties of a
remote sensing scene, the resolution is so low that pixels between
neighbors often have the same texture and the image background
is also simpler, leading to the image superresolution based on a
reference image (RefSR).

The RefSR-based methods transfer the texture from the ref-
erence image to the reconstructed image, improving the per-
formance over the past superresolution methods. RefSR-based
methods complement the missing details in the LR image by
transferring the rich textures of the HR image and generating
more detailed and realistic textures with the help of a reference
image. The existing RefSR methods are [6], [7], [8] and play
an important role in their respective fields. Unfortunately, these
methods require high similarity between the reference and LR
images. When the correlation is weak or dissimilar, their perfor-
mance degrades significantly, becoming even worse than single
image superresolution methods (SISR).

A classical SISR method is SRCNN, shown in Fig. 2, which
does not have a clear definition of the spatial mapping from the
LR to the HR image, and obtains a high-dimensional mapping
relationship with the help of massive data training. Given that the
texture of the HR image is overly destroyed during degradation,
the blurring is aggravated with the increase of the magnification
factor. Although superresolution methods based on GAN [9]
have been proposed to alleviate the above problems, the illusions
and artifacts caused by the GAN-based generation further pose
a significant challenge to the superresolution task. To overcome
the shortcomings of the SISR-based methods, Zhang et al. [7]
proposed the superresolution image based on neural texture
migration (SRNTT), a superresolution method with a reference
image-based paradigm. Unfortunately, the RefSR methods re-
quire a high correlation between the reference image and LR

image, and their performance degrades significantly when the
degree of correlation is low, becoming even inferior to the SISR
methods.

In summary, research on image superresolution of remote
sensing is of great significance as it can not only solve the
problems posed by physical sensors but also bring benefits to
other computer vision tasks. Regrettably, the current superreso-
lution methods still face many challenges and shortcomings,
summarized in the following problems: First, the problems
of missing textures, artifacts, and blurring that exist in SISR
methods. Second, the method of RefSR has a strong dependence
on the reference image.

This article focuses on the above challenges and proposes
T3SR: a texture transfer transformer for superresolution of re-
mote sensing images. The main contributions of this work are
summarized as follows:

1) For the imaging characteristics of remote sensing superes-
olution, we propose T3SR, which is the first time intro-
ducing texture transfer into the superresolution of remote
sensing. More specifically, we divide superresolution into
two stages: texture transfer and feature fusion. For shallow
semantic information, we transfer the texture directly,
while for deep semantic information, we design a feature
fusion network, called U-Transformer, to improve the
performance and reduce the dependence on the reference
image.

2) Addressing the problems of high-frequency detail loss,
artifacts, and blurring of the SISR methods. Specifically,
we construct an adaptive texture migration module based
on the RefSR paradigm. This module can enrich the
texture details of superresolution images by adaptively
transferring textures according to the texture similarity
between the reference and LR images. Among them, the
reference attention module is also a variant of a trans-
former, containing elements, for instance, K, Q, V, and
the attention matrix. It differs from the single input and
self-attentive mechanism strategy used by a transformer
in the past. We take the reference and LR images as input
and use the reference attention mechanism. Extensive
experiments show that the module can adaptively learn the
high-definition texture of the reference image and migrate
it to the subsequent superresolution image reconstruction.

3) To address the problem that the RefSR methods require a
high correlation of reference images, we design a feature
fusion network named U-Transformer based on the struc-
ture of the transformer and U-Net. We rely on this module
combination because U-Net is designed to compensate
for the disadvantage of fewer training samples, and the
transformer is designed to enhance image features through
a self-attentive mechanism. Therefore, the U-Transformer
module effectively reduces the module’s dependence on
the reference image to achieve weak dependence and
even more self-reliance. In the subsequent experiments,
we investigate the model’s performance in the lack of
reference image context, with the results proving that the
module can effectively reduce the model’s dependence on
the reference image.



