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Time-Series Analysis and Prediction of Surface
Deformation in the Jinchuan Mining Area, Gansu

Province, by Using InSAR and
CNN–PhLSTM Network

Yi He , Haowen Yan, Wang Yang , Sheng Yao , Lifeng Zhang, Yi Chen , and Tao Liu

Abstract—Surface deformation poses a great threat to the safety
of Jinchuan mining area production activities. At present, the
spatio-temporal evolution law and mechanism of surface deforma-
tion in the Jinchuan mining area are unclear, and it is difficult to
obtain reliable prediction results using the existing spatio-temporal
prediction methods due to the lack of model parameters or relevant
data. To solve these problems, this study proposes a new unified con-
volutional neural network with peephole long short-term memory
(CNN-PhLSTM). Small baseline subset interferometric synthetic
aperture radar (SBAS-InSAR) technology was used to obtain the
spatio-temporal evolution characteristics of surface deformation
in the period of 2014–2021. Time series InSAR deformation data
are merged into a unified network model in series with a time-
distributed CNN segmentation and stacked PhLSTM. The InSAR
measurement results are shown to be reliable by comparison and
verification with the benchmark and InSAR results of different
orbits. The proposed CNN-PhLSTM model was evaluated by mean
absolute error and structural similarity (SSIM) evaluation indexes,
and was compared with support vector regression (SVR), multi-
layer perceptron (MLP) and CNN-LSTM models. The results show
three continuous subsidence areas, namely the Longshou, second
western and third eastern mining areas. The cumulative surface
deformation continued to increase from 2014 to 2021. Faults and
lithology control the spatial distribution of surface deformation
in the Jinchuan mining area. The prediction results demonstrate
that the surface deformation range will continue to expand and
that time-series surface deformation will show a slow deceleration
trend in the next two years.
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I. INTRODUCTION

M INERAL resources have played a significant role in pro-
moting China’s economic development, with the mining

economy accounting for 5.5% of China’s GDP. However, the
large-scale exploitation of mineral resources inevitably leads to
surface deformation, surface collapse, and other potential dis-
asters [1]. According to the survey results of the China Institute
of Geological Environment Monitoring, at the end of 2015, the
volume of mined-out sites formed by underground mining in
China reached 12.8×106 m3, causing a variety of geological
disasters, such as mine collapse and collapse, resulting in a large
number of property losses, and casualties [2]. A typical example
of this phenomenon is the surface subsidence of a mined-out
area in the Zhaoyuan gold mine in Shandong Province, which
led to the destruction of a large area of highway and major
economic losses, according to the results of a national mine
geological environment survey. In the face of such a serious
surface deformation problem, it is necessary to monitor and
predict the spatiotemporal characteristics of surface deformation
in mining areas in real time [3], [4].

Many scholars have used global position system (GPS) and
leveling methods for the real-time monitoring of surface defor-
mation in mining areas [5], [6], [7], but these methods have
the disadvantages of small monitoring range, low monitoring
efficiency, high cost, and low monitoring site density [8]. Inter-
ferometric synthetic aperture radar (InSAR) is a high-precision
measurement technology that uses phase differences to obtain
information about surface deformation [9], [10], [11]. Com-
pared with traditional methods, InSAR has a higher density
of monitoring points, a larger monitoring range, and a higher
monitoring efficiency [12], [13]. The research results of many
scholars prove that InSAR technology is an effective method for
monitoring surface deformation in mining areas [14], [15], [16],
[17], [18]. For example, Li et al. [19] evaluated the stability
of residential buildings in the Huainan mining area by com-
bining a time-series InSAR analysis method with an empirical
model of building damage levels. Ma et al. [20] investigated
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and analyzed mining deformation in the Shendong coal field
using small baseline subset InSAR (SBAS-InSAR) technology.
Yang et al. [21] estimated the model parameters of the proba-
bility integral method based on the line-of-sight (LOS) defor-
mation derived from the InSAR. The selection of radar data is
also crucial for monitoring surface deformation to ensure the
accuracy of the monitoring in mining areas. Currently available
sources of radar data include Sentinel-1A (C band), ALOS
(L band), TerraSAR-X (X band), COSMO-SkyMed (X band),
Gaofen-3 (C band), and TanDEM-X (X band). Sentinel-1A has
been widely used in monitoring surface deformation in mining
areas due to its free usage, large data coverage, short return cycle,
and high data quality [22], [23].

For the predictive simulation of surface deformation’s tempo-
ral sequence, some scholars used empirical models [24], mathe-
matical statistical models [25], [26], and machine learning mod-
els [27]. Empirical models have a series of complex parameters,
and most cases require assumptions to be made, so it is difficult to
establish a good prediction model [28]. Mathematical statistical
models usually require a large amount of historical monitoring
data, which is time-consuming and laborious to obtain, and has
a high cost, so it is difficult to use such models widely [29].
Machine learning models are not affected by complex geological
and hydrological physical parameters. They also widely used
the regression of ideas, which is closely related to temporal
prediction [30], mainly in the form models, such as the support
vector machines [31], long short-term memory (LSTM) [27]
and heterogeneous LSTM neural networks [32]. However, these
machine learning models are based on time-series forecasting
data, so the nonlinear fitting of the deformation time series is
realized by piecewise linear approximation, which essentially
ignores the nonlinear correlation in the time series and cannot
predict a spatial trend based on the raster image data. Therefore,
there is an urgent need to establish an effective prediction
model for surface deformation using InSAR raster image data.
Convolutional neural networks (CNNs) can actively learn image
features and are good at extracting spatial information [30].
Peephole long short-term memory (PhLSTM) has sequence
memory, and is good at processing sequence input and can
learn the fine distinctions between sequences of spikes spaced
without the help of any short training exemplars [33]. This article
studies a unified network of information made up of a CNN and
PhLSTM that considers spatial and time series to improve the
prediction accuracy.

