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Abstract—Deep learning has achieved good performance in hy-
perspectral image classification (HSIC). Many methods based on
deep learning use deep and complex network structures to extract
rich spectral and spatial features of hyperspectral images (HSIs)
with high accuracy. During the process, how to accurately extract
the features and information from pixel blocks in HSIs is important.
All of the spectral features are treated equally in classification,
and the input of the network often contains much useless pixel
information, leading to a low classification result. To solve this
problem, an enhanced spectral-spatial residual attention network
(ESSRAN) is proposed for HSIC in this article. In the proposed
network, the spectral-spatial attention network (SSAN), residual
network (ResNet) and long-short term memory (LSTM) are com-
bined to extract more discriminative spectral and spatial features.
More specifically, SSAN is first applied to extract image features
by using the spectral attention module to emphasize useful bands
and suppress useless bands. The spatial attention module is used
to emphasize pixels that have same category with the central pixel.
Then, these obtained features are fed into an improved ResNet,
which adopts LSTM to learn representative high-level semantic
features of the spectral sequences, since the use of ResNet can pre-
vent gradient disappearance and explosion. The proposed ESSRAN
model is implemented on three commonly used HSI datasets and
compared to some state-of-the-art methods. The results confirm
that ESSRAN effectively improves accuracy.

Index Terms—Hyperspectral image classification (HSIC), long-
short term memory (LSTM), residual network (ResNet), spectral-
spatial attention network (SSAN).

I. INTRODUCTION

H yperspectral images (HSIs) contain abundant of narrow
and contiguous spectral bands ranging from visible to

near-infrared and even thermal infrared, holding plentiful phys-
ical properties. The 3-D data block of HSIs also contains ex-
tensive detailed spatial distribution information. Both spectral
signatures and spatial information can be used to accurately
characterize and identify the types of objects of interest, resulting
in great potential for land cover identification [1], [2], [3], [4].
Hyperspectral image classification (HSIC), aiming to identify
the category of each hyperspectral pixel, has been applied to
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many applications, such as geological exploration [5], [6], ur-
banization analysis [7], precision agriculture [8], environmental
monitoring [9], change detection [10], [11] and target detection
[12].

In early studies of HSIC, machine learning-based methods,
such as support vector machines (SVMs) [13], random forests
[14], decision trees [15], neural networks (NNs) [16], and lo-
gistic regression [17] were dominant. However, these methods
simply extract shallow features based on the spectral information
of the HSI, using one single pixel and all of its bands as input.
Thus, these linear and nonlinear classifiers do not adapt well to
the high dimensionality of the spectrum, limiting their applica-
tion [18]. Feature extraction (FE) methods are well adapted to the
high-dimensionality of the spectrum by mapping the raw HSIs to
a low-dimensional space. Some of the more advanced FE meth-
ods are geodesic-based sparse manifold hypergraph [19] and
multistructure unified discriminative embedding [20], etc. These
methods classify HSIs by converting them into low-dimensional
structures and extracting the sparse relationships and discrim-
inative features from different structures. When deep learning
was introduced into HSIC, it achieved remarkable performance.
Typical deep learning-based classification methods include deep
belief networks [21], sparse autoencoders [22], recurrent neural
networks (RNNs) [23], convolutional neural networks (CNNs)
[24], and so on. Different from traditional machine learning
algorithms, these deep learning-based methods can automati-
cally extract high-level semantic information from HSIs with
no handcrafted FE. Among them, CNN can simultaneously
extract high-level spectral and spatial features by convolution,
showing better classification performance. This spectral-spatial
classification method has gradually developed to solve the com-
plex spatial distribution problem in HSIs and obtain higher
classification accuracy [25]. The 1-D CNN model is designed to
use the pixel vector along the radiometric dimension as a training
sample to extract deep features, which is conceptually called
the spectral-based classification approach. A 2-D CNN, which
is called a spatial-based classification approach, learns spatial
information by a convolution operation on the spatial dimension.
3-D CNN combines the advantages of 1-D CNN and 2-D CNN
and can extract diagnostic spectral and spatial information from
3-D hypercubes with spectral and spatial continuity, which is
also called the spectral-spatial classification method [26].