7348 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

The rest of this article is organized as follows. Section II will
review the related work of the SISR, RefSR, and transformer-
SR-based methods, and the remote sensing superresolution
methods. Section III details T3SR, containing a generic ex-
position and a modular explanation. In Section IV, complete
experiments are conducted in both generic and remote sensing
scenes to verify our method’s effectiveness. Finally, Section V
concludes this article.

II. RELATED WORK

In this section, we present the related work regarding the
SISR, RefSR, transformer-SR, and remote sensing methods. It
also gives a brief analysis of the advantages and disadvantages
of the above superresolution paradigms and inspiration for our
approach.

A. Single Image Superresolution

In recent years, data-driven deep learning approaches have
surpassed traditional superresolution methods. For a more com-
prehensive understanding of the technical development history
of SISR, the reader is referred to [10], [11], [12]. The SISR-based
methods aim to train a complex neural network through a large
amount of data to establish an image mapping function between
the LR and HR images. Next, we present the development history
of the SISR methods.

In 2014, the first deep learning-based SISR approach was
SRCNN [13] using a three-layered CNN proposed by Dong
et al. (see Fig. 2). The arrival of SRCNN brought a new way
for superresolution, which laid the foundation for the following
methods. Then, in 2015, He et al. proposed Res-Net [14], which
solved the network’s deep gradient disappearance problem using
a residual structure. On this basis, Kim et al. [15] developed
VDSR and introduced the residual structure in superresolution
for the first time. The problem of inadequate feature extraction
was solved by increasing the number of network layers through
the residual structure. Subsequently, Lim proposed EDSR [16],
which removed some unnecessary modules in the residual struc-
ture, making it applicable to low-level vision problems like
superresolution. Next, Lim proposed MDSR to address the prob-
lems of EDSR [17]. In 2020, Tian et al. [18] proposed CFSRCNN
to improve model stability. However, the feature extraction
ability of these two networks is insufficient. In 2021, Kong
et al. proposed ClassSR [19], the first superresolution method
that combines classification and superresolution to accelerate
superresolution through data features.

All the above SISR methods ignore texture similarity and
improve the performance only by expanding the network size,
which makes the superresolution development difficult. Subse-
quently, the RefSR-based methods were proposed to extend the
development of SISR.

B. Reference-Based Image Superresolution

Unlike SISR, RefSR introduces a reference image to assist
the image reconstruction process in addition to the LR image.
Generally, the reference image is an HR image with a texture or
content similar to that of the LR image.

The first RefSR network is CrossNet [6], which contains an
image encoder, a cross-scale warping layer, and a fusion decoder.
First, the encoder is responsible for the feature extraction of
the LR and reference images. Second, the positions of both
images are aligned by a cross-scale distortion layer. Finally,
the decoder connects the above feature maps to generate an
HR image. However, since CrossNet uses spatial alignment,
when the similarity between the reference and LR images is
low, the restoration effect is inferior to SISR-based methods.
Subsequently, methods such as SRNTT [7] and TTSR [8] were
proposed. The former was proposed by Zhang et al. and ex-
changed the most similar features of the reference and LR images
through convolutional layers. This method is effective for image
detail restoration, but SRNTT ignores the correlation between
the reference image and the LR image, which makes all image
features equally available to the subsequent network. Therefore,
TTSR combines the feature maps with a transformer to design a
texture converter that uses an attention method to assign weights
to features, informing the network for features to be focused on
during learning.

The above-mentioned RefSR methods bring a new paradigm
to image superresolution. They obtain texture details by texture
migration, which in the past required substantial computational
resources. However, these methods focus on the texture migra-
tion module and ignore the importance of the subsequent feature
fusion. As a result, these methods rely heavily on a reference
image, which is undesired.

C. Vision Transformer

In 2017, the transformer was first introduced by Vaswani
et al. [20] and was originally designed to process sequences
in NLP. In recent years, we have progressively explored trans-
former architecture in computer vision. A visual transformer
slices and encodes an image in the same way NLP processes
language sequences and then gets the internal connections
through attention. To date, it has been widely used for common
vision tasks, like object classification [21], [22], [23], [24], [25],
[26], [27], object detection [24], [28], [29], [30], and semantic
segmentation [23], [24], [31], [32].

