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Aerosol Parameters Retrieval From TROPOMI/S5P
Using Physics-Based Neural Networks
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and Adrian Doicu

Abstract— In this article, we present three algorithms for aerosol
parameters retrieval from TROPOspheric Monitoring Instrument
measurements in the O2 A-band. These algorithms use neural
networks 1) to emulate the radiative transfer model and a Bayesian
approach to solve the inverse problem, 2) to learn the inverse model
from the synthetic radiances, and 3) to learn the inverse model
from the principal-component transform of synthetic radiances.
The training process is based on full-physics radiative transfer
simulations. The accuracy and efficiency of the neural network
based retrieval algorithms are analyzed with synthetic and real
data.

Index Terms—Aerosol information retrieval, neural networks,
TROPOspheric Monitoring Instrument/Sentinel-5 Precursor
(TROPOMI/S5P).

I. INTRODUCTION

A EROSOLS affect Earth’s radiation budget by scattering
and absorbing solar radiation (direct effect) and by influ-

encing the cloud formation processes (indirect effect). Highly
absorbing aerosols also have a warming effect on the atmosphere
leading to the evaporation of cloud particles, which results in
a reduction of the cloud cover (semidirect effect). Accurate
assessments of aerosol properties, such as optical depth and layer
height, are important for the global monitoring of air pollution
in the lower atmosphere.

A number of passive satellite sensors enable to monitor
aerosol properties on both regional and global scale using spec-
tral information at various wavelengths. For instance, measure-
ments in the O2 A-band from the Global Ozone Mapping Ex-
periment (GOME) [1] and GOME-2 [2], the Scanning Imaging
Absorption Spectrometer for Atmospheric Chartography [3]–
[5], the Greenhouse Gases Observing Satellite [6], and the
TROPOspheric Monitoring Instrument (TROPOMI) onboard
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the Sentinel-5 Precursor (S5P) [7], [8] are used to retrieve aerosol
optical depth and height information.

The inversion methods used in atmospheric remote sensing
aim to recover atmospheric parameters by minimizing the
residual between the measurements and the radiative transfer
model simulations. The solution of the minimization problem
can be found by using deterministic (e.g., Tikhonov-type
regularization methods [9], [10]) or stochastic approaches (e.g.,
Bayesian methods [11]). In both cases, the computations of the
forward model and the Jacobian matrix impose the performance
bottleneck in the whole processing chain. Therefore, it would
be problematic to adopt these approaches for the operational
processing of remote sensing data from new-generation sen-
sors. To tackle this problem, artificial neural networks, which
are able to approximate very quickly any continuous function
with a sufficiently high accuracy [12], [13] and to estimate the
derivatives of the function with respect to the model inputs,
can be used. Actually, a trained neural network may provide
accurate estimates of the forward model and its Jacobian, in a
fraction of time compared to classical retrieval algorithms. In
atmospheric remote sensing, neural networks have already been
widely applied. These techniques have been used 1) to approx-
imate a radiative transfer model (or a part of it) [14]–[19], 2) to
learn the inverse mappings [20]–[28], and 3) to recover some
atmospheric retrieval parameters, which are then taken as initial
guesses in an optimization approach [29], [30]. In this context,
it should be pointed out that the two TROPOMI operational
retrieval algorithms based on the O2 A-band measurements use
neural network based forward models together with a Bayesian
approach for the retrieval of cloud properties [31], [32] and the
aerosol layer height [33]–[35].

In this study, we present three types of neural networks for
aerosol retrieval from TROPOMI measurements. The first one
uses a neural network to emulate the radiative transfer model and
a Bayesian approach to solve the inverse problem, the second
one uses a neural network to learn the inverse model from the
synthetic radiances, and the third one uses a neural network to
learn the inverse model from the principal-component transform
of synthetic radiances following the full-physics inverse learning
machine method [18]. The major goal of this study is to incor-
porate the three neural network algorithms into a common tool
and to analyze and compare their retrieval performances. To the
best of our knowledge, such a comparison study had not been
done before. This article is organized as follows. In Section II,
we summarize the main features of the adopted radiative transfer
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model, while in Section III, we provide a detailed description of
three physics-based algorithms using neural networks. In Sec-
tion IV, the corresponding retrieval performances of the neural
networks are analyzed using synthetic and real TROPOMI data.

II. RADIATIVE TRANSFER MODEL

Any physics-based retrieval algorithm uses a model for com-
puting the radiative transfer in a planetary atmosphere. We begin
our analysis by summarizing the peculiarities of the radiative
transfer model used in this study.