The 3-D CNN takes a cube containing the target pixel and
several adjacent pixels as input. There are pixels in this cube
labeled differently from the central pixel. Such bands and pixels
contained in this hyperspectral cube obviously have bad effects
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on the CNN classification [27]. Therefore, it is critical to harvest
the information bands and pixels that are beneficial to HSIC
in the end-to-end classification process. Such information that
facilitates classification should be focused on, while bands with
redundant information and pixels with different labels from the
target pixels should be suppressed. To solve this problem, the
spectral-spatial attention (SSA) mechanism is used in HSIC to
learn dependent spectral and spatial features. SSA is composed
of a spectral attention (SpeA) module and a spatial attention
(SpaA) module. It assigns high weights to useful bands and
pixels for feature enhancement of the original image [28]. The
attention mechanism comes from the study of human vision,
where people selectively focus on useful information of interest
and ignore other visible information. Thus, this mechanism
increases the sensitivity to features that contain the most valuable
information. It was first applied to machine translation [29] and
later was also widely used in natural language processing [30],
image recognition [31], [32] and speech recognition [33]. Mei
first introduced the SSA mechanism into hyperspectral classi-
fication to capture high spectral correlation between adjacent
spectra and learn spatial dependence in the spatial domain [34].
Later, the attention mechanism was improved or combined with
other network structures to improve the classification accuracy
of HSI [35]. Pan et al. [36] designed a joint network with a spec-
tral attention bidirectional RNN branch and a spatial attention
CNN branch to extract spectral and spatial features for HSIC.
Zhu et al. [37] embedded a SSA module into a residual block to
avoid overfitting and accelerate the training speed. Lu et al. [38]
used a multiscale spatial-spectral residual network to stack the
extracted deep multiscale features and input them into the 3-D
attention module to improve the classification accuracy. Some
researchers combined SSA with graph convolutional networks
(GCNs) [39] to adaptively extract spatial and spectral features
from neighboring nodes through a graph attention mechanism
[40], [41]. It is evident that it is highly feasible and advantageous
to use SSA to extract spectral and spatial dependent features and
then input them into a deep network model for classification.

The depth of the network is critical to the performance of
most models. When the number of network layers is increased,
the network extracts more complex features, so theoretically
better results could be achieved. However, many experiments
have shown that as the depth of the network increases, the CNN
model exhibits degradation problems, leading to poor results.
Thus, He et al. [42] proposed the residual network (ResNet) on
the classification task of ImageNet large scale visual recognition
challenge (ILSVRC) 2015. The main contribution of ResNet is
the discovery of “degradation” and the invention of a “short-
cut connection” aimed at the degeneracy phenomenon, which
greatly eliminates the problem of training difficulty in deep
NNs. Subsequently, ResNet has been added to deep network
models by many scholars to classify HSIs in combination with
CNNs. Jiang et al. [43] collaborated on the 3-D separable ResNet
with cross-sensor transfer learning to reduce training parameters
and achieve better classification performance. Meng et al. [44]
proposed a multipath ResNet that employed multiple residual
functions in the residual blocks to make the network wider. Li
et al. [45] proposed a depthwise separable ResNet, which can
separate both spectral and spatial information and also greatly

reduce the network size. The residual network will continue
to be used in HSIC due to its powerful feature transformation
capability.

Although SSA and ResNet have powerful FE and general-
ization capabilities, the potential relationships between adjacent
bands are ignored, resulting in important spectral features to
be undetected. ResNet inputs the SSA transformed 3-D feature
maps as a whole into the model for training, and connects the
upper-level nodes with the lower-level nodes with weights; thus,
it ignores the relationship between the nodes of the same layer.
Long-short term memory (LSTM), a deep learning algorithm
mainly used to handle sequence data, can solve this problem.
The aim of the LSTM is to give a typically strong relationship
between the given sample and the previous one, where acti-
vation at each step depend on the previous step in the hidden
layer [46]. The simplest way to classify HSIs using LSTM is
to use each band of the pixel spectrum as input data at the
corresponding time, serialize the spectral vector band by band,
and then extract potential information. Zhou et al. [47] input row
vectors of image blocks centered on target pixels into the LSTM
model for hyperspectral classification. Liu et al. [48] proposed
a bidirectional-convolutional LSTM network to automatically
learn the spectral and spatial features from HSI. Tang et al. [49]
combined the GCNs with bidirectional LSTM to extract both
short and long spatial relationships for HSIC. It can be seen that
the addition of LSTM to the network model of HSIC is helpful
to improve the classification accuracy.

Based on the above analysis, we propose an enhanced
spectral-spatial residual attention network (ESSRAN) algorithm
for HSIC. Moreover, small training samples are selected to test
the network, which fully demonstrates the advantages of the
proposed method, and the pixel cluster (PC) approach is used
to solve the problem of insufficient number of training samples
for some categories. This network combines the advantages of
SSA, ResNet and LSTM, improving the capabilities of spectral
and spatial feature learning and the accuracy of classification.
The main contributions of this article are as follows.

1) For the problem that hyperspectral cubes often contain
redundant pixels and bands, the SSA module is applied
to extract discriminative and robust spectral and spatial
features. In the spectral dimension, it generates a spectral
weight vector emphasizing useful bands to improve the
performance of classification. In the spatial dimension, it
adaptively emphasizes the spatial information of pixels
with the same label as the central pixel by generating a
spatial weight matrix that represents the significance of
neighborhood pixels.

2) To extract potential relationships between adjacent bands,
LSTM is added to the ResNet module to obtain the interde-
pendence of long-range nonlinear channels. Specifically,
convolution and LSTM operations are used in ResNet
to extract the required spectral and spatial information.
The feature map after convolution is produced as spectral
sequence data, which is then fed into the LSTM to obtain
the relationship between the bands.

3) To adapt small samples of HSIC, we used the PC method
to expand the training samples. This method regroups the
training samples in order to obtain new pixel blocks. These
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Fig. 1. Framework of the proposed network for HSIC. First, select a 3-D patch cube (i.e., z) from the PCA-converted HSI. S denotes the spatial size of z, and B
is the number of spectral bands. Then, SSA extracts spectral and spatial features from z and feeds the features into ResNet with LSTM added for training. Finally,
the classification is performed using the softmax layer.

pixel blocks are superimposed on the spectral dimension
so that the new data block is of the same size as the original
one. This method effectively improves the classification
accuracy for classes with small number of samples.