The Jinchuan mining area is China’s largest nickel ore mining
base, and the Longshou mining area as one of the main mining
areas of the Jinchuan nickel mine [34]. Due to years of mining
in this area, in 2016, mining was stopped in the closed circular
crack. The bottomless pillar sublevel caving method was adopted
for the first time in 2019 to enable mining to continue, as this
method provides mining strength with a high degree of mecha-
nization and relatively low mining cost. However, the bottomless
pillar subcaving method results in a high level of surface defor-
mation [35]. Surface deformation is the impactful secondary
disaster in the Jinchuan mining area and poses a great threat
to the safety of production activities in the mining area [36].
Therefore, it is necessary to monitor the surface deformation

resulting from mining by the pillarless sublevel caving method
in the Jinchuan mining area. Ding et al. [37] used SBAS-InSAR
technology to study the deformation of the Longshou open-pit
in the Jinchuan mining area from 2009 to 2016, and analyzed its
3-D characteristics. Li [36] combined SBAS-InSAR, unmanned
aerial photogrammetry tilt, and leveling technology to study
the law of surface deformation in the industrial pilot area of
the Longshou mining area in Jinchuan. Sun et al. [38] studied
the deformation and failure mechanisms of the vertical shaft
in the Jinchuan No. 2 mining area. The above research has
guiding significance for further study of surface deformation
in the Jinchuan mining area, but no detailed analysis of the
spatiotemporal characteristics of the Jinchuan mine has been
conducted, and no predictive simulation of its spatiotemporal
evolution trend has been reported.

The specific objectives of the present article are as follows: 1)
to obtain the spatiotemporal evolution characteristics of surface
deformation in the Jinchuan mining area from 2014 to 2021
based on Sentinel-1A data using SBAS-InSAR technology; 2)
to propose a CNN–PhLSTM deep neural network model to
simulate and predict spatiotemporal surface deformation using
time-series InSAR deformation data; and 3) to analyze the future
spatiotemporal evolution trend of surface deformation.

II. STUDY AREA AND DATA SOURCE

A. Study Area

The Jinchuan mining area in Jinchang City, Gansu Province,
is located in the southwest margin of the Alxa platform, to the
north of the Lonshoushan fold belt. In the south, this mining area
is adjacent to the corridor transition zone north of the Qiliangari
fold belt (Fig. 1). This region has China’s largest nickel deposits
and is the country’s main producer of platinum. The lithology of
the Jinchuan mining area changes frequently, and the rock mass
is dominated by an ore-bearing ultra-basic rock mass. The ore
body is composed of nickel sulphide rich ore and copper sulphide
ore, among which the nickel sulphide rich ore can be divided into
penetration type, ultra-basic type, and contact metasomatic type
rock [35]. The Jinchuan mining area is characterized by a weak
structure, and the stability of rock mass in the mining area is very
poor due to faults of different sizes and different types of contact
zones [36], [39]. These characteristics have increased with the
strength of mining activities in recent years, the deepening
level of mining, and in-situ stress structural conditions of the
mining complex. The head of the mining surface subsidence
is always a significant threat to the safety of the Longshou
mining area’s production. Therefore, real-time monitoring of
surface deformation and spatiotemporal prediction of surface
deformation are important to ensure the safety of this mining
area [37].

B. Data

This article adopted the cover study area from October 14,
2014 to April 16, 2021, using 156 IW mode track no.128
ascending Sentinel-1A data (https://search.asf.alaska.edu/), the
incidence angle θ was 34.17°, and the azimuth was 186.94°. In

https://search.asf.alaska.edu/
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Fig. 1. Geographical location of the study area.

addition, 71 orbital descending images of track no.135 (March
27, 2018–October 11, 2020) were selected for cross-validation
of InSAR results, the incidence angle θ was 41.42°, and the
azimuth was 354.70°. SBAS–InSAR technology was used to
monitor the deformation rate and cumulative time-series defor-
mation in the study area. Digital elevation model (DEM) data
from Shuttle Radar Probe Mission 90-m spatial resolution were
used for orbit refining and flattening (http://www.gscloud.cn/).
To verify the validity and accuracy of the InSAR deformation
monitoring results in this article, a benchmark data was selected
to test the InSAR time-series results in the study area [38].

Faults and lithology were analyzed to determine the deformation
mechanism.

III. METHODOLOGY

In this article, SBAS–InSAR technology was first used to
monitor the spatiotemporal deformation of the Jinchuan mining
area from 2014 to 2021, based on Sentinel-1A orbit lifting data.
A CNN–PhLSTM deep neural network method was constructed
to predict the future temporal and spatial evolution trends of
surface deformation. The specific research framework is shown

http://www.gscloud.cn/
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Fig. 2. Overall research framework.

in Fig. 2, and the detailed process for each part of the proposed
method is shown.

A. SBAS–InSAR Method

An SBAS–InSAR is an improved time-series analysis tech-
nology proposed by Berardino in 2002 [40]. SBAS–InSAR tech-
nology generates time-series interferences based on different
images by combining image pairs within a certain time baseline
and space baseline. The space and time baselines of Synthetic
Aperture Radar (SAR) images within the sets are small, but the
space and time baselines between the sets are large, which can
minimize potential errors and incoherence caused by perspective
differences. Then, conventional differential interference pro-
cessing was performed for the interference pairs in the sets,
using the singular value decomposition (SVD) method. Each
deformation of the phase transition is linked to the deformation
phase of a particular image. Then, temporal low-pass filtering

and spatial domain high-pass filtering are used to remove the
influence of the atmosphere, and the resulting deformation of
the final result will be obtained.

Additional short baseline sets are applied to combine the
technology, alleviate the impact of atmospheric delay, and im-
prove the monitoring time resolution. The time discontinuity
problem caused by too-long spatial baselines between various
datasets can be effectively solved, and the time-series results
and deformation rate of the entire observation period can be
obtained [13]. The processing of data on surface deformation ac-
quired by SBAS–InSAR technology includes seven main steps:
data preprocessing, connection graph generation, differential
interferogram generation, orbit refining and reflattening, SBAS
inversion, geocoding and LOS deformation visualization. The
specific process is shown in Fig. 3.