Regarding the TROPOMI instrument, each swath row (angle)
r with r = 1, . . . , R is characterized by its own measurement
wavelength grid {λr

mk}Nmλ

k=1 and slit function gr, where R is the
number of swath rows and Nmλ is the number of spectral grid
points. This is due to the optics of the spectrometer (point spread
function, aberrations, and defocusing) and small changes in the
width of the slit. The noisy and synthetic radiances measured by
the instrument at a wavelength λr

mk are given, respectively, by

Iδ(λr
mk) = I(λr

mk) + δmk, (1)

I(λr
mk) =

∫ ∞

−∞
gr(λ

r
mk − λ)I(λ) dλ (2)

where I(λ) is the radiance computed by a radiative transfer
model at a forward wavelength λ (before convolution) and δmk

is the measurement noise. Note that because {λr
mk}Nmλ

k=1 changes
slightly with r, we assumed that the noise is row independent.

The synthetic radiances I(λ) are computed on the forward
wavelength grid by a radiative transfer model relying on the
discrete ordinate method with matrix exponential [36], [37].
To speed up the computation, standard acceleration methods,
i.e., the telescoping technique [38], [39] and the method of
false discrete ordinate [40], as well as hyperspectral acceleration
methods, i.e., the correlated k-distribution method [41] and prin-
cipal component analysis [42]–[46], are employed. Line-by-line
calculations [47] with optimized rational approximations for the
Voigt line profile [48] (taken from HITRAN database [49]) are
used to compute the absorption cross sections of gas molecules;
the methodology described in [50] is used to compute the
Rayleigh cross section and depolarization ratios, and the delta-M
approximation [51] and truncated multiple and single scattering
approximation correction [52], [53] are used in the radiative
transfer calculations. The radiative transfer model includes sev-
eral types of bidirectional reflectance distribution functions over
land and water. However, in order to simplify the analysis, we
use the geometry-dependent effective Lambertian equivalent re-
flectivity (GE_LER) product that accounts for satellite viewing
dependencies and improves the accuracy for actual snow/ice
conditions [28].

The aerosol optical depth τ and layer height H are retrieved
in the oxygen absorption A-band (758–771 nm). To simplify the
analysis, the aerosol layer is assumed to be homogeneous with a
fixed thickness of 0.5 km, spreading evenly fromH − 0.25km to
theH + 0.25 km. As the considered spectral range is narrow, the
aerosol optical depth is assumed to be constant within this range.
There are five sets of aerosol microphysical models [54], [55]
included in the radiative transfer model under the assumption

of spherical aerosol particles. For example, the set of aerosol
models taken from the MODIS dark-target (DT) algorithm [56]
includes nonabsorbing, moderately absorbing, and absorbing
aerosols, as well as desert dust. Each aerosol model is char-
acterized by a bi-mode log-normal volume size distribution
comprising a fine and a coarse mode. Specifically, in the case
of moderately absorbing aerosols, the median radius of the fine
mode rvf and the coarse mode rvc are given, respectively, by

rvf = 0.145 + 0.0203τ (μm), (3)

rvc = 3.101 + 0.3364τ (μm) (4)

the standard deviations of the fine mode sf and the coarse mode
sc by

sf = 0.374 + 0.1365τ, (5)

sc = 0.729 + 0.098τ (6)

the volumes of the fine mode particles V0f and the coarse mode
particles V0c by

V0f = 0.1642τ0.775 (μm3/μm2), (7)

V0c = 0.1482τ0.684 (μm3/μm2) (8)

and the complex refractive index of the aerosol particles by
m = (1.43, 0.008− 0.002τ). Note that the parameters of the
size distribution and the refractive index depend on the aerosol
optical depth τ . In addition, the radiative transfer model can
deal with several types of aerosol profiles, such as, for example,
elevated box, exponential decay, a combination of exponential
decay and ground box, and Gaussian.

III. NEURAL NETWORK ALGORITHMS

In this study, neural networks are employed 1) to emulate
the radiative transfer model and 2) to learn the inverse model.
The first one is referred to as a neural network for the forward
operator, whereas the second one as a neural network for the
inverse operator.