4) We experimentally demonstrate the effectiveness of the
proposed deep network modules and illustrate that the
proposed ESSRAN outperforms eight compared methods
on three HSI datasets.

The rest of this article is organized as follows. Section II
introduces the proposed method. Section III evaluates the effec-
tiveness of the proposed method on real hyperspectral datasets,
and Section IV draws the conclusion.

II. PROPOSED METHOD

In this section, the framework of the proposed method for
HSIC is first described in detail. Second, each basic model in
the network is introduced in turn, including SSA, ResNet, and
LSTM. Finally, a pixel-cluster-based training sample increasing
method is presented in detail.

A. Overview of the Proposed Model

Let Xhsi ∈ RH×W×B represent the original HSI data, where
H, W, and B represent the height and width of spatial dimensions
and the number of spectral bands, respectively. Suppose that the
dataset Xhsi contains N labeled pixels X = {x1, x2, . . . , xN} ∈
R1×1×B , and their corresponding set of one-hot label vectors
Y = {y1, y2, . . . , yN} ∈ R1×1×K , where K is the number of
classes. The regions of size S × S centered at pixel x can
be defined as a spectral-spatial vector Z = {z1, z2, . . . , zN} ∈
RS×S×B . In this article, each patch cube zi in Z is used as input
to the proposed model to classify its corresponding center pixel
xi in HSI [50].

After the notation of HSI data, all available labeled data are
randomly divided into training and test datasets denoted byZtrain

and Ztest, respectively, and corresponding label sets are denoted

by Ytrain and Ytest, respectively. Then, Ztrain is used to optimize
the hyperparameters of the proposed model and obtain the best-
trained model through cross-validation. Finally, the best-trained
model is used to obtain three evaluation metrics of performance
by Ztest and classify all pixels to form a classification map.

Fig. 1 shows the framework of the proposed ESSRAN net-
work. First, the principal component analysis (PCA) algorithm
is used to perform feature transformation on the original HSI,
and then a pixel-centric 3-D patch is extracted as the input of the
proposed network [51]. Second, SSA is used to extract spectral
and spatial features. The spectral attention module assigns a
greater weight to the key channels and smaller weight to the
less important channels. The spatial attention module similarly
uses the weight matrix to enhance the information of pixels with
the same label as the central pixel and weaken those different
labels. Third, the improved ResNet, which adopts LSTM, that
has a strong ability to capture contextual information in the
spectral sequence, is used to extract more representative and
discriminative semantic features. Finally, a fully connected layer
with a softmax function is used for classification.

B. Spectral-Spatial Attention Network

The SSA network (SSAN) extracts deep spectral and spatial
features from patch cube z by enhancing useful information
and suppressing the effects of interfering information. This is
actually an adaptive attention mechanism, which extracts the
weight vector w from the patch cube z itself. The weight vector
is a significant spectral and spatial feature. Final SSAN output
is represented by fSSAN. The detail is formulated as follows:

fSSAN(z) = σ (w + bSSAN)⊗ z (1)

where σ(.) represents the activation function, bSSAN represents
the bias, and ⊗ represents the matrix multiplication. SSAN is
composed of two modules: the spectral attention module and the
spatial attention module, as represented in Fig. 2. The spectral
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Fig. 2. Two parts of SSAN. (a) Spectral attention model. (b) Spatial attention
model.

attention module is utilized to extract spectral features from the
patch cube z. The spatial attention module is utilized to capture
spatial features from the output of the spectral attention module
[52].

1) Spectral Attention Module: The SpeA mechanism empha-
sizes the spectral band, which helps in the extraction of features
and the final classification. The SpeA module is abstracted into
three procedures: feature aggregation, feature transformation,
and feature enhancement [53].

Feature aggregation calculates the average value of the patch
cube z in the spatial dimension as the weight of the correspond-
ing spectral dimension. Specifically, the input feature maps
F spec_in ∈ RS×S×B are fed into an average pool layer and a new
feature map F spec1 ∈ R1×1×B is obtained

F spec1 =
1

S × S

S−1∑
i=0

S−1∑
j=0

F spec_in
i,j . (2)

Feature transformation learns nonlinear channelwise inner
relationships by a multilayer perceptron (MLP) module. The
MLP module has two linear fully connected layers FC, a ReLU
activation function σReLU, and a sigmoid activation function
σsigmoid. The bottleneck ratio r of MLP is set to 2 to reduce the
computational cost and prevent overfitting. The feature transfor-
mation operation function in MLP is expressed as

F spec2 = σsigmoid
(
FC

(
σReLU

(
FC

(
F spec1

))))
(3)

whereF spec2 ∈ R1×1×B represents the output spectral attention
map.