The processing flow of SBAS–InSAR technology applied
SARscape5.6 on environment for visualizing images (ENVI)
platform is described in detail as follows:
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Fig. 3. Data processing flow of SBAS–InSAR technology.

Fig. 4. Spatiotemporal baseline diagram.

1) Data preprocessing: 156 Sentinel-1A images were im-
ported into ENVI and clipped images according to the
study area.

2) Connection graph generation: The time baseline was 200
days, the spatial baseline was set at 20% of the critical
baseline, and the image taken on September 3, 2017, with
the optimal Doppler centroid frequency was selected as
the super primary image (Fig. 4).

3) Differential interferogram generation: All secondary im-
ages were registered and sampled to the super primary
image, and then M image pairs were interfered to obtain
M interferogram. In order to increase the signal-to-noise
ratio of the interferogram, provide more reliable coher-
ence, and improve the calculation efficiency of large-scale
data range, multiview processing was performed for each
interferogram in the range direction and azimuth direction.
The topographic phase was simulated by using external

reference DEM data and was differentiated with the in-
terferogram to obtain the differential interferogram which
removed topographic phase. The unwrapping method used
was Delaunay minimum cost flow. The baseline tool was
used to screen the interferograms and remove any of poor
quality.

4) Orbit refining and reflattening: A certain number of highly
coherent control points were selected in the study area.
The residual phase in the initial unwrapping phase was
estimated according to these control points’ phase infor-
mation and removed the residual terrain phase.

5) SBAS inversion: In the first inversion, a linear model was
used to estimate the deformation rate and residual terrain,
and the input interferogram was optimized using quadratic
unwinding. The SVD method was used to obtain time-
series surface deformation. In the second inversion, low-
and high-pass filters were used to remove the atmospheric
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phase, and the final deformation rate and shape variables
were obtained.

6) Geocoding: The coherence coefficient of SBAS–InSAR
inversion is 0.85, and the result of SBAS–InSAR inversion
is converted to the geographic coordinate system.

7) Result visualization: After geocoding, the vector files are
mapped and outputted by QGIS software.

B. Spatiotemporal Prediction Method for InSAR Deformation
Data

1) Preprocessing of InSAR Deformation Data
a) Compression method of InSAR deformation data: The

spatiotemporal InSAR deformation data from the Jinchuan
mining area, based on SBAS–InSAR technology, have great
differences in overall data, training, and prediction. Using tra-
ditional compression methods leads to gradient disappearance
and affecting prediction accuracy. Alternatively, gate recurrent
units (GRUs) effectively address sequence problems and avoid
gradient disappearance and explosion [41]. The network is
composed of two gate functions: the update and the reset gates
[42]. The update gate accumulates conditional leakage and can
linearly control any dimension to copy or update it. The reset
gate controls the current state for the next state and introduces
additional nonlinear effects between sequences [30]. For these
reasons, a GRU was used to compress InSAR deformation data.

Numerical compression processing is carried out from the
minimum and maximum perspectives from InSAR deformation
data. Sequence information is formed for the minimum and
maximum by penetrating the spatiotemporal InSAR deforma-
tion data sequence grid extremum. The minimum and maximum
fitting sequences must be normalized, and a GRU is constructed
to train and predict data. The minimum and maximum sequences
are input into two identical GRU submodels, each of which is
composed of three GRU layers. Finally, the concatenate function
combines the predicted results so that the GRU submodels
can complete the training and prediction process together. The
minimum and maximum spatiotemporal predictions for the
mining area were obtained. The loss function is a logarithmic
hyperbolic cosine function (LogCosh), the evaluation metric is
cosine similarity, time step is 15, epoch is 64, train batch size is
64, and learning rate is 1×10−5. The curves of the loss function
and evaluation metrics in the training and validation set during
the training process are shown in Fig. 5.

LogCosh is another loss function applied to regression tasks
and is smoother than mean square error loss functions. LogCosh
is the logarithm of the hyperbolic cosine for the prediction error.
The LogCosh equation is as follows:

LogCosh (y, yp) =
n∑
i

log (cosh (ypi − yi)). (1)

Cosine similarity measures the difference between two in-
dividuals using the cosine of the angle between two vectors
in the vector space. Compared to the distance measure, cosine
similarity pays attention to the difference between two vectors
in direction rather than distance or length. Cosine similarity is

Fig. 5. Loss and metrics performance in training process based on GRU.

calculated as follows:

cossim(X,Y ) =
�x · �y

‖ x ‖ · ‖ y ‖ = cos θxy. (2)

Using the constructed GRU network, the pixel values of
InSAR deformation data are compressed sequentially, pixel by
pixel. The formula is as follows:

Fi,j =

{
Mi,j

fFitMax(t)
, Mi,j > 0

Mi,j

|fFitMin(t)| , Mi,j ≤ 0
(3)

where Mij is the pixel value of the ith row and j column of the
image, Oij is the output value of the image after compression,
fMax and fMin are GRU fitting value at the current time step, and
the range of pixel value after compression is [−1, 1].

b) Inverse normalization of spatiotemporal prediction data:
The model predicted a pixel value range of [−1, 1] for the
deformation data. To restore the predicted data to their original
scale, a GRU fitting value at the current time step constructed
above was adopted to multiply the maximum value by a positive
value and the minimum value by an absolute value to restore
the pixel value of the predicted deformation data to the original
scale. The formula is as follows:

Fi,j =

{
Mi,j · fFitMax (t) , Mi,j > 0

Mi,j · |fFitMin (t)| , Mi,j ≤ 0.
(4)