The functions performed in the above tasks can be divided into
two areas. The first one is to introduce self-attention in traditional
CNN. For example, Fu et al. [33] proposed DANET to extract
image information by combining spatial and channel attention.
Wang et al. [34] utilized self-attention to improve the model’s
performance on several advanced visual tasks. An alternative
solution is replacing the CNN with self-attentive blocks. For
instance, Dosovitskiy [25] used a transformer block for image
classification. Transformer models have also been used for low-
level vision tasks, for example, superresolution [8], [35], image
coloring [36], denoising, [37], [38], and decontamination [38].
The overall architecture of SwinIR [35] is shown in Fig. 3.

D. SR of Remote Sensing

Remote sensing has always been one of the essential scenes,
where superresolution is applied. In recent years, the industry’s
research focus on image superresolution technology for remote
sensing scenes is based on deep learning. In 2017, Lei et al. [39]
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Fig. 3. Overall architecture of SwinIR.(a) Residual Swin Transformer Block
(RSTB) (b) Swin Transformer Layer (STL).

proposed a local–global combined network (LGCNet) for re-
mote sensing based on deep CNN. Motivated by the success
of the back-projection network [40], Pan et al. [41] proposed
a dense residual backprojection block to enhance the feature
extraction ability. Since the attention mechanism is well known,
Gu et al. [42] proposed to use the attention module to build a
remote sensing superresolution network. Jiang et al. [43] also
proposed the edge-enhancement network (EEGAN), a remote
sensing image superresolution network using an adversarial
generative strategy, aiming to improve the recovery performance
of image edge information. Similarly, Ma et al. [44] proposed
the DRGAN, a GAN-based method for detailed information
recovery.

Despite the rapid development of superresolution technol-
ogy in remote sensing, current methods remain in the SISR
paradigm. Most methods improve performance by combining
some techniques, such as dense connection, residual connection,
attention mechanism, and adversarial loss. These networks are
designed based on deep learning and the SISR’s paradigm.
When there is too much loss of image information or large-scale
superresolution, relying solely on the network design cannot
bring significant results. Therefore, RefSR adds a new route to
image superresolution by reconstructing low-resolution images
by introducing additional reference information, which is very
consistent with remote sensing image superresolution. However,
this paradigm has not been applied to the remote sensing field,
which is the focus of this article.

III. METHODOLOGY

In this article, we take the image superresolution of remote
sensing as our main task. Based on the existing theoretical basis,
we propose T3SR, a texture transfer transformer for superreso-
lution of remote sensing images. Due to the data characteristics,
a remote sensing image generically has a larger size, lower
image resolution, and more similar textures than a generic
scene. Therefore, unlike a generic image, a remote-sensing
image of 5000*5000 size cannot be trained directly and must
be cropped before use. Low-resolution means one pixel in the
image corresponds to a ground size of several square meters.
In addition, pixels between adjacent remotely sensed images
generically have more similar textures, which can be applied
to image restoration. The T3SR architecture comprises three
components: shallow texture extraction, reference attention, and
self-attention.

The T3SR network is shown in Fig. 4, where the overall
structure can be distributed into two modules: the texture trans-
fer module and the U-Transformer fusion module. In the first
stage, the LR image and reference image require the following
operations: feature extraction, feature correlation, and texture
transfer. In the second stage, the U-Transformer module uses
the self-attention strategy to remind which information needs to
be retained and dropped.

To fully evaluate the performance of T3SR, we chose the
standard x4 magnification scale. We perform an ×4 scale up-
sampling of the LR image for data preparation. This scale makes
our method more easily transferable to other image restoration
tasks, e.g., deblurring, denoising, dealiasing, and patching. The
essence of superresolution is the same as in the above tasks but
differs in having an additional zoom operation. Therefore, our
method can also be applied to generic image restoration tasks,
but the data must be prepared and the model retrained. In this
article, we concentrate only on superresolution performance and
not on all image restoration tasks.