Feature enhancement multiplies the converted spectral fea-
tures F spec2 with the original input F spec_in to obtain the feature
map with enhanced spectral information F spec_out ∈ RS×S×B

F spec_out = F spec2 ⊗ F spec_in. (4)

2) Spatial Attention Module: The SpaA mechanism en-
hances spatial information from the neighborhood pixels with
the same class label as the center pixel while it suppresses the
information from those with different labels. Similar to SpeA,
SpaA also has three procedures [54].

Feature aggregation extracts the average and maximum values
of each pixel spectrum from the input feature maps F spa_in ∈
RS×S×B and obtains new feature maps F spa1 ∈ RS×S×1 and
F spa2 ∈ RS×S×1, respectively,

F spa1 =
1

B

B−1∑
b=0

F spa_in
b (5)

F spa2 = max
(
F spa_in

)
(6)

where max represents the maximum operation.
Feature transformation connects the above two feature maps

horizontally as the input of a new convolutional layer followed
by a sigmoid activation function, obtaining the output attention
map F spa3 ∈ RS×S×1

F spa3 = σsigmoid
([
F spa1, F spa2

] ∗ k) (7)

where � is the convolution operation and k is the convolution
kernel.

Finally, feature enhancement combines the attention map
F spa3 and input map F spa_in and obtains the output map
F spa_out ∈ RS×S×B

F spa_out = F spa3 ⊗ F spa_in. (8)

F spa_out contains the spatial features of all the positions and
highlights the information of important spatial locations.

C. Modified Residual Network

ResNet is proposed to solve the problem that the accuracy
of CNN decreases substantially with increasing network depth.
CNN is an NN that extracts nonlinear spectral and spatial
features through convolution, pooling and activation functions.
The convolution layer uses convolutional operations to extract
deep features in spectral and spatial dimensions; the pooling
layer can reduce the complexity of the network and improve the
computational speed, including average pooling and maximum
pooling; and the activation function can improve the ability
of CNN to deal with nonlinear problems, such as the sigmoid
function and the ReLU function [55]. Therefore, it is difficult to
achieve a constant transformation between the nonlinear feature
map extracted by the deep CNN and the desired label. ResNet
connects the original feature map x with the optimized feature
map F (x), seeking a balance between linear and nonlinear
transformations

H(x) = F (x) + x (9)

where H(x) is the desired underlying feature map [42].
To propagate information backward and forward in the net-

work, deep ResNet is formed by stacking multiple BasicBlocks
together. One BasicBlock contains two convolution layers, two
batch normal layers and two activation functions, while the mod-
ified ResNet only retains half of these operations. The feature
map after convolution and batch normalization operations is
input to the LSTM module to obtain the contextual relationships
between adjacent spectra

x1 = batch_norm(conv(x)) (10)
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Fig. 3. Structure of LSTM.

F (x) = x1 ∗ σsigmoid(LSTM(x1) (11)

x1 refers to the feature map extracted by the convolution
operation, batch_norm is batch normalization, and conv is the
convolution. The channel relationship characteristic obtained by
LSTM is multiplied by x1 to obtain the final feature map. Con-
sidering the entire network proposed in this article, spectral and
spatial features are extracted using only one residual operation,
reducing the redundancy of the original structure. This not only
effectively utilizes the advantages of ResNet, but also reduces
the computation time and increases the discriminative power of
the model.

D. Long-Short Term Memory

LSTM overcomes the problem of gradient explosion or van-
ishing of RNNs when dealing with long sequence data. LSTM
has a chain-like structure, including a forget gate, input gate
and output gate. The forget gate decides whether to consider the
previous cell state; the input gate decides what new information
is stored in the cell state; and the output gate regulates the amount
of data passed to the next layer. The cell state carries information
from the first timestep to the last timestep, i.e., the footprint of
all inputs. Gates have one sigmoid activation function, where 0
indicates forget. The structure of LSTM is shown in Fig. 3. It can
be observed that the LSTM cell constantly updates the hidden
value and cell value with the help of the three control gates,
which are used to discard, retain, or amplify signals to achieve
information control and transformation. The calculation process
in one LSTM cell at time t is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ft = σsigmoid (wxfxt + whfht−1 + bf )

it = σsigmoid (wxixt + whiht−1 + bi)

c̃t = σtanh (wxcxt + whcht−1 + bc)

ct = it � c̃t + ft � ct−1

ot = σsigmoid (wxoxt + whoht−1 + bo)

ht = ot � σtanh(ct)

(12)

where ft, it, and ot represent the forget gate, input gate, and
output gate respectively. c̃t represents cell value. xt, ht, and
ct represent the input, hidden, and cell states at time step t,
respectively. bf , bi, bc, and bo are bias terms. The weight matrix
subscripts have conventional meanings. For instance, wxo is the
input–output gate matrix andwhi is the hidden-input gate matrix.
σ(.) is the activation function, and � is a dot product opera-
tor, meaning pixelwise multiplication [56], [57]. In HSIC, the

spectral vector is serialized band-by-band, and each spectral
band is used as input data for the LSTM model at the corre-
sponding time, extracting relationship information between the
bands.