The neural network approach can be briefly summarized as
follows. Let us consider the model y = F(x), where x ∈ RNx

and y ∈ RNy are the input and output vectors, respectively, and
F is a deterministic function. In order to approximate F(x) by a
neural network model f(x,ω) with parameters ω, we consider
a deep neural network consisting of units (nodes) arranged in an
input, output, and several hidden layers. For a neural network
with L+ 1 layers and Nl units in layer l, the feed-forward
operations read as

ul = Wlyl−1 + bl, (9)

yl = φl(ul), l = 1, . . . , L (10)

where l = 0 and l = L are the input and output layers, re-
spectively, φl is the layer activation function, Wl ∈ RNl×Nl−1

is the matrix of weights connecting the layers l − 1 and l,
bl ∈ RNl is the vector of biases corresponding to layer l,
and ω = {Wl,bl}Ll=1 is the set of network parameters. In the
input and output layers, we have y0 = x and yL = f(x,ω),
respectively, so that N0 = Nx and NL = Ny. Deep learning
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Fig. 1. Mean square error for the validation data set. The results correspond to all neural networks considered in this study, i.e., (a) the forward-operator neural
network, (b) the inverse-operator neural network with synthetic radiances, and (c) inverse-operator neural network with the principal-component transform of
synthetic radiances.

TABLE I
VALUE RANGES OF THE OPTICAL AND GEOMETRICAL PARAMETERS

FOR GENERATING THE DATA SET

is the process of computing the network parameters ω on a
data set D = {(x(n),y(n))}Nn=1, where y(n) = F(x(n)) and N
is the number of samples. This is done by computing a point
estimate ω̂ as the minimizer of a loss function with a penalty
term controlling the amplitudes of the network parameters, i.e.,
E(ω) = 1

2

∑N
n=1 ||y(n) − f(x(n),ω)||2 + γ||ω||2, where γ is

the regularization parameter.
To formulate the retrieval problem, we group the optical and

geometrical parameters into the following:
1) retrieval parameters, which include the aerosol optical

depth τ at 760 nm and aerosol layer height H defined as
the middle height of an aerosol layer with a fixed thickness
of 0.5 km;

2) forward model parameters, which include the solar zenith
angle θ0, viewing zenith angle θ, relative azimuth angle
Δϕ, surface height Hs, and surface albedo As (note that
the forward model parameters are not part of the retrieval).

For generating the data set, samples of optical and geomet-
rical parameters are produced by means of a smart sampling
technique [57] based on Halton sequences [58]; their ranges of
variations are shown in Table I . The neural networks are trained
for the moderately absorbing aerosol model from the MODIS
DT algorithm.

The hyperparameters of the neural network, i.e., the number of
hidden layers and the number of units in each layer, are optimized
by using 10% of the samples from the training set for validation.
In the validation stage, the holdout cross-validation and a grid
search procedure are used; the grid search is performed over the
sets {2, 3, 4} of hidden layers and {20, 40, 60, 80, 100} of layer
units. For all neural network considered in this study, a network
architecture with 4 hidden layers and 40 units in each layer
yields the lowest mean-square error on the validation data set

(see Fig. 1), and no overfitting has been observed. A hyperbolic
tangent activation function is taken, and as optimization tool, the
mini-batch gradient descent with adaptive moment estimation
[59] is utilized.

A. Neural Network for the Forward Operator

For emulating the radiative transfer model, we consider a
neural network in which the input x is the set of optical and
geometrical parameters, while the output y is the set of syn-
thetic radiances I(λk) computed on the forward wavelength grid
{λk}Nλ

k=1, i.e.,

x =

[
[τ,H]T

[θ0, θ,Δϕ,Hs, As]
T

]
�−→ y = [I(λk)]

Nλ

k=1. (11)

Thus, the dimensions of the input and output vectors are Nx = 7
and Ny = Nλ, respectively.

The forward wavelength grid consists of Nλ = 465 equidis-
tant spectral points ranging from 757.4 to 771.6 nm, while the
number of samples in training set is Nt = 151 423 based on the
number of combinations of optical and geometrical parameters
defined by Table I. After the radiative transfer model is learned,
the synthetic radiances computed at a high spectral resolution
on the forward wavelength grid I(λk) are convolved with a slit
function gr to obtain the synthetic radiances on the measurement
wavelength grid I(λr

mk) [cf. (2)].
The retrieval of aerosol parameters encapsulated now in the

state vector x = [τ,H]T requires the solution of the nonlinear
equation

yδ = F(x) + δm (12)

where, for a given swath row r,yδ = [Imes(λ
r
mk)]

Nmλ

k=1 is the mea-
surement vector,F(x) = [I(λr

mk)]
Nmλ

k=1 is the forward model, and
δm = [δmk]

Nmλ

k=1 is the measurement noise vector. The nonlinear
equation (12) is solved by using a Bayesian approach [11]. In
this approach, the a posteriori density p(x | yδ) representing
the conditional probability density of the state vector x given
the data yδ is the quantity of interest. Assuming that

1) the measurement noise vector δm is a Gaussian ran-
dom vector with zero mean and noise covariance ma-
trix Cm = diag[σ2

mk]
Nmλ

k=1 = σ2
mCm, i.e., δm ∼ N (0,Cm),

where σ2
m =

∑Nmλ

k=1 σ
2
mk is the noise variance, and
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Fig. 2. Contribution of the first 14 principal components to the total variance
(top) and reconstruction error with respect to the first 14 principal components
(bottom).