A. Shallow Texture Extraction

For shallow texture, we use the pretrained weights of VGG-19.
The VGG-Net is built by the Visual Geometry Group team
of Oxford University. It has five models (A to E), with the
E model (VGG-19) used in the ILSVRC 2014 challenge and
won first place in ILSVRC positioning and second place in the
classification challenge. The overall structure of VGG-19 in-
volves the same convolution kernel size (3×3) and max pooling
size (2×2). However, the excessive T3SR parameters make its
training difficult if the feature extraction module is retrained.
Therefore, instead of retraining the VGG-19 network from zero,
we directly adopt the pretrained weights of VGG-19.

First, the upsampling LR image ILR↑, the upsampling after
downsampling reference image IRef↓↑, and the reference image
IRef will pass through the pretrained weights of VGG-19. As
shown in (1), (2), and (3), in this way, the feature maps FLR↑

i ,
FRef↓↑
i , and FRef

i (i means scale) of the corresponding layer
are obtained. The overall structure of VGG-19 and some layer
outputs are shown in Fig. 5. Here, we only extract feature maps
from layers 2, 4, and 8, corresponding to the downsampling scale
of ×1, ×2, and ×4

FLR↑
i = ϕvgg(I

LR↑) (1)

FRef↓↑
i = ϕvgg(I

Ref↓↑) (2)

FRef
i = ϕvgg(I

Ref ). (3)

B. Reference Attention Module

The reference attention module, shown in Fig. 6, is also a
variant of the transformer, which contains elements such as
K, Q, and V. Different from the previous transformer, we use
the transposed matrix multiplication when calculating the cor-
relation between K and Q, which can significantly reduce the
memory consumption of GPU. Therefore, the reference attention
module is divided into the following four operations to reduce
memory consumption.
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Fig. 4. Overall architecture of Texture Transfer Transformer(T3SR), which can be divided into texture transfer module and U-Transformer fusion module.

Fig. 5. Overall structure of VGG-19 and visualization of feature maps.

The inputs of the reference attention module are the VGG-19
outputs FLR↑

i , FRef↓↑
i and FRef

i . To simplify the design of
the subsequent convolution, we concatenate the feature map
channelwise to obtainF (LR↑,Ref↓↑,Ref)

i ∈RH×W×3 C , as shown
in (4). Then, we perform convolution and normalization on the
Tensor and divide it into three blocks by channel to obtain
the Value of Q, K, and V, shown in (5). The expression of
normalization is shown in formula (6)

F
(LR↑,Ref↓↑,Ref)
i = Concat(FLR↑

i , FRef↓↑
i , FRef

i ) (4)

Qi,Ki, Vi = Conv(norm(F
(LR↑,Ref↓↑,Ref)
i )).Chunk

(5)

y =
x− E[x]√
V ar[x] + ε

· γ + β. (6)

The attention matrix is obtained from (7), representing the
weights of the migratable texture. Subsequently, the attention
matrix is multiplied with V and passes through a convolution.
Finally, the module output is obtained by a residual structure, as
shown in (8)

Mati = Ki·QT
i (7)

FRA
i = Conv(Mati×Vi) + Vi. (8)
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Fig. 6. Overall structure of reference attention module structure.

Fig. 7. Overall structure of transformer.

C. U-Transformer

A multihead attention module and a forward feedback net-
work are the two primary components of the transformer sug-
gested in this study. Our method is inspired by SwinIR [35]
and Restormer [45], as shown in Fig. 7. The multihead attention
module is similar to the reference attention module described
before, but the input is different, which is a single Tensor. The
data are expanded by convolution and then divided to obtain Q,
K, and V. In the forward feedback network, the former multi-
layer perceptron (MLP) is replaced with an attention network.
The input is first passed through a convolutional block equally
divided into two branches. Nonlinear activation directly assigns
one channel’s attention weights to the other channel.

The transformer enhances image features through a self-
attention mechanism. Thus, our method works under the dual
attention of reference attention and self-attention. It enhances
the superresolution performance and discards the strong depen-
dence on the reference image compared to the RefSR methods,
suggesting a solution different from previous SISR or RefSR
methods.