E. Theory of Pixel Cluster

In HSIC, problems such as high imbalance between the num-
ber of samples of categories and few known labels for some of
the features are very common [58]. The small number of training
samples of HSI limits the learning ability of deep learning-based
models, which makes it difficult to extract the typical features
and affects the classification accuracy. Therefore, the PC algo-
rithm is proposed to solve this problem. Pixel clustering is a
process of increasing the number of samples using the principle
of permutation. This method selects multiple pixel blocks to
be combined after disrupting the training samples, and then
forms a new data block. A superposition operation is performed
on the selected multiple data blocks in the spectral dimension
so that the new data block is of the same size as the original
block.

Suppose there is a class that has n training samples. One
PC is composed of p pixels, which are randomly selected from
the training samples. The number of training samples after data
augmentation is

n′ =
n!

p! (n− p)!
. (13)

It is obvious that n ′ is larger than n when p � 1, solving the
shortage of the training set. In addition, the deep learning model
can learn more diverse spatial information from the expanded
training samples [59]. For categories with a large number of
samples, sample expansion using the PC principle would lead
to data redundancy and reduced accuracy. Therefore, categories
with sample sizes below-average are selected for the pixel clus-
tering operation to improve the classification performance of the
network. The effects of using PCs will be explained in detail in
the experimental section.

III. EXPERIMENTAL RESULTS

In this section, we first introduce three experimental datasets
and three factors that obviously influence the performance of
the proposed model. After that, the results are compared with
some state-of-the-art deep learning methods, fully proving the
advantages of the proposed algorithm. Finally, the effects of
SSA, LSTM, and PCs on the model are discussed separately.

A. Datasets

Three common HSI datasets, i.e., Indian Pines (IP), Pavia
University (PU), and Salinas (SA), are considered in our exper-
iments, as given in Table I. The numbers and names of each
category, the number of training samples, and the total number
of category samples for each of the three datasets are given in
Table II. The false color image, ground truth map, and color
code are depicted in Fig. 4.

1) Indian Pines: This dataset was captured by an airborne
visible infrared imaging spectrometer (AVIRIS) sensor
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Fig. 4. Graphical illustration of IP, PU and SA. (a) False-color map. (b) Ground-truth map. (c) Color code.

TABLE I
LIST OF THREE DATASETS

in Northwestern Indiana on June 1992. It contains 145
× 145 pixels with 20 m spatial resolution, and there are
224 spectral bands in the wavelength range of 0.4–2.45
μm. After removing the bands affected by atmospheric
absorption, 200 bands are used for classification. The
ground truth contains 16 vegetation classes with 10 249
labeled pixels.

2) Pavia University: This dataset was acquired by a reflec-
tive optics system imaging spectrometer (ROSIS) sen-
sor over PU, Northern Italy, in July 2002. There are

103 spectral bands in the spectral range from 0.43 to
0.86 μm obtained by removing several noise-corrupted
bands. It contains 610 × 340 pixels with a 1.3 m spa-
tial resolution. This dataset contains nine distinguishable
urban classes.

3) Salinas: The SA dataset was acquired by an AVIRIS sensor
over the SA Valley, California, USA. It contains 512 ×
217 pixels with a 3.7 m spatial resolution and 224 bands
in the spectral range of 0.36–2.5 μm. Similar to the IP
scene, 20 water-absorbing bands were discarded, and 204
bands were retained. In addition, it contains 16 ground-
truth classes.

B. Experimental Settings

We evaluated the performance of the proposed network model
on a server with an NVIDIA GeForce RTX 3090 GPU with 24
GB RAM. The code implementation of all methods is based on
Python 3.6 with the library of PyTorch 1.7. Several evaluation
indicators, including class-specific accuracy, overall accuracy
(OA), average accuracy (AA), and kappa coefficient (kappa), are
used to evaluate the proposed method exactly. Approximately
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TABLE II
NUMBER OF TRAINING AND TOTAL SAMPLES OF THE THREE DATASETS

TABLE III
ORIGINAL AND INCREASED NUMBER OF TRAINING SAMPLES

5% of the samples are randomly selected as the training set for IP,
and 1% of the samples are randomly selected as the training set
for PU and SA. For categories with fewer samples, at least five
samples are randomly selected for the training set, while other
samples are used as the test set. Each experiment is optimized
for 100 epochs for the training samples. Each experiment is
repeated five times to eliminate bias from randomly selected
training samples and the AA and the standard deviation of each
evaluation criterion are reported. In addition, the batch size is
set to 32 [60].

To solve the problem having inadequate number of labeled
hyperspectral datasets, experiments are performed using the PC
method to add new samples. The number of added training
samples are given in Table III. In the table, train A denotes
the original training sample, and train B denotes the extended
training sample. The number of samples is added only for cate-
gories with training samples smaller than the mean; otherwise,
the original training samples are used for training. As seen from
the table, the total number of training samples increased 3 to 4
times when compared to the originals.

We compared the proposed ESSRAN model with eight repre-
sentative state-of-the-art HSIC methods: SVM, LSTM [23], 3-D
CNN [61], HybridSN [62], DHCNet [63], GCN [64], RSSAN
[37], and A2S2K-ResNet [1]. The above methods are described
in detail as follows.

1) Support Vector Machine: A classical machine learning
algorithm using kernel functions. The implementation is
based on libsvm.

2) Long-Short Term Memory: A method for extracting spec-
tral features by converting spectral values into sequence
data.