2) Framework of the Spatiotemporal Prediction Model
a) Dataset making: Time-series InSAR deformation data

segmentation was used as a sliding window. The time sequence
of the original data in this article was short, so the overlap-
ping segmentation method was adopted to ensure the amount
of training data. We used the multistep to one-step prediction
output mode. The input of the multistep to one-step form was
multiple images with the time step as the first dimension, and the
label was a single image with the predicted time step. Datasets
corresponding to network input and output were prepared before
each network training. Before the model started training, InSAR
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Fig. 6. Structure of PhLSTM cell.

deformation data were divided into training and testing sets, and
the last 20 data were selected for the testing set. The training set
accounted for 80% and the validation set for 20% of the rest of
the data.

b) Peephole LSTM (PhLSTM) network: Hochreiter and
Schmidhuber [43] proposed an LSTM neural network model,
which is a type of time-recurrent neural network. Due to its
unique design structure, the LSTM neural network is suitable
for processing events with long intervals and delays in time
series, that is, when the number of network layers increases.
Over time, the latter layer becomes less aware of the former
layer, and information from the former layer is forgotten. LSTM
can effectively simulate the problem of multi-input variables, so
it is suitable for time-series processing and prediction [27].

The PhLSTM network is a variant of the LSTM. PhLSTM
can learn the fine distinction between spike sequences of spikes
spaced either 50 or 49 time steps apart without the help of any
short training exemplars [33]. PhLSTM allows output gates to
utilize the previous internal state as well as the previous hidden
state [44]. The output gate layer also receives the cell state input,
and the output gate receives the updated cell state. Each PhLSTM
memory unit is composed of an input gate (i), output gate (O),
forgetting gate (f), and memory cell (C). Therefore, information
processed by a PhLSTM network is more comprehensive and
has higher accuracy in time-series prediction. The structure
of a single memory unit is shown in Fig. 6. The symbol �
represents the addition operation of two vectors, and the symbol
� represents the dot product operation of two vectors.

The specific calculation process of the PhLSTM cell from
input to output can be divided into the following four steps:

Decide to discard information:

ft = σ (Wf ◦ [xt, Ct−1, ht−1] + bf ) . (5)

Confirm update information:

it = σ (Wi ◦ [xt, Ct−1, ht−1] + bi) (6)

C̃t = tanh (Wc ◦ [xt, ht−1] + bc) (7)

Cell state:

Ct = ft ◦ Ct−1 + it ◦ C̃t (8)

Output information:

ot = σ (Wo ◦ [xt, Ct, ht−1] + bo) (9)

ht = ot ◦ tanh (ct) (10)

where the symbol “�” represents the Hadamard product oper-
ation of two vectors, Wf, Wi, Wo, and Wc represent the weight
vectors of forgetting gate, input gate, output gate, and memory
unit, respectively, and bf, bi, bo, and bc represent the offset
direction of forgetting gate, input gate, output gate, and memory
unit, respectively.

c) Model construction based on time-series InSAR defor-
mation data: In this article, we created an integrated network
of coding modules, prediction modules, and decoding modules
based on CNN and PhLSTM, called CNN–PhLSTM. First,
deep temporal features of the time-series InSAR deformation
data were extracted by time-distributed CNN segmentation.
Second, deep time-series feature vectors were input into a
stacked PhLSTM for time sequence feature value prediction.
Finally, the predicted feature vectors, namely spatial data, were
restored to raster images, using the alternating stacking method
of upsampling and convolution layers, and the spatiotemporal
prediction was realized. In this article, the prediction process
was multistep to one-step, which was also overlapped and cut.
After many experiments, the index was most effective when the
input time-step length was five. The specific process is shown
in Fig. 7.

In the coding module, the time distribution convolution was
constructed to share parameters in each convolution kernel to en-
sure that each time step was independent to extract deep temporal
features. Because there are more convolutional layers, many
nonlinear fitting functions can be placed, enhancing the model’s
fitting ability, and obtaining more global and abstract features.
The convolution layer located in maximum size the feature graph
has a convolution kernel size of 450×450, which subsequently
decreases to 225, 75, 25, 5, and 3. The convolution layer’s output
channel increases as the feature graph size decreases and the
convolution layer’s output channel located in the maximum size
feature graph is one. In the end, the convolution layer’s output
channel increases to 32, 64, 128, 256, and 512. Global average
pooling is applied to transform feature graphs into vectors.

In the prediction module, three PhLSTM layers were used
to capture time-series features in the temporal direction for
prediction, and predictive feature vectors were obtained. The
deep time-series features were input into a stacked PhLSTM for
time sequence feature value prediction. The output units were
512, 256, and 128, respectively. The last PhLSTM layer returned
only the state of the last cell, not the sequence, and the output
prediction module was only of the last cell.

In the decoding module, we transformed a single feature
vector into a specific dimension matrix using a reshape function.
Based on five gradually expanding dimensions, we gradually
restored the dimensions and feature details by stacking the
time-distributed convolution and upsampling layers. The con-
volution kernel size of the convolution layer connected behind
each upsampling layer was the same as the upsampling factor
to reduce the hard-edge problem caused by the nearest neighbor
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Fig. 7. Spatiotemporal prediction network structure of CNN–PhLSTM.

algorithm in the upsampling layer. The convolutional layer’s
output channel decreased as the size of the feature graph in-
creased, and 256 convolutional layers, whose output channels
were gradually reduced to 1 were used to reconstruct the data.
Finally, the predicted feature vectors, namely spatiotemporal
prediction data, were restored to the raster images.

The convolution calculation output value usually needs to
achieve nonlinear transformation through the activation func-
tion, and rectified linear unit was chosen as the activation
function. In the spatial predicted value of output data in the
CNN–PhLSTM model training process, the loss function for
each pixel was the mean absolute deviation (MAE), the loss
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function for whole image was the multiscale structural similarity
(MS-SSIM), and the optimizer was updated by adaptive motion
(Adam) estimation [45]. This process was repeated through
multiple epochs until the loss function approximately converged
to the minimum value and the model achieved the desired effect.
The time step is 15, epoch is 256, train batch size is 4, and
learning rate is 5×10−4.