Fig. 4 depicts the U-Transformer’s network structure, which
is the same as U-Net overall. We replaced all convolution mod-
ules with transformer modules and changed the network depth
from four to three layers, corresponding to the downsampling
multiples of ×1, ×2, and ×4, respectively. First, ILR↑ is passed
through a convolution group, followed by concatenation with
the output of the reference attention, and then passed through
convolution with an input–output channel ratio of 2:1 [see (9)].
At this point, the Tensor completes the first fusion of the scale
of ×1 through the transformer module [see (10)]

T1↓in = Conv2:1(Concat(Conv1:1(I
LR↑), FRA

1 )) (9)

T1↓out = Transformer(T1↓in). (10)

Then, in the second feature fusion layer, the concatenation
object of the reference attention is the fusion output of the
previous layer, as shown in the following:

T2↓in = Conv2:1(Concat(Conv1:1(T1↓out), FRA
2 )) (11)

T2↓out = Transformer(T2↓in). (12)

Similarly, the third layer’s fusion result is

T3↓in = Conv2:1(Concat(Conv1:1(T2↓out), FRA
3 )) (13)

T3↓out = Transformer(T3↓in). (14)

When the network’s upsampling fusion is similar to the down-
sampling fusion, the difference between them is that the stitched
object of the upsampling fusion changes from the reference
attention FRA

i to the output T i↓out. Thus, the fusion output
of the last layer is presented in the following:

T1↑in = Conv2:1(Concat(Conv1:1(T2↑out), T1↓out))
(15)

T1↑out = Transformer(T1↑in). (16)

In summary, the mapping of LR to HR image is as follows,
where RA is the texture migration module:

ISR = Fusion[RA(ILR↑, IRef ),

T ransformer(ILR↑)] + ILR↑. (17)

IV. EXPERIMENT

Section IV-A introduces seven commonly used datasets, three
remote sensing datasets, and four generic scene datasets. In
Section IV-B, we introduce the evaluation metrics for image
superresolution, while in Sections IV-C and IV-D, we describe
the environment and dataset processing for this experiment.
Finally, we illustrate our technique’s quantitative evaluation and
visual comparison with state-of-the-art methodologies.

A. Datasets

For the first time in remote sensing, we offer an image
superresolution approach based on a reference image, as the
RefSR paradigm cannot be found in remote sensing. Therefore,
our experiments include datasets of remote sensing and generic
scenes to evaluate our method. The remote sensing datasets
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Fig. 8. Example image of the datasets, where group (a) is selected from CUFED, (b) from AID, and (c) from RSSCN7.

TABLE I
SOME ATTRIBUTES OF DATASETS USED IN OUR EXPERIMENTS

contain AID [46], WHU-RS19, and RSSCN7, where AID is
used for training and WHU-RS19 and RSSCN7 for testing. The
datasets in the generic scene are CUFED, Manga109, Sun80,
and Urban100, where CUFED is used for training and CUFED5,
Manga109, Sun80, and Urban100 for testing. Fig. 8 depicts an
example picture of the datasets, and Table I shows the details
of the experimental datasets.

AID: This large-scale aerial photography collection is
compiled from Google Earth sample photos, with 30 cat-
egories and 10 000 images. Airport, Bare-Field, Baseball-
Field, Beach, Bridge, Center, Church, Commercial, Dense-
Residential, Desert, Farmland, Forest, Industry, Grassland,

Medium-Residential, Mountain, Park, Parking-Lot, Play-
grounds, Ponds, Ports, Railway Stations, Resorts, Rivers,
Schools, Sparse Dwellings, Plazas, Stadiums, Storage Tanks,
and Viaducts are among the 30 aerial scene types available.
It is worth noting that, despite the Google Earth photographs
being postprocessed using RGB reconstructions of the original
optical aerial image, there is no discernible difference between
the Google Earth image and the genuine optical aerial image.
As a result, Google Earth image may be used to test the efficacy
of picture superresolution techniques.