3) 3-D Convolutional Neural Network: A method for di-
rectly extracting spectral and spatial information using
3-D convolutional operations. This method includes a 3-D
convolutional layer and a fully connected layer.

4) HybridSN: This method is a hybrid spectral CNN that
combines 3-D CNN extracting spectral and spatial features
with 2-D CNN extracting spatial abstract features.

5) DHCNet: This method introduces the deformable convo-
lutional sampling locations based on 2-D CNN, whose
size and shape can be adaptively adjusted according to the
complex spatial contexts of HSI.

6) Graph Convolutional Network: This method classifies
HSIs by encoding them into graphs and using superpixels
instead of pixels as nodes to simulate various spatial
structures of land cover on the graphs.

7) RSSAN: This method first uses SSAN to extract spectral
and spatial information, and then embeds the attention
mechanism into ResNet to accelerate model training and
extract features for classification.
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Fig. 5. OA of ESSRAN with different learning rates in the IP, PU, and SA
datasets.

8) A2S2K-ResNet: This method improves ResNet based on
RSSAN, which extracts spectral and spatial features using
selective 3-D convolution kernels and improved 3-D resid-
ual blocks, and adopts an efficient feature recalibration
mechanism to improve classification performance.

C. Parameter Setting

In this part, three pivotal factors that influence the training
progress and classification performance of the proposed model
are analyzed. These factors are the learning rate, spatial size,
and training size, which are called hyperparameters.

1) Learning Rate: The learning rate controls the rate of
gradient descent and affects the convergence in training
progress. A grid search approach is used to find the best
learning rate of the proposed model on each dataset. Here,
we consider the learning rate sets {0.05, 0.01, 0.005,
0.001, 0.0005, 0.0001}. The results of ESSRAN with
different learning rates in the three datasets are shown in
Fig. 5. Based on the above results, the highest accuracy is
achieved for the IP dataset when the learning rate is 0.005.
For the PU and SA datasets, the highest precision learning
rate is 0.01.

2) Spatial Size: The spatial size determines how much spatial
information is used for FE around the target pixel. Thus,
a large set of spatial input sizes {3, 5, 7, 9, 11, 13, 15}
is used to evaluate the influence on the performance of
the ESSRAN. As shown in Fig. 6, the accuracy of the PU
dataset reaches its highest value when the space size is 9
×9 and then decreases as the spatial size increases. For
the IP dataset, the accuracy increases smoothly until the
spatial size is approximately 11 × 11. For the SA dataset,
the larger the spatial size is, the higher the accuracy. It
follows that a data cube with a small spatial size cannot be
extracted with sufficient spatial information, while a large
spatial size affects the classification accuracy due to the
presence of other categories at the edges. Consequently,
we choose a spatial size of 9 ×9 for the later classification
experiments.

3) Training Size: The number of training samples plays a
decisive role in supervised HSIC. Therefore, we analyzed

Fig. 6. OA of ESSRAN with different spatial size in the IP, PU, and SA
datasets.

the effect of different training sample sizes on the OA.
1%, 3%, 5%, 10%, 15%, and 20% of labeled pixels are
selected as the training set to train the ESSRAN. As shown
in Fig. 7, the OA increases as the training size increases for
all three HSI datasets and all algorithms. Compared with
the other eight methods, the proposed method performs
the best on most of the training sizes. It is more obvious
on the IP dataset that the accuracy obtained by ESSARN is
significantly higher than other methods when the training
samples are small.

D. Classification Results

The experimental results of the IP dataset are shown in Fig. 8.
To clearly show the difference, we place a local enlarged patch
in the corner of each result map, and the same for the PU and
SA datasets. The proposed ESSRAN method obtains the best
classification results visually, with nearly no misclassification.
Both A2S2K-ResNet and GCN show impressive results, but
GCN shows some consecutive misclassifications at the edges.
Among the remaining methods, the CNN-based 3-D CNN,
HybridSN, DHCNet, and RSSAN give better classification
results than SVM and LSTM. Table IV gives the average OAs,
AAs, and kappas (and their standard deviations based on five
runs) of the IP dataset. It can be clearly seen that the ESSRAN
has the highest OA, AA, and kappa among the nine methods.
The average OA of the ESSRAN is 97.69%, AA is 97.19%,
and kappa is 97.37%. Three metrics of ESSRAN also have the
smallest standard deviation among all methods. The standard
deviation of OA is only 0.13%, indicating that the method
has the highest stability. In addition, the ESSRAN method
achieves the highest classification accuracy in 11 of the 16
classes due to the extraction of more discriminative spatial and
spectral features. The class-specific samples in the IP dataset
are highly imbalanced. Four feature types (C1, C7, C9, and C16
respectively) have less than 100 labeled samples and only 5
training samples, in which case ESSRAN achieves the highest
classification accuracy. In particular, the OA of the “oats” (C9)
is 89.13%, which is 7.46% higher than the highest accuracy of
the other methods. This shows that the proposed algorithm has
high recognition accuracy for types with few known samples.
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Fig. 7. OA achieved by different methods with varying training samples sizes. (a) Indian Pine. (b) Pavia University. (c) Salinas.