The self-defined loss function is the sum of the weights of
MAE and MS-SSIM, and its expression is as follows:

Loss = WMAE × MAE +WMS_SSIM × (1− MS − SSIM)
(11)

where WMAE and WMS˙SSIM are the weights of MAE and
multiscale structure similarity, respectively, which are set as
WMAE = 0.7 and WMS˙SSIM = 0.3 in this experiment.

3) Evaluation Index
To quantitatively assess the performance of the model, the

mean squared error (MSE), MAE, SSIM, and peak signal-to-
noise ratio (PSNR). indicators are used to evaluate the results of
the model prediction output.

MSE can be expressed as

MSE =
1

m

m∑
i = 1

(yi − ŷi)
2 (12)

MAE can be expressed as

MAE =
1

m

m∑
i = 1

|yi − ŷi| (13)

SSIM can be expressed as

SSIM (x, y) =

[
2μxμy + (k1L)

2
] [

2σxy + (k2L)
2
]

[
μ2
x + μ2

y + (k1L)
2
] [

σ2
x + σ2

y + (k2L)
2
] .

(14)
The above three formulas are image brightness, contrast, and

structure, respectively, where μx and μy are the mean values of
the two images, σx and σy are the standard deviations of the two
images,σxy is the covariance of the two images, L is the dynamic
range of pixel values, k1 and k2 are two scalar constants, and k1
= 0.01 and k2 = 0.03 by default. The SSIM of two images is
generally defined as follows:

MS-SSIM:

M SSSIM(x,y) = [lM (x, y)]αM

M∏
j = 1

[cj (x, y)]
βj [sj (x, y)]

γj .

(15)
M was the highest scale (the original image scale was 1, and

the scale increased by 1 after low-pass filtering and downsam-
pling twice). MS-SSIM only calculated the brightness compari-
son at the highest scale, and the default values of the importance
parameters αM, βj, and γj at different scales were adopted (β1

= γ1 = 0.0448, β2 = γ2 = 0.2856, β3 = γ3 = 0.3001, β4 = γ4

= 0.2363, and α5 = β5 = γ5 = 0.1333).
PSNR can be expressed as

PSNR = 10× log10

[
(2n − 1)2

MSE

]
. (16)

Fig. 8. Specific prediction process of time-series data.

4) Predictive Simulation Based on the Proposed CNN–
PhLSTM

The operating environment selected in the experiment is
shown in Tables I and II.

Based on the proposed CNN–PhLSTM model, we set
the InSAR deformation grid data as X = {XT}, T =
12,3…, N, where X and Y are input and prediction data,
respectively.

The iterative backward prediction model was adopted for the
area prediction process, that is, Y obtained from the previous
time-series data prediction was added to the input dataset to form
a new time-series deformation dataset X. The specific prediction
process is shown in Fig. 8.

IV. RESULTS AND ANALYSIS

A. Characteristics of Surface Deformation in 2014–2021

We used ArcGIS software to draw the LOS direction spatial
distribution of surface deformation rates (Fig. 9) in the Jinchuan
mining area based on Sentinel-1A data from October 2014 to
April 2021. Fig. 8 shows three continuous subsidence areas,
namely the Longshou, second western, and third eastern mining
areas. The second western mining area had the largest average
annual subsidence rate, and the average annual deformation rate
was −171.17–14.42 mm. The surface deformation rate in the
third eastern mining area was slower than other two mining
areas. Fig. 9 shows that the surface deformation of second
western mining area was along different slopes, while that of
the Longshou mining area was along the same slope, and the
slope value was large in the Longshou mining area.
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TABLE I
BASIC SYSTEM PLATFORM CONFIGURATION

TABLE II
IMPORTANT SOFTWARE (PACKAGE) CONFIGURATION

Fig. 9. Spatial distribution of LOS direction surface deformation rate in
Jinchuan mining area (arrow indicates aspect and arrow length indicates slope).

Fig. 10 shows the spatial variation of accumulated surface
deformation in the Jinchuan mining area from October 14, 2014
to April 16, 2021. In addition, there was a surface uplift area
on the east side of the Longshou mining area, and over time it
expanded, and the cumulative uplift increased. Because of the
particularity of repeated mining, the displacement of rock and
soil mass also increased. Displacement caused by activation de-
formation is significant, and finally led to the rise of the bottom of
Longshou open-pit mining [46]. Fig. 10 shows the west-second
mining area over the same time period, during which the surface
deformation area expanded, cumulative surface deformation
increased, and final cumulative settlement reached 1.17 m. The
accumulated settlement of second western mining area increased
rapidly and the spatial expansion accelerated. The deformation
boundary range of the third eastern mining area also expanded
time, but it remained stable and invisible from August 2020 to
April 2021.

In order to further analyze the evolution of surface deforma-
tion in the Jinchuan mining area, surface displacement curves
for profiles I, II, and III were drawn, as shown in Fig. 11(a).
Fig. 11(b) shows the plotted change process of curve I in dif-
ferent periods. It crossed three mining areas simultaneously in
a northwest to southeast direction. According to the profile line
trends, the profile deformation curves along the north-southeast
direction in the three settlement areas conform to the Peck
formula [47], indicating that surface subsidence was caused by
construction. The second western mining area had the largest
deformation and the maximum negative movement was −1167
mm. Fig. 11(c) and (d) shows the Longshou and second western
mining area profiles. With the mining of the working panel, the
surface subsidence along the profile increased continuously and
the spatial distribution expanded continuously, but the east end
of the Longshou mining area was uniformly uplifted. As can
be seen from the profile lines in Fig. 11(b)–(d), the interval of
accumulated subsidence curves of each phase during 2015–2017
decreased, indicating that the subsidence rate slowed. The inter-
val of accumulated subsidence curves from 2018 to 2021 was
approximately equal, implying that the deformation area had
uniform subsidence in the last 3 years.