RSSCN7: It comprises 2800 photos of remote sensing scenes,
each of 400 x 400 pixels size. The images are from Grass-
land, Forest, Farmland, Parking Lot, Residential Area, Industrial
Area, River, and Lake, to mention a few. Because this dataset
was acquired over several seasons and weather conditions, it
represents real-world remote sensing photography under various
settings.

WHU-RS19: It is a collection of satellite imagery ex-
ported from Google Earth at a resolution of 0.5 m. It con-
tains satellite images of 19 categories of scenes, including
Airports, Beaches, Bridges, Businesses, Deserts, Farmlands,
Football Fields, Forests, Industries, Grass, Mountains, Parks,
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Fig. 9. Reference image generation method, where (a) represents the generic case and (b) the special case where the LR image is located at the edge position.

TABLE II
EXPERIMENTAL ENVIRONMENT

Parking Lots, Ponds, Ports, Train Stations, Houses, Rivers, and
Viaduct.

B. Evaluation Indicators

The peak signal-to-noise ratio (PSNR) is the ratio of signal
power to noise power. It is frequently used as an objective metric
for picture quality evaluation, such as image compression and
recovery, defined as

PNSR = 10 log10
(2N − 1)2

MSE
(18)

MSE =
1

H×W

H∑

i=1

W∑

j=1

[X(i, j)− Y (i, j)]2. (19)

MSE represents the mean square error of pixel values between
the true and reconstructed images. The height and width of the
image are represented by H and W, respectively. N is the number
of bits per pixel, and the default value for RGB image is 8. PSNR
is calculated in decibels (dB), and the larger the value, the smaller
the distortion.

Structural similarity (SSIM), a measure of the similarity of
two images, was proposed by the Laboratory for Image and
Video Engineering at the University of Texas at Austin. SSIM

TABLE III
OVERALL PSNR (DB) AND SSIM VALUES OF T3SR IN

WHU-RS19 AND RSSCN7

evaluates the similarity of two images in terms of brightness,
contrast, and color structure. The formula is shown below

l(x, y) =
2μxμy + c1
μ2
x + μ2

y + c1
(20)

c(x, y) =
2σxy + c2

σ2
x + σ2

y + c2
(21)

s(x, y) =
σxy + c3
σxσy + c3

(22)

SSIM = l(x, y)2·c(x, y)2·s(x, y)2. (23)

The brightness comparison is l(x, y), the contrast comparison
is c(x, y), the structural comparison is s(x, y) and c1, c2, c3 are
constants.

C. Implementation Details

The experiment was conducted using a GeForce RTX 3090
GPU with 24 GB of memory. The computer operating system
is Ubuntu 20.04.5 LTS and the programming environment is a
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TABLE IV
AVERAGE PSNR (DB) AND SSIM VALUES FOR EACH CLASS IN RSSCN7

TABLE V
AVERAGE PSNR (DB) AND SSIM VALUES FOR EACH CLASS IN WHU-RS19

TABLE VI
AVERAGE PSNR (DB) AND SSIM VALUES IN GENERIC SCENE DATASETS

deep learning framework based on Python 3.7, Pytorch 1.10.
The detailed experimental environment is reported in Table II.

Before the model training, we process the datasets, including
partitioning the train and test data and selecting LR images
corresponding to the reference image. Yang et al. proposed
CUFDE, where each pair is generated by SIFT feature matching
to obtain different levels of similarity. Each image pair has
overlapping regions, which is difficult to achieve in reality. In
order to reduce the influence of the matching degree, the model
has a stronger generalization ability. Our selection of reference
images is shown in Fig. 9.

A 5000×5000 remote sensing image obviously cannot be
input directly to the network because a too large size will cause

the memory to overfill and stop working. Therefore, first, we
need to slide the image to get a subimage of 200×200 and
generate an LR image through bicubic interpolation from the
HR image. During the sliding process, we randomly select the
subimage adjacent in the top, bottom, left, and right directions
as the reference image [see Fig. 9(a)]. Of course, if the subimage
is located at the edge of the image, we select the direction where
the subimage exists as the reference image [see Fig. 9(b)]. The
reference image produced by our method makes the matched
pairs have some similarity in texture and no overlapping regions.
Therefore, our matching pairs are closer to real-life practical
applications, making the model focus more on texture similarity
than the same texture.