Fig. 8. Classification maps for IP dataset. (a) Ground truth. (b) Support vector machine. (c) Long-short term memory. (d) 3-D convolutional neural network. (e)
HybridSN. (f) DHCNet. (g) Graph convolutional network. (h) RSSAN. (i) A2S2K-ResNet. (j) Enhanced spectral-Spatial residual attention network.

The PC algorithm increases the number of samples and
contributes significantly to the improvement of classification
accuracy. The SVM and LSTM provide worse results than
the other methods, due to using only spectral information and
missing the spatial relationship.

The experimental results for the PU dataset are shown in
Fig. 9. Compared to the ground truth, it can be seen that the
proposed algorithm handles the details better and classifies
accurately. The other algorithms have poor results on this kind
of data with scattered feature types, in particular “asphalt” (C1)
and “self-blocking slices” (C8), which are often misclassified,
as shown enlarged in the figure. Table V gives the obtained
classification results for the PU dataset. From this table, we
can see that ESSRAN obtains the highest classification accuracy
with 95.87% for OA, 95.37% for AA, and 94.51% for kappa. The
standard deviations of category accuracy show that categories
with high accuracy generally have low standard deviations. The
standard deviations of OA, AA, and kappa of the proposed
method are the smallest among all methods, which are less than
0.7, while those of the other methods are larger than 1. This
indicates that the proposed method has high stability and can

accurately identify the target feature types. A total of 2/3 of the
categories have accuracies higher than 97%, and 3 categories
obtain the highest category accuracy. The category with the most
significant accuracy improvement is ‘’bitumen” (C7), which im-
proved by 7.95% over RSSAN. The high classification accuracy
obtained with only 1% of the training samples shows that the
proposed ESSRAN has a strong learning capability when the
number of samples is small.

Fig. 10 shows the classification results of SA dataset. It
can be seen that the misclassified feature types are mainly
“vinyard_untrained” (C15) and “grapes_untrained” (C8). The
classification maps of SVM and LSTM have obvious dot
noise for the worst results, and the results of 3-D CNN and
two improved CNN-based methods, HybridSN and DHCNet,
also have many mismarks. Due to the use of a unique graph
structure, GCN achieves visually smooth results, but in
reality there are many misclassifications, such as “bro-
coli_green_weeds_2” (C2) being misclassified as “bro-
coli_green_weeds_1” (C1). The classification results of RSSAN
and A2S2K-ResNet, which use an SSA mechanism, are better
than the previous methods. In particular A2S2K-ResNet, which
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TABLE IV
CLASSIFICATION RESULTS ON THE IP DATASET (%)

TABLE V
CLASSIFICATION RESULTS ON THE PU DATASET (%)

uses an adaptive adjustment of the kernel size, achieves high
accuracy. Compared with other methods, the ESSRAN generates
the most accurate and smooth classification maps, especially at
the boundary of two different classes. The highest classification
rates obtained with ESSRAN are 98.34% for OA, 98.84% for
AA, and 98.15% for kappa (see Table VI). Meanwhile, ESS-
RAN has a low standard deviation of accuracy, and the average
standard deviation of the three metrics is 0.18%. Among the

other methods, the maximum standard deviation is 2.42% for
OA, 1.42% for AA, and 2.73% for kappa. The proposed method
achieves a high level of category accuracy, with an accuracy of
over 99% for 11 categories. The proposed method gains higher
classification accuracy in 8 of the 16 classes, with the accuracy
of three categories reaching 100%. The class with the highest ac-
curacy improvement is “lettuce_romaine_7wk” (C14), with an
accuracy of 99.34%, which is 2.99% higher than other methods.
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Fig. 9. Classification maps for PU dataset. (a) Ground truth. (b) Support vector machine. (c) Long-short term memory. (d) 3-D convolutional neural network. (e)
HybridSN. (f) DHCNet. (g) Graph convolutional network. (h) RSSAN. (i) A2S2K-ResNet. (j) Enhanced spectral-spatial residual attention network.

E. Ablation Study

To further validate the effectiveness of different modules used
in the proposed framework, we perform ablation experiments
while keeping the other experimental settings unchanged. There
are four modules of the proposed framework as follows.

1) The SSA and LSTM and PC are removed from the pro-
posed framework, and FE and classification are performed
using ResNet.

2) The spectral attention, spatial attention, and spectral-
spatial attention are added to the model of ResNet exclu-
sively and each network is denoted as SpeRAN, SpaRAN,
and SSRAN, respectively.

3) The LSTM module is removed from the proposed frame-
work (the resulting model is denoted as PC-SSRAN).

4) The PC module is removed from the proposed framework
(the resulting model is denoted as LSTM-SSRAN).