B. Evolution Trend of Surface Deformation During 2021–2024

Based on the spatial and temporal distribution of InSAR
deformation data, our proposed CNN–PhLSTM model was
used to predict the spatiotemporal evolution trend of surface
deformation in the Jinchuan mining area from April 28, 2021
to April 12, 2024, and ArcGIS software was used to draw the
spatiotemporal distribution map.

Fig. 12 shows the surface deformation rate of the Jinchuan
mining area in 2022 and 2023. In 2022, the average annual
surface deformation rate was predicted to be −78.17–6.59 mm
[Fig. 12(a)]. In 2023, the average annual surface deformation
rate was predicted to be −64.24–7.13 mm [Fig. 12(b)]. The
analysis predicted that the deformation rate in 2023 would be
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Fig. 10. Spatiotemporal distribution of LOS accumulated surface deformation.

slower than that in 2022. To test and verify the rationality of these
predictions, we used uniform sampling to select test points in
the deformation area, using the location distribution as show
in Fig. 13(a), to draw test points on the accumulated subsidence
curve as shown in Fig. 13(b). The results show that surface of the
Jinchuan mining area as a whole is predicted to have the uniform

subsidence tendency in the next 2 years, and the subsidence rate
will vary in different regions.

The Jinchuan mining area surface deformation range will
continue to expand in the future, and temporal accumulative
deformation will continue to increase until April 2024 (Fig. 14).
The deformation of second western mining area will reach
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Fig. 11. Cumulative surface deformation of different profiles in Jinchuan mining area. (a) Surface displacement curves for profiles I, II, and III. (b) Subsidence
of curve I in different periods. (c) Subsidence of curve II in different periods. (d) Subsidence of curve III in different periods.

Fig. 12. Surface deformation rate of Jinchuan mining area in 2022 and 2023.

−1500 mm. The spatial distribution diagram of each time pe-
riod shows that temporal surface deformation will continue as
uniform subsidence in the future.

V. DISCUSSION

A. Precision Analysis of InSAR Surface Deformation Results

The accuracy of the InSAR surface deformation results is the
key to the analysis and predictive simulation of spatiotempo-
ral characteristics in the Jinchuan mining area. The precision
analysis methods for the InSAR deformation results include

comparisons with benchmark data [48], InSAR deformation
results from different data sources [49], the different InSAR
technology results [13], and existing regional-scale research
results in study area. In this article, the benchmark data [38],
InSAR deformation results of different orbits data [50] in the
existing literature, and existing research results are compared to
and verified using the InSAR deformation results of this article;
then, the accuracy is analyzed.

1) Comparison and verification with the benchmark data
in the existing literature: The benchmark data in April
2014–February 2017 [38] were used to select benchmarks
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Fig. 13. Position and deformation curve of test points.

with clarity and good integrity (Fig. 1) to verify the InSAR
measurement deformation results from this article. The
benchmark data recorded the monthly cumulative vertical
deformation value of the point. InSAR measurement re-
sults were LOS deformation. Therefore, the LOS InSAR
measurement results were converted to vertical direction
results for verification. The study area is small and the
Sentinel-1A incidence angle changes very little, we con-
vert LOS (dLOS) into vertical displacement (dv) for every
time series using the Sentinel-1A incidence angle (θ =
34.17°): dv = dLOS/cosθ [51].

Specifically, we extracted SBAS–InSAR timing vertical
deformation vector monitoring points from the same period in
a circular buffer with a 20-m radius from the horizontal point
position, calculated their average, and compared the InSAR de-
formation results with benchmark values. As seen in Fig. 15(a),
the InSAR results at benchmarks showed a consistent trend with
the benchmark results. The error range of comparison with the
benchmark was 0–8 mm. Both met the requirements for measur-
ing of ground movement. This indicates that the SBAS–InSAR
monitoring results have a high consistency with the benchmark
results, which proves that the experimental parameters set in this
article are reasonable and that the InSAR deformation results are
reliable.

2) Comparison and verification with InSAR measurement
data of different orbits: By comparing this article’s In-
SAR measurement vertical results with existing research
results, Yang et al. [50] analyzed the 3-D characteris-
tics of Jinchuan mining area using multiple orbits, and
conducted correlation analysis of InSAR measurement
vertical results of different orbits in the overlapping period
[Fig. 15(b)]. We found that the correlation coefficient
between this article’s InSAR measurement results and the
existing InSAR measurement vertical results of different
orbits is 0.68. This again proves the reliability of the
InSAR measurement results in this article and can be used
as the data basis for spatiotemporal characteristics and
predictive simulation.

3) Comparison and verification with existing regional-scale
research results in study area: Based on Sentinel-1A data
from October 2014 to October 2017, Geng et al. [35]
obtained the time-series deformation of Longshou mining
area by using SBAS–InSAR technology, and the research
results were in good agreement with our research. Based
on Sentinel-1A data from January 2016 to November
2019, Li et al. [36] obtained the time-series deformation of
second western mining area by using SBAS–InSAR tech-
nology, and the research results are also in good agreement
with the results of this article. It further indicates that the
InSAR measurement results of this article are reliable.

B. Analyses of Surface Deformation Mechanisms

Surface stress changes, spatial distribution of faults, and
structural strength of lithology caused by mechanized mining
are generally the key factors of surface deformation in mining
areas [35]. Therefore, this article will analyze the mechanism
of surface deformation in the Jinchuan mining area using three
factors, man–machine mining, faults distribution, and lithology
structure, as follows:

1) Relationship between surface deformation and man–
machine mining: Minerals from underground mining, the
ore room inside and around the stress state of instability,
stress balance, in order to achieve coverage over the min-
ing area of strata and surface feature under the action of
gravity, rock masses will be out of shape, which mainly
show as collapse, fracture, and fold forms, which in turn
deform the ground [52]. This deformation forms the sub-
sidence funnel, which is centered on veins. With orderly
mining development, the deformation of the Jinchuan min-
ing area tends to be stable. Underground mining activities
likely caused the original movement and deformation of
the slope rock mass under open-pit excavation condi-
tion. When the activation was greater than the subsidence
caused by underground mining, the bottom of the open-pit
mine would be pushed up [46]. Therefore, one cause of
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Fig. 14. Accumulated deformation distribution of Jinchuan mining area in the future.

surface deformation in the Jinchuan mining area from
2014 to 2021 may be man–machine mining.