2) the state vector x is a Gaussian random vector with mean
xa and a priori covariance matrix Cx = diag[σ2

xk]
Nx
k=1 =

σ2
xCx, i.e., x ∼ N (xa,Cx), where xa is the a priori state

vector, σ2
x =

∑Nx
k=1 σ

2
xk is the a priori state variance, and

the notation N (xmean,Cx) symbolizes a normal distribu-
tion with mean xmean and covariance matrix Cx,

we find

p(x | yδ) ∝ exp
[
−1

2
Vα(x | yδ)

]
(13)

where

Vα(x|yδ) =
1

σ2
m

{
[yδ − F(x)]C−1

m [yδ − F(x)]T

+ α(x− xa)C−1
x (x− xa)

T
}

(14)

is the a posteriori potential and α = σ2
m/σ

2
x is the regularization

parameter. Here, the notation N (xmean,Cx) stands for a normal
distribution with mean xmean and covariance matrix Cx. The
maximum a posteriori estimate x̂δ

α is then computed as

x̂δ
α = argmin

x
Vα(x|yδ). (15)

After scaling the data model (12) with the matrix P = C−1/2
m ,

i.e., after transforming the data model into a model with white
noise and introducing the regularization matrix L through the
Cholesky factorizationC−1

x = LTL, we are led to a least-squares
problem which is solved by using the iteratively regularized
Gauss–Newton method [60]. This method supplies the optimal
value of the regularization parameter and the corresponding
regularized solution.

In the inversion step, the noise covariance matrix is chosen as
Cm = diag[σ2

mk]
Nmλ

k=1 with σmk = 0.02× I(λmk) and I(λmk) =

(1/R)
∑R

r=1 I(λ
r
mk) for all k = 1, . . . , Nmλ, and the a priori

covariance matrix as Cx = diag[σ2
xk]

2
k=1 with σxk = 0.2× xk

and xk standing for τ and H .

Fig. 3. Predictions of the forward-operator neural network (top row), the
inverse-operator neural networks with synthetic radiances (middle row),
and the principal-component transform of synthetic radiances (bottom row),

respectively. The plots show the predicted values x
(n)
pred (blue points) to-

gether with the mean Ej(xpred) (red points) and standard deviation√
Ej(xpred − Ej(xpred)]2) (red error bars) over all samples x

(n)
pred, whose

corresponding x(n) are in the jth bin. The value range of x is split intoNb = 40
bins, where x stands for the aerosol optical depth τ and aerosol layer height H .

B. Neural Network for the Inverse Operator

For solving the inverse problem, we designed two types
of neural networks following the full-physics inverse learning
machine method. The first one uses as input the synthetic radi-
ances computed on the measurement wavelength grid, while the
second one uses as input the principal-component transform of
synthetic radiances.

1) Neural Network for the Inverse Operator With Synthetic
Radiances: In principle, for emulating the inverse model, we
may use a neural network in which the input x includes the
noisy radiances on a measurement wavelength grid and the
forward model parameters, while the output y includes the set
of parameters to be retrieved, i.e.,

x =

[
[I(λr

mk) + δmk]
Nmλ

k=1

[θ0, θ,Δϕ,Hs, As]
T

]
�−→ y = [τ,H]T . (16)

In this case, the dimensions of the input and output vectors are
Nx = Nmλ + 5 and Ny = 2, respectively.