D. Result

This section verifies the superiority and effectiveness of the
proposed method in a comparative experiment and an ablation
study. First, we compare T3SR with other outstanding methods
under public remote sensing datasets in the comparative exper-
iments. Next, in the ablation study, we verify the effectiveness
of each network’s module by comparing the methods based on
RefSR on the generic scenes because there is no RefSR paradigm
method for remote sensing.
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Fig. 10. Visualization of T3SR in RSSCN7 dataset.

1) Comparative Experiment: In this section, we conduct ex-
periments in the remote sensing scene as a benchmark. Among
them, AID is the training data, and the training datasets contain
30 categories, with a total of 10 000 images of 600 × 600.
WHU-RS19 and RSSCN7 are test dataset. Among them, the
test dataset WHU-RS19 contains 19 categories and 1013 images
of 600×600 size. The test dataset RSSCN7 contains seven
categories and 2800 images of 400 × 400. Before training, the
selection of reference images has been described in detail in
Section IV-C, as illustrated in Fig. 9.

Quantitative evaluation: We compare T3SR with classic
and as state-of-the-art remote sensing image super-resolution

methods, including the SRCNN [13], VDSR [15], RDN [47],
RCAN [48], SRFBN [49], SAN [50], D-DBPN [40], and
MHAN [51]. All experiments are performed with an image
superresolution scale factor of ×4. In order to make the method
argument more abundant, first, the test datasets WHU-RS19
and RSSCN7 were used to obtain the overall performance.
Next, we evaluate each category on both datasets. Both jointly
prove this method’s effectiveness and advancement in image
superresolution in remote sensing.

The quantitative evaluation results in remote sensing are
shown in Tables III–V. Table III compares the overall PSNR
and SSIM of T3SR in the WHU-RS19 and RSSCN7 remote
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Fig. 11. Visualization of T3SR in WHU-RS19 dataset.

sensing datasets. Table IV shows the PSNR and SSIM evaluation
results under different categories in the RSSCN7 test dataset.
Similarly, Table V shows the evaluation results of this method
in WHU-RS19. The red number represents the highest score,
and the blue number represents the second highest score. As
shown in the comparison results in Table III, T3SR improves by
0.79 dB and 0.33 dB, respectively, compared with MHAN on
RSSCN7 and WHU-RS19.

The experimental results show that T3SR achieves the best
results in almost all categories in Tables IV and V. Compared
with the score of second place, the most significant improvement
of PSNR is Bridge, which is 3 dB, and the greatest improvement
of SSIM is Residential, which is 1.3%. The Beach’s highest
PSNR and SSIM scores are 49.69 dB and 98.2%, respectively.
Because the texture of Beach is smoother and simpler, T3SR
easily obtains the highest PSNR and SSIM scores. The reader is
referred to Tables IV and V for detailed data.

Qualitative evaluation: In order to more fully demonstrate
the effectiveness of the proposed method, a visual comparison is
also carried out in the remote sensing scene, as shown in Figs. 10
and 11. The visual comparison results show that compared with
various advanced image superresolution methods, the proposed
method restores the result with clearer detailed information
and a richer texture outline. For a more precise comparison,

a single yellow rectangle is used to mark the enlarged sub-
plots, which is done for the results of all methods. As shown
in the display results, the results obtained by T3SR are more
realistic than other methods, with clearer lines and better visual
effects.

As shown in the figure above, the bicubic upsampling strategy
leads to texture loss and structural blurring, which is more
pronounced for remote sensing images with weak edge details.
For early image superresolution algorithms such as SRCNN,
because the network depth is not enough, it often leads to poor
recovery, and the shape of some small objects cannot be recov-
ered. Other methods can lead to hallucinations and artifacts,
which are also unacceptable, producing erroneous structural
and texture information, failing to recover more details, and
ultimately resulting in poor image quality for image superreso-
lution. In contrast, the developed method recovers more details
and textures, especially in remote sensing, where it achieves the
visual effect of the GT image. Even some GT image defects due
to imaging conditions show that our method can be optimized
to achieve better visual effects.