2) Surface deformation and the relationship between faults:
As shown in Fig. 16(a), the Jinchuan mining area north
of the F1 fault zone is divided into upper and lower
plates. The upper plate mainly includes Proterozoic

metamorphic rock and upper Paleozoic sedimentary rocks.
The rocks have multigenerational ultrabasic dyke intru-
sions and form the Dragon Mountain orebody [53]. The
footwall rock series mainly includes Jurassic to Tertiary
continental clastic sedimentary rocks [38], [54]. Despite
the mining going on, the hanging wall does not show
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Fig. 15. Precision analysis of InSAR surface deformation results.

Fig. 16. Distribution of faults and lithology structure.
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obvious subsidence due to the influence of the F1 fault. It
intersects the F16, F17, F23, and F1 faults, which are dis-
tributed alternately with ore bodies. The dip angle varies
from 60° to 80°, which divides the rock mass into three
parts, Longshou, second western, and third eastern mining
areas. Therefore, the Jinchuan mining area overall shows
three continuous subsidence areas. The F8 and F6 faults
are north of the Longshou mining area. The deformation
area monitored by InSAR appears discontinuous on the
boundary of this fault. In Fig. 10(c), the sharp increase of
subsidence near 1000 m is the result of the cross-cutting
F6 fault. The southwest is controlled by the F3 fault, and
the subsidence of the whole mining area is limited to an
approximate ellipse under the action of the F3 fault. North
second western mining area in addition to the distribution
of F16 fault no around the main fault exists, so the explo-
ration area centered on veins form of approximate circular
settlement expansion to the surrounding area constantly,
but still is limited by the fault in northern expansion of the
scope. We predict that in the process of ongoing mining,
in addition to the northern area under fault control, the
subsidence area will continue to expand. The third eastern
mining area is controlled by the F17 and F23 faults, and
the subsidence area is confined to area between of the
two faults, forming a semicircle distribution. According
to the above analysis, the fault distribution in the Jinchuan
mining area controls the spatial distribution of surface
deformation [55].

3) The relation between surface deformation and lithology:
The lithology of the Jinchuan mining area is complex,
and regional differences are great [Fig. 16(b)]. The north-
eastern parts of the Longshou and second western mining
areas are the gneiss group, which is mainly composed of
dolomite and calcite. The particles are uniform and fine,
the texture is uniform, the hardness and structural strength
are low, and deformation easily occurs under stress and
erosion [13], [56]. In the southwest, there are gneisses
and compound gneisses, which are mainly composed of
feldspar, quartz, mica, etc., and also include amphibole
and pyroxene. They exhibit uneven grain size, and texture,
as well as high overall structural strength. Affected by
continental temperate arid climate and surface lithology,
the Jinchuan mining area surface formed a soft, thick
layer of loess mixed with sand, gravel, clay, and loose
accumulation. The surface’s overall density is low with
poor structural strength. Long-term erosion by rain and
seepage reduced the cohesive strength of the loess, clay,
sand, and matrix suction, and destroyed the steady-state
accumulation. The overburdened sand softened and stabil-
ity decreased [51], [57], and [58], resulting in the collapse
of the artificial building foundation in the mining area
and the deformation of the overburden surface. Surface
deformation of the Jinchuan mining area will continue
with manual mining. The stability of the rock mass in
the western mining area is greater than that in the eastern
mining area [38]. With the multistage invasion of mafic
and ultramafic intrusive rock and ultrabasic rock, joint and

Fig. 17. Training and testing curve of the proposed CNN–PhLSTM model.

fracture development is broken, so the subsidence of the
eastern mining area will be more obvious. In summary,
lithology is another controlling factor of surface deforma-
tion in the Jinchuan mining area.

C. Performance Analysis of the Proposed Method

The proposed prediction model is influenced by several hy-
perparameters, such as the number of network layers, learning
rate, number of hidden layer units, and training times, of which
sample partition length (length of history sequence), number of
network layers and number of hidden layer units are the most
critical factors. The trial-and-error method was used to debug
the hyperparameters, and the optimal hyperparameters were
obtained after several rounds of debugging. The sample partition
length (length of historical sequence) was 5, the number of
PhLSTM network layers was 3, and the number of hidden layer
cells was 256 and 128. Meanwhile, the CNN–PhLSTM predic-
tion model was obtained using these hyperparameters’ training.
As seen in Fig. 17, during model training, the change of loss
function (loss) converged normally, and overfitting in network
training was effectively suppressed. After 64 epoch complete
iterations of the training set, the network finally converged, and
the many steps to one step network model with different time
steps obtained approximately 0.85–0.92 SSIM on the training
set. An SSIM of approximately 0.84–0.90 was obtained from the
test set (Fig. 17). The SSIM converts the image of multiple time
steps into multiple channels of a single image for calculation.
Therefore, the spatiotemporal prediction model trained in this
article is an effective model.

In order to more accurately evaluate the proposed model’s
reliability, we analyzed the changing trends of the minimum
and maximum values of the original data and predicted data
within the time series (Fig. 18). The above numerical change
curves significantly overlap in the training and verification sets,
and the errors in the test set are relatively small. The subsequent
time series trend is consistent with that of the original dataset.
In addition, the errors in the test set may be related to our
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Fig. 18. Variation trend of maximum and minimum values of raw and predicted data.

TABLE III
COMPARISON OF MULTIPLE INDICATORS OF DIFFERENT MODELS

interpolation of SBAS–InSAR inversion results because there
are empty time steps in the test set.