The problem which appears is that because we are dealing
with a random measurement noise and a set of measurement
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Fig. 4. Absolute error in the retrieved aerosol optical depth Δτ and aerosol
layer height ΔH versus the optical and geometrical parameters b, where b
stands for the aerosol optical depth τ , aerosol layer height H , solar zenith
angle θ0, viewing zenith angle θ, relative azimuth angle Δϕ, surface albedo As,
and surface height Hs. The results correspond to the forward-operator neural

network. The plots show the absolute error Δ(n)
x (blue points) together with the

mean Ej(Δx) (red points) and standard deviation
√

Ej([Δx − Ej(Δx)]2)

(red error bars) over all samples Δ(n)
x , whose corresponding b(n) are in the jth

bin. The interval of variation of each parameter b is split into Nb = 40 bins.

wavelength grids, the same output corresponds to different
realization of the random noise as well as to different wave-
length grids. To reduce the dimension of the data set, we use
the jitter approach under the assumption that the measurement
wavelength grid {λr

mk}Nmλ

k=1 is a discrete random variable which
can take the values {λ1

mk}Nmλ

k=1, . . . , {λR
mk}Nmλ

k=1. According to this
approach, at each forward pass through the network, a measure-
ment wavelength grid {λr

mk}Nmλ

k=1 is randomly selected from the
R wavelength grids, and a new random noise δmk ∼ N (0, σ2

mk)

Fig. 5. Same as in Fig. 4 but for the inverse-operator neural network with
synthetic radiances.

is added to the synthetic radiance I(λr
mk). In other words, the

input sample is different every time it is passed through the
network.

In the training stage, the number of swath rows is R = 448,
the number of points in each measurement wavelength grid is
Nmλ = 131, and the measurement wavelength grids are chosen
from the TROPOMI Level-1 product, e.g.,

{λ1
mk}Nmλ

k=1 = {755.120, . . . , 770.929 nm},
{λ2

mk}Nmλ

k=1 = {755.133, . . . , 770.942 nm}
...

{λR
mk}Nmλ

k=1 = {755.264, . . . , 771.071 nm}. (17)
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Fig. 6. Same as in Fig. 4 but for the inverse-operator neural network with the
principal-component transform of synthetic radiances.

As before, the noisy spectra are generated with the noise
standard deviation σmk = 0.02× I(λmk), where I(λmk) =

(1/R)
∑R

r=1 I(λ
r
mk). The number of samples in the training

set is Nt = 404 901, where each sample consists of a set of
optical and geometrical parameters and the corresponding syn-
thetic radiances computed on all measurement wavelength grids
{λr

mk}Nmλ

k=1 , r = 1, . . . , R.
2) Neural Network for the Inverse Operator With the

Principal-Component Transform of Synthetic Radiances: To
reduce the dimension of the synthetic radiance vector im =
[I(λr

mk)]
Nmλ

k=1 ∈ RNmλ , the principal-component analysis is ap-
plied. Here, the dependency of im on the swath row r is implicitly
assumed. For the Nt-dimensional data set {i(n)m }Nt

n=1, let
〈
im
〉
=

Fig. 7. Retrieved aerosol optical depth τpred and aerosol layer height Hpred
from TROPOMI measurements recorded on December 12, 2017 in California.
The results correspond to the forward-operator neural network (the first row),
the inverse-operator neural network with synthetic radiances (the second row),
the inverse-operator neural network with the principal-component transform
of synthetic radiances (the third row), and the TROPOMI official operational
product (the fourth row).

(1/Nt)
∑Nt

n=1 i
(n)
m be the sample mean of the data. The goal of a

linear embedding method is to find an M -dimensional subspace
(M < Nmλ) spanned by a set of linear independent vectors
{uk}Mk=1, such that the centered data i(n)m − 〈

im
〉

belongs mainly

to this subspace, i.e., i
(n)
m ≈ 〈

im
〉
+UM î

(n)
m , where UM =
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Fig. 8. Absolute differences in the retrieved aerosol optical depth δτ and
aerosol layer height δH corresponding to the forward-operator neural network
(upper panels) and the inverse-operator neural network with the principal-
component transform of synthetic radiances (lower panels). The results provided
by the inverse-operator neural network with synthetic radiances are taken as a
reference.

[u1, . . . ,uM ] ∈ RNmλ×M is the (inverse) mapping from the low-
to the high-dimensional space. The dimensionality-reduced in-
put is then î(n)m = U†

M (i
(n)
m − 〈

im
〉
) ∈ RM , where the (forward)

mapping from the high- to the low-dimensional space U†
M ∈

RM×Nmλ is the pseudoinverse of UM , i.e., U†
MUM = IM .