2) Ablation Study: For the ablation study, we conduct experi-
ments from two perspectives. To verify the effectiveness of T3SR
in the paradigm of the RefSR methods, we conduct comparative
experiments based on a generic scene, as this article introduces
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TABLE VII
CONTRIBUTION OF EACH MODULE

the superresolution method of RefSR to remote sensing scenes
for the first time. Moreover, we use each module as a variable
to further explore the effectiveness of each constituent module.
Fig. 9 illustrates the reference image generation.

In the first stage, we adopt the CrossNet, TTSR, and SRNTT
approaches as benchmarks to prove the effectiveness of our
RefSR approach. CUFED is selected as training data, and the
training set contains 11871 reference matching pairs. CUFED5,
Manga109, Sun80, and Urban100 are test data. Among them,
the CUFED5 dataset contains 126 test images. The Urban100
dataset contains 100 images of urban scenes. The Sun80 dataset
has 80 natural images, and the Manga109 contains 109 manga
volumes.

As shown in Table VI, our method is compared with the most
advanced RefSR methods, including CrossNet [6], SRNTT [7],
and TTSR [8]. To demonstrate that our method can reduce the
dependence on reference images, we implement a self-reference
test (T3SR-self) where the reference image is the upsampled
image of the LR image.

All experiments are performed on a scale of x4. Compared
to the state-of-the-art, T3SR improves by 0.04 dB, 2.73 dB,
1.73 dB, and 2.52 dB for the CUFED5, Manga109, Sun80,
and Urban100, respectively. The red number represents the
highest score, while the blue represents second place (see Ta-
ble VI). T3SR surpasses the current state-of-the-art superreso-
lution methods in the RefSR paradigm. Notably, the T3SR-self
result indicates that our approach performs well without a refer-
ence image. The quantitative comparison shows that T3SR has
state-of-the-art performance and can reduce the severe depen-
dence on the reference image.

In the second stage, we verify the effectiveness of each
module. We disassemble T3SR into Texture Transfer Module
(TTM) and U-Transformer Fusion Module (U-Trans). In ad-
dition, since U-Trans is an improvement of U-Net, it is com-
bined by self-attention rather than using the original CNN.
Therefore, this method also sets U-Net variables to verify
the optimal solution of each module. All experiments were
performed at a magnification factor of ×4 under the dataset
WHU-RS19.

As shown in Table VII, each component has its contribution
to the overall performance improvement. It can be seen that
the combination of TTM and U-Net can bring a specific im-
provement compared to TTM, but it does not bring significant
progress. However, compared to TTM, the combination of TTM
and U-Trans improves PSNR and SSIM by 0.39 dB and 1.1%,
respectively. Finally, U-Trans can also bring better performance

to the network than U-Net, showing that self-attention is better
than traditional CNN.

V. CONCLUSION

In this article, we propose T3SR, an end-to-end superresolu-
tion network called texture transfer transformer for remote sens-
ing image superresolution. T3SR pioneered the introduction of
image texture transfer into remote sensing and achieved the cur-
rent state-of-the-art results. Specifically, T3SR divides superres-
olution into two stages: texture migration and deep fusion. First,
we design a texture transfer module to serve the transfer of shal-
low semantic information. Next, we propose a U-Transformer,
which serves the feature fusion of deep networks and reduces
the model’s dependence on the reference image. Finally, we
conduct numerous experiments on standard public datasets to
fully evaluate our approach. The experimental results show that
T3SR can improve the texture details of reconstructed pictures
and the visual effects. Moreover, the scores of the quantization
parameters PSNR and SSIM are also better than the state-of-the-
art methods. In addition, we add self-referencing experiments,
demonstrating that our method still achieves excellent results
when there is no reference image or the correlation between the
reference image, and the reconstructed image is weak.
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