Table VII gives the OA results of the ablation study. With
the addition of SpeA and SpaA, the accuracy is improved
compared to ResNet, and it is clear that SpeA has a greater
effect on improving accuracy. After adding SSA, the accuracy
of datasets IP, PU, and SA increased by 3.4%, 4.23%, and
2.16% compared to ResNet, due to the SSA module extracting
diagnostic spectral and spatial information, which eliminates the
effects of uncorrelated pixels and bands. Moreover, we compare

the ESSRAN with SSARN, PC-SSARN (without LSTM) and
LSTM-SSRAN (without PC). The results show that the inclusion
of both PC and LSTM is important for OA enhancement, and
the accuracy of the three datasets IP, PU, and SA is 0.75%,
0.49%, and 0.34% higher than that of SSARN, respectively. It
can be concluded that the sample increase and the extraction of
the relationship between adjacent bands are of great significance
for the improvement of classification accuracy. For the IP and PU
datasets, the addition of the spatial attention mechanism does not
bring accuracy improvement to SSRAN, but for the SA dataset,
the spatial attention mechanism is indispensable. This is related
to the complexity and characteristics of the dataset itself.

F. Computational Cost

Table VIII gives the complexity of different methods in terms
of training time, the number of trainable weight parameters
updated during backpropagation, and computational cost. The
results show that the proposed method takes more time to train
than other methods due to the use of LSTM-based cell structure.
However, the training time of the proposed method is less than
the sum of the training time of LSTM and RSSAN, which indi-
cates that the proposed method does not increase the time cost.
Since the proposed algorithm does not have deep network layers,
the number of parameters used for training is small (9.41×104)
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Fig. 10. Classification maps for SA dataset. (a) Ground truth. (b) Support vector machine. (c) Long-short term memory. (d) 3-D convolutional neural network.
(e) HybridSN. (f) DHCNet. (g) Graph convolutional network. (h) RSSAN. (i) A2S2K-ResNet. (j) Enhanced spectral-spatial residual attention network.

and is only larger than that of GCN. The computational cost
is calculated by floating point operations (106×FLOPs). The
results show that the ESSRAN has much smaller FLOPs than
the A2S2K-ResNet, which is 399.57×106 FLOPs.

G. Discussion

First, three hyperparameters (including learning rate, spatial
size, and training size) that affect the experimental performance
are tested in cross-validation experiments. The learning rate
of the network is closely related to convergence and is set to
0.005 for the IP dataset and 0.001 for the PU and SA datasets.
As the spatial size increases, the experimental accuracy in-
creases first and then stabilizes. The best accuracy is achieved
when the spatial size is 9 × 9, considering the input size of
the proposed framework. Furthermore, the performance of all

methods improves as the number of training samples increases.
ESSRAN achieves excellent performance for all training sizes,
and OA outperforms all comparison methods, demonstrating the
absolute advantage of the ESSRAN method.

Second, the proposed ESSRAN model is compared with
state-of-the-art deep learning-based methods by analyzing OA,
AA, kappa, and category accuracy on three datasets. ESSRAN
shows the best classification results on the IP, PU and SA datasets
with 97.69%, 95.87% and 98.34% for OA, 97.19%, 95.37% and
98.84% for AA and 97.37%, 94.51% and 98.15% for kappa,
respectively. Moreover, the proposed algorithm shows the most
significant improvement in accuracy on the IP dataset. Com-
pared with the A2S2K-ResNet algorithm, the OA of ESSRAN
improves 2.57% on the IP dataset, 1.58% on the PU dataset,
but only 0.16% on the SA dataset. The main advantages of the
proposed algorithm are: richer extraction of spectral and spatial
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TABLE VI
CLASSIFICATION RESULTS ON THE SA DATASET (%)

TABLE VII
ACCURACY ANALYSIS TERMS OF OA FOR DIFFERENT MODULES OF THE PROPOSED FRAMEWORK

TABLE VIII
COMPUTATIONAL COST OF THE THREE DATASETS

information; better processing of edge information; and more
accurate recognition of categories with small sample sizes.

Third, ablation experiments are used to demonstrate the
role of individual structures in the model. We analyzed the
impact of using or not using SSAN, LSTM, and PC in the
model on the experimental results. The experimental results

prove that all the added structures are beneficial to the ac-
curacy. The combination of ResNet and LSTM allows it to
better capture contextual information and retain the spectral
and spatial features extracted by SSAN, which is extremely
important for improving classification performance. In addi-
tion, PC has a good effect on the accuracy improvement of
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small sample categories, which is more obvious on the IP
dataset.

IV. CONCLUSION

In this article, we proposed an ESSRAN for HSIC. Initially the
network uses a spectral-spatial attention mechanism to extract
efficient and discriminative spectral and spatial information.
Then, deep features are extracted using ResNet with the addition
of LSTM, which obtains information about the relationships
between adjacent spectra. The residual structure is able to
combine the original features with the transformed features
to obtain a stronger feature representation, which can further
improve classification performance. Adequate experiments on
three widely used HSI datasets demonstrate that the proposed
ESSRAN model outperforms the state-of-the-art methods and
achieves the highest classification accuracy. This network ob-
tains extremely high classification accuracy with a simple struc-
ture, which fully demonstrates the advantages of the proposed
method. In addition, experiments show that the ESSRAN algo-
rithm has excellent classification results for data with uneven
data distribution and a small number of samples, solving diffi-
culties in obtaining labeled hyperspectral data. Considering that
the proposed algorithm is a supervised learning classification
method, in future research we will learn semisupervised and
unsupervised approaches as well as more novel network models
to make hyperspectral classification more intelligent accurate,
and thus widely applied.
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