In the principal-component analysis, the transformation ma-
trix UM is computed as follows: 1) stack all centered data
i
(n)
m − 〈

im
〉

into the columns of the matrix I , i.e., I = [i
(1)
m −〈

im
〉
, . . . , i

(N)
m − 〈

im
〉
] ∈ RNmλ×Nt , 2) compute the covariance

matrix C = (1/N)IIT ∈ RNmλ×Nmλ and a singular value de-
composition of C, i.e., C = UΣUT , where Σ = diag[σk]

Nmλ

k=1

is the diagonal matrix of the singular values σ1 > σ2 > · · · >
σNmλ

> 0 and U = [u1, . . . ,uNmλ
] ∈ RNmλ×Nmλ is the orthog-

onal matrix of the singular vectors, and 3) take the inverse
transformation matrix as UM = [u1, . . . ,uM ] ∈ RNmλ×M . In
this case, the forward transformation matrix is U†

M = UT
M ∈

RM×Nmλ . The number of principal componentsM is determined
by monitoring the reconstruction error

EM =

Nt∑
n=1

||(i(n)m − 〈
im
〉
)−UM î(n)m ||22

=

Nt∑
n=1

||(i(n)m − 〈
im
〉
)−UMU†

M (i(n)m − 〈
im
〉
)||22 (18)

as function ofM , and theM , for whichEM is below a prescribed
tolerance, is chosen. For the noisy radiance vector iδm = im + δm,
where δm ∼ N (0,Cm) is the measurement noise vector, we find〈
iδm
〉
=

〈
im
〉
, yielding îδm = UT

M (iδm − 〈
im
〉
) = îm + δ̂m with

δ̂m = UT
Mδm ∼ N (0, Ĉm) and Ĉm = UT

MCmUM ∈ RM×M .
Thus, instead of the synthetic radiances im ∈ RNmλ , the input

of the neural network is the principal-component transform of
synthetic radiances îm ∈ RM , and during each forward pass
through the network, the random noise δ̂m ∼ N (0, Ĉm) is
added to îm. To simplify the computation, we approximate
the dimensionality-reduced noise covariance matrix Ĉm by a
diagonal matrix, i.e., Ĉm ≈ diag[Ĉmkk]

M
k=1, where Ĉmij are the

entries of Ĉm. Through a numerical analysis, we found that
for M = 14, EM < 1.6× 10−3; thus, 14 principal components
appear to be sufficient for aerosol retrieval. The corresponding
analysis results for the first 14 principal components are shown
in Fig. 2.

It should be pointed out that the number of principal
components M can be also determined by reducing the
measurement noise [29]. In this case, the reconstruction er-
ror EM =

∑Nt
n=1 ||(i(n)m − 〈

im
〉
)−UMU†

M (i
δ(n)
m − 〈

im
〉
)||22

is monitored, and the M that minimizes EM is chosen.

IV. RESULTS AND DISCUSSION

In this section, we analyze the retrieval performances of the
neural network retrieval algorithms using the synthetic and real
TROPOMI data.

A. Synthetic Retrieval

To test the performances of the retrieval algorithms on syn-
thetic data, we consider a prediction or a test set consisting of
Np = 11 868 samples

(τ (n), H(n), θ
(n)
0 , θ(n),Δϕ(n), H(n)

s , A(n)
s ) (19)

chosen randomly in their assumed intervals of variation. For
the forward-operator neural network equipped with a Bayesian
approach, the initial and a priori values for the aerosol optical
depth and layer height are 2 and 2 km, respectively.

To interpret the results, we split the interval of variation of
x, [xmin, xmax], where x stands for τ and H , into Nb = 40
equidistant bins, i.e., [xmin, xmax] = ∪Nb

j=1Bxj , and compute the
(bin) mean

Ej(xpred) =
1

Nxj

∑
n, s.t.x(n)∈Bxj

x
(n)
pred (20)

and standard deviation√
Ej([xpred − Ej(xpred)]2)

=

√
1

Nxj

∑
n, s.t.x(n)∈Bxj

[x
(n)
pred − Ej(xpred)]2 (21)

over allNxj samplesx(n)
pred, whose correspondingx(n) are inBxj .

To quantify the retrieval accuracy, we use the first two moments
of the absolute error over the prediction set Δx = xpred − x,
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Fig. 9. Mean values of aerosol optical depth τmean
pred and aerosol layer height Hmean

pred for the three neural network based algorithms and the official operational
product. The mean differences in aerosol layer height against the official operational product are plotted as δmean

H . The comparison is done for the entire year of
2019.

Fig. 10. Histogram of the differences in aerosol layer height H between the TROPOMI and CALIPSO products. The TROPOMI retrievals are generated by
(a) forward-operator neural network, (b) inverse-operator neural networks with synthetic radiances, and (c) principal-component transform of synthetic radiances.

where xpred and x are the predicted and true values, respectively.
These are the mean absolute error

E(|Δx|) = 1

Np

Np∑
n=1

|Δ(n)
x | (22)

and the standard deviation of the absolute error

√
E([Δx − E(Δx)]2) =

√
1

Np

∑Np

n=1
[Δ

(n)
x − E(Δx)]2.