Additionally, we randomly selected real InSAR deformation
data and corresponding simulated prediction data from October
18, 2020; December 17, 2020; February 15, 2021; and April 16,
2021, and calculated their correlation using the Pearson correla-
tion calculation method (Fig. 19). The real InSAR deformation
diagram fits well with the predicted deformation diagram, and
the maximum R2 is 0.9981.

In order to further verify the performance of the proposed
model, the support vector regression (SVR), multilayer per-
ceptron (MLP) and CNN–LSTM models, and five evaluation
indicators were mainly selected (Table III). It can be seen from
Table III that the proposed model is the best among all the
evaluation indicators, with the largest difference in MSE values.
The MSE values of the traditional SVM and MLP models are
large, while the MSE values of CNN–LSTM and the proposed
model are small, but the proposed model has the smallest MSE
value, indicating that the proposed model is the best and has the
highest prediction accuracy.

We calculated the running time of each model, the time
of SVR and MLP models were the slowest, CNN–LSTM
model was faster than CNN–PhLSTM model, because LSTM
was specially optimized by TensorFlow on NVIDIA’s CUDA,
while PhLSTM did not have this optimization. After CUDA
optimization, the adjustment of some hyperparameters of LSTM
was limited, so CNN–LSTM algorithm must be the fastest. In

fact, the efficiency of CNN–LSTM and the proposed model
should be about the same theoretically.

However, the proposed model had the highest accuracy be-
cause LSTM is no direct connection from the CEC (constant
error carousel), all it can observe directly is close to zero as
long as the output gate is closed, and the resulting lack of
essential information may harm network performance [59]. The
PhLSTM network to add weighted “peephole” connections from
the CEC to the gates of the same memory block. PhLSTM allows
output gates to utilize the previous internal state as well as
the previous hidden state. The output gate layer also receives
the cell state input, and the output gate receives the updated
cell state [44]. Therefore, information processed by a PhLSTM
network is more comprehensive and has higher accuracy in
time-series prediction. Therefore, the proposed model has good
performance and the highest prediction accuracy.

D. Research Limitations and Future Prospects

In this article, the spatiotemporal evolution characteristics
of surface deformation in the Jinchuan mining area were ana-
lyzed using SBAS–InSAR and the future spatiotemporal evo-
lution trend of surface deformation was predicted using the
proposed CNN–PhLSTM network model. Compelling results
were achieved, but there were some limitations in this article,
including the following:

1) The spatiotemporal evolution characteristics of the mining
areas lack a 3-D analysis. In this article, only LOS InSAR
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Fig. 19. Correlation between InSAR measured and predicted values.

deformation results were systematically analyzed, ignor-
ing the spatial and temporal characteristics of east–west
and north–south deformations.

2) Quantitative mechanism analysis is lacking. Due to data
limitations, the spatiotemporal evolution of surface de-
formation in the Jinchuan mining area is only discussed
qualitatively as a mechanism.

3) The proposed prediction model can accurately simulate
and predict the spatiotemporal evolution trend of the
Jinchuan mining area, but the prediction time scale is
limited to only the next 2 years. In addition, the proposed
model can only predict the continuous deformation, but
not the sudden collapse.

Therefore, in future article, we will first process multiple
orbit data, build a 3-D decomposition model, and systematically
analyze the spatiotemporal evolution characteristics of the east–
west and south–north mining areas, to reveal the evolution of
the Jinchuan mining area more accurately. Then we will collect
more data to quantitatively analyze the deformation mechanism
of the mining area. In addition, compared with deep learning

methods, the newly proposed model is improved as much as
possible to heighten model prediction accuracy and extend the
model prediction time-scale problem.

VI. CONCLUSION

We used SBAS–InSAR to evaluate surface stability in the
Jinchuan mining area based on Sentinel-1A data from 2014
to 2021. The InSAR measurement results in this article were
verified by the measured benchmark data and the InSAR mea-
surement data of different orbits. Spatiotemporal laws and mech-
anisms of surface deformation were analyzed and discussed. The
Sentinel-1A InSAR result demonstrated three continuous sub-
sidence areas, namely the Longshou, second western, and third
eastern mining areas in the Jinchuan Mine. Of these, the second
western mining area had the highest average annual subsidence
rate and settlement range. Its average annual deformation rate
was −171.17–14.69 mm, its cumulative surface deformation
kept increasing and the final cumulative subsidence reached 1.17
m from 2014 to 2021. The subsidence rate slowed down during



6750 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

2015–2017, but was uniform from 2018 to 2021. We explored
the surface deformation mechanism, man–machine mining, fault
distribution, and lithology structure three aspects. The results
showed that faults distribution and lithology structure were the
main causes of surface deformation in the Jinchuan mining area.

We created an integrated network of information consider-
ing spatial and time-series InSAR deformation data based on
CNN and PhLSTM to predict future spatiotemporal evolution
trends of surface deformation, namely, the CNN–PhLSTM.
First, time-series InSAR deformation data were compressed
using GRUs, and then deep time-series features were extracted
by time-distributed CNN segmentation. Next, deep time-series
feature vectors were input into a stacked PhLSTM to obtain
time sequence feature prediction values. Finally, the predicted
feature vectors were restored to raster images by the alternating
stacking method of upsampling and convolution layers. Surface
deformation for the next 2 years has been predicted by the
proposed CNN–PhLSTM model in the Jinchuan mining area.
The proposed model was evaluated using SSIM, the consistency
of minimum and maximum values in raw and predicted data,
and the correlation of the real InSAR deformation data and
corresponding simulated prediction data. The surface defor-
mation range is predicted to continue expanding and the time
series surface deformation will continue to increase until April
2024, when the surface deformation of second western mining
area is predicted to reach −1500 mm. The time-series surface
deformation rate is predicted show a slow deceleration trend
over the next 2 years.
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