(23)
In Fig. 3, the mean Ej(xpred) and standard deviation√
Ej([xpred − Ej(xpred)]2) are plotted versus the midpoint xj

of the jth bin, while in Table II, we show the mean absolute
error E(|Δx|) and the standard deviation of the absolute er-
ror

√
E([Δx − E(Δx)]2) over the prediction set. Note that 1)√

E([Δx − E(Δx)]2) reproduces the square root of the diagonal
elements of the so-called epistemic covariance matrix of all

TABLE II
MEAN ABSOLUTE ERROR E(|Δx|) AND THE STANDARD DEVIATION OF THE

ABSOLUTE ERROR
√

E([Δx − E(Δx)]2) OVER THE PREDICTION SET

The results correspond to the forward-operator neural network
(Method 1), and the inverse-operator neural networks with synthetic
radiances (Method 2) and the principal-component transform of
synthetic radiances (Method 3).

network errors over the prediction set, and 2) the epistemic
uncertainties are large if there are large variations around the
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mean, e.g., if
√

Ej([xpred − Ej(xpred)]2) are large. Also note that
nonoptimal hyperparameters and training parameters as well as
a nonoptimal optimization algorithm are the main sources of
epistemic or model uncertainty [61]. The following conclusions
can be drawn.

1) In general, the accuracy is low for small values of the
aerosol optical depth τ and layer height H .

2) The inverse-operator neural networks with synthetic radi-
ances and the principal components of synthetic radiances
have comparable accuracies; these are higher than that of
the forward-operator neural network. The low accuracy of
the forward-operator neural network, especially for small
value of the aerosol optical depth and layer height, is
due to the fact that in this domain, the residual function
has several local minima and the global minimum cannot
be found by the iteratively regularized Gaussian method
(which is a local optimization method).

The variations of the absolute error Δx = xpred − x with
respect to the optical and geometrical parameters are illustrated
in Figs. 4–6. As before, each interval of variation of a param-
eter b, [bmin, bmax] is split into Nb = 40 equidistant bins, i.e.,
[bmin, bmax] = ∪Nb

j=1Bbj , and the mean Ej(Δx) and standard

deviation
√

Ej([Δx − Ej(Δx)]2) over all samplesΔ(n)
x , whose

corresponding b(n) are in the jth bin Bbj , are plotted versus the
midpoint bj of the bin. The plots show the following.

1) The standard deviation of the absolute error in the aerosol
optical depth τ is large when τ is small, and the solar
zenith angle θ0, viewing angle θ, and surface albedo As

are large.
2) The standard deviation of the absolute error in the aerosol

layer height H is large for small values of the aerosol
optical thickness τ and large values of the surface albedo
As.

3) The smallest standard deviations correspond to the
inverse-operator neural network with synthetic radiances,
while the largest correspond to the forward-operator neu-
ral network.

For instance, in Fig. 4 (the forward-operator neural network),
the standard deviation in Δτ can be of 1.14 for small values of
τ , and of 0.69, 0.64, and 0.92 for large values of θ0, θ, and As,
respectively, whereas the standard deviation in ΔH can be of
5.32 km for small values of τ and of 2.36 km for large values of
As.

B. Retrieval from Real Data

To investigate the performances of the retrieval algorithms
on real TROPOMI data, we first choose a wild fire scene in
California on December 12, 2017. In this case, the surface albedo
is given by the GE_LER product [28], and pixels with

1) a cloud fraction [taken from the operational TROPOMI
cloud product (OCRA/ROCINN) [31]] greater than 0.25,
or

2) an aerosol absorbing index (taken from the TROPOMI
Level-2 AAI product) lower than 1,

are not considered in the retrieval.

The retrieval results for the aerosol optical depth and layer
height are illustrated in Fig. 7. With the results by the inverse-
operator neural network with synthetic radiances as a refer-
ence, Fig. 8 shows the absolute differences in the retrieved
aerosol optical depth δτ = τpred − τ ref

pred and aerosol layer height
δH = Hpred −H ref

pred corresponding to the forward-operator neu-
ral network and the inverse-operator neural network with the
principal-component transform of synthetic radiances. The plots
demonstrate that the differences in the retrieved aerosol optical
depth δτ are smaller than 0.1 over the entire scene, while the
absolute differences in the retrieved aerosol layer height δH are
smaller than 0.4 km.

Finally, we compare the retrieval results between the three
neural network based algorithms and the official operational
algorithm for the entire year of 2019. From Fig. 9, the following
features are apparent.

1) The mean values of the aerosol optical depth delivered by
the three neural network algorithms are in general underes-
timated. The reason for this discrepancy is that the official
retrieval algorithm uses different aerosol microphysical
properties (a fact also seen in the previous study [8]).

2) The mean values of the aerosol layer height delivered
by the three neural network algorithms agree well with
those by the operational retrieval algorithm. However,
as expected, a better agreement can be seen between
the forward-operator neural network and the operational
algorithm whose forward model adopts the neural network
approach [35].

It should be pointed out that the computational time of a
physics-based retrieval algorithm using online radiative transfer
calculations is approximately 3 min for one ground pixel on a
computer Intel Core i7-4770 CPU 3.40 GHz with 16 GB RAM,
while the computational time of a forward- and an inverse-
operator neural networks are 0.4 and 0.003 s, respectively. For
these calculations, the Bayesian approach typically converges in
less than five iterations.

Likewise, we perform a comparison with the weighted
aerosol heights derived from the Cloud-Aerosol LIDAR Infrared
Pathfinder Satellite Observations (CALIPSO) Level-2 aerosol
extinction profile product for the entire year of 2019. The
weighted aerosol height is computed as a linear combination of
the heights above the sea level weighted by the corresponding
extinction coefficients. Fig. 10 depicts the histograms of the dif-
ferences in aerosol layer height (TROPOMI minus CALIPSO),
where a TROPOMI value is the mean value over all TROPOMI
pixels within a distance of 100 km to a single CALIPSO pixel.
The difference E(ΔH)±√

E([ΔH − E(ΔH)]2) is highest
for the forward operator neural network (1.54± 1.62 km),
whereas a better agreement with the CALIPSO product is appar-
ently achieved by the inverse operator with synthetic radiances
(1.38± 1.47 km) and the inverse operator with the principal-
component transform of synthetic radiances (1.48± 1.43 km).

V. CONCLUSION

In this article, we have developed three neural network algo-
rithms for aerosol retrieval from TROPOMI measurements in
the O2 A-band.
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1) The first algorithm uses a neural network to emulate the
radiative transfer model and a Bayesian approach to solve
the inverse problem. To speed up the computation, the
radiative transfer model combines standard acceleration
methods (the telescoping technique and the method of
false discrete ordinate) with hyperspectral acceleration
methods (the correlated k-distribution method and the
principal-component analysis). The inverse problem is
solved by using the iteratively regularized Gauss–Newton
method, which provides at the same time the optimal value
of the regularization parameter and the corresponding
regularized solution.

2) The second and third algorithms employ a neural net-
work to learn the inverse model and use as input either
the synthetic radiances computed on the measurement
wavelength grid or the principal-component transform of
synthetic radiances. The design of an inverse-operator
neural network for TROPOMI/S5P is not a trivial task
because, on the one hand, we are dealing with random
measurement noise and, on the other hand, there are a large
number of measurement wavelength grids corresponding
to each swath row. To solve this problem, we used the
jitter approach. More precisely, in the training stage and
at each forward pass through the network, a measurement
wavelength grid is randomly selected from a set of possible
wavelength grids, and a new random noise is added to
the synthetic radiance. Note that in the algorithm relying
on the principal-component analysis, the random noise
is described through an analytic dimensionality-reduced
noise covariance matrix.

The neural networks are incorporated into a common tool
and their performances are analyzed and compared with syn-
thetic and real data. Our numerical analysis has shown that
the inverse-operator neural networks are more accurate and
efficient than a forward-operator neural network. The reason
is that for small values of the aerosol optical depth and layer
height, the residual function has several local minima, and in the
latter case, the inversion method, which is a local optimization
method, cannot determine the global minimum. These results
may suggest that a TROPOMI operational retrieval algorithm
can be built on an inverse-operator neural network rather than
on a forward-operator neural network.

The design and refinement of neural networks for atmospheric
retrieval is a very complicated research field that requires more
developments that consist of the following:

1) application of the inverse-operator neural networks to
the remaining aerosol models considered in the MODIS
algorithm, i.e., nonabsorbing, absorbing, and desert dust
(the selection of an appropriate aerosol model is then based
on a combination of spectral and geographic information);

2) training the neural networks to learn the relative evidences
of different aerosol models, so that a mean solution esti-
mate, representing a linear combination of candidate solu-
tions weighted by their evidences, can be computed [62];

3) redesign of the neural networks in a Bayesian deep learn-
ing framework in order to predict input aleatoric and model
uncertainties [61